
MATLAB, Simulink, Stateflow, Real-Time Workshop, Handle Graphics, and xPC 

TargetBox are registered trademarks of The MathWorks, Inc. 

Two Methods for Breaking Data Dependency 
Loops in System Level Models 
 
 

 

 

June 20, 2007 

Version 1.0 

Author: Michael Burke 

The MathWorks™ 

 

 

 

 

 

 

 

 

 

 



Page 2 of 34 

Table of Contents 

 

Introduction ......................................................................................................................... 3 

Task Overview ................................................................................................................ 3 

Assumptions .................................................................................................................... 4 

Preparation .......................................................................................................................... 5 

Select an Appropriately Sized Model ............................................................................. 5 

Determine “Desired” Order of Execution ....................................................................... 5 

Resolve Rate Transitions between Subsystems Running at Different Rates .................. 6 

Using Modeling Styles to Simplify Visualization of the Model..................................... 7 

Implementation ................................................................................................................... 8 

Function--Call Method.................................................................................................... 8 

Manual Control of Execution Order ............................................................................... 9 

Setting the Desired Execution Order .......................................................................... 9 

Resolve Remaining Data Dependencies ................................................................... 11 

Remove Unnecessary Unit Delays ............................................................................ 19 

Mixed Function Call and Manual Control .................................................................... 20 

Model Analysis ............................................................................................................. 20 

Verification of Execution Order for Manual Control Method .................................. 20 

Verification of Execution Order for Function Call Driven Method ......................... 21 

Appendix ........................................................................................................................... 23 

Understanding Execution Order ................................................................................... 23 

How Simulink Determines the Sorted Order ............................................................ 23 

About Direct-Feed through Ports .............................................................................. 23 

Data Dependency ...................................................................................................... 23 

Basic Algebraic Loops .............................................................................................. 24 

The Affect of Breaking Data Dependencies on System Behavior ............................ 25 

Data Independent Subsystems .................................................................................. 27 

Simulink Sorted Order .............................................................................................. 28 

Function Call Initiators ................................................................................................. 29 

Atomic Subsystems and Execution Order .................................................................... 30 

Referenced MAAB Rules ................................................................................................. 32 

jc_0171: Maintaining signal flow when using Goto and From blocks ..................... 32 

db_0143: Similar block types on the model levels ................................................... 33 

 



Page 3 of 34 

Introduction 
 

Creation of a system by integrating multiple validated subcomponents is a task common 

to Simulink
®
 and C.  In both environments integration issues arise as the number of 

components increases.  Problems include miss-matched data types, scaling and ensuring 

the correct signals are available, to name a few.  These are all challenges that systems 

integrators are used to solving.  However; the integration process in Simulink exposes 

data dependency issues that are normally hidden in the C development environment. 

 

Data dependency is the requirement that for any calculation, all the values on the right 

hand side (RHS) of equation are known prior to starting the calculation.  The value on the 

left hand (LHS) side is dependent on the values of the right hand side.  In the contexts of 

subsystems, the concept of calculation order is equivalent to execution order of the 

subsystems. 

 

LHSn = f (RHSn) 

 

The C language does not prevent users from writing equations where the LHS is assigned 

before the RHS.  This means that an old or non-initialized data can be used which can 

result in unexpected or incorrect results. 

 

LHSn = f (RHSn-1) 

LHSn = f (??) 

 

Unlike C, Simulink contains built in analysis tools that prevent this from happening.  

Users of Simulink are familiar with these diagnostic, which are most commonly referred 

to as algebraic loops.  Loops are broken by explicitly setting the order of calculation.    

This paper focuses on how to easily and systematically break these loops. 

 

Two methods are covered in this paper, using function-call subsystems and unit delay 

blocks.  Both of these methods can be used to define the execution order of the system. 

Task Overview 

The paper breaks the process into three tasks, preparation, implementation and analysis.  

The preparation phase places your model into a state which makes it easier to resolve the 

data dependency issues.   

 

This paper covers two approaches for the iterative phase; a function call driven approach 

and the use of unit delays to break data dependencies.  The analysis phase provides 

methods for insuring that the desired execution order is achieved. 

 



Page 4 of 34 

Assumptions 

This paper makes several assumptions regarding the state of a model, all of which do not 

have to be met for you to use this paper. The assumptions will simplify the process. 

 

 The model consists of multiple subcomponents. 

o The subcomponents are atomic subsystems 

o No transformational blocks exist outside of the sub-components 

See MAAB Style Guide rule db_0143 

 

 The model can use multiple rates provided 

o The subcomponents are single rate 

o A rate monotonic scheduler is used; faster rate subsystems run before 

slower rate subsystems 



Page 5 of 34 

Preparation 
 Select an appropriately sized model 

 Determining the desired order of execution 

 Resolving rate transitions between components running at different rates 

 Using modeling styles to simplify visualization of the model 

Select an Appropriately Sized Model 

Since a full control algorithm may consist of hundreds or even thousands of functions, 

the first step is to select an appropriate sized model. A best practice is to design models 

with between 10 to 20 atomic subsystems at the top level.  You can build up a full 

component, or full system, in turn is built up from a series of these smaller components.  

This approach of building larger models from a series of small components is consistent 

with C programming practices of building systems out of functions and groupings of 

functions. 

 

This paper refers to the model shown below, Control_Exe_Base.mdl.  Subsystems 

are colored to allow for easier visualization of the loops between systems. 

 

Determine “Desired” Order of Execution 

In some cases, there is a desired order of execution for the component.  The desired order 

of execution could reflect the requirements of an existing external scheduler or it could be 

due to the physical reality of the system or the requirements of the underlying control 

laws.  In either case, prior to modifying the model, the user should create a table that 

maps the desired relative order of execution of the atomic model’s subsystems. 

 

For example, a model, comprised of eight subsystems named A-H.  Based on the design, 

there are constraints on the order of subsystem execution.  The design might require an 

explicit execution order for the subsystems or  it might require a relative order of 

execution.  You can express relative constraints in terms of “Runs before” and “Runs 

after” as shown below.    

Subsystem Runs Before Runs After 

A C,D B 



Page 6 of 34 

B A,C None 

C D,E A,B 

E None D 

From the table, you can derive an explicit order of B,A,C,D,E. The subsystems F,G, and 

H do not have any user-imposed constraints.  The execution order can be resolved based 

on the data dependency. 

Resolve Rate Transitions between Subsystems Running at 
Different Rates 

If the model uses multiple rates, the next step is to resolve rate transitions between 

subsystems.  You can do this by using rate transition blocks. 

 

1. Turn on the sample time highlighting 

a. Format > Port / Signal Display > Sample Time colors 

 
2. Add Rate Transition blocks between subsystems running at different rates 

a. Slow to fast transitions 

b. Fast to slow transitions 

c. Disable the block parameter “Ensure deterministic rate transfer”  

between subsystems that run at non integer multiples rates. 



Page 7 of 34 

 
The MATLAB™ / Simulink documentation can be referenced for more information on 

how rate transition blocks function 

Using Modeling Styles to Simplify Visualization of the Model 

A clean layout simplifies working with a model.  One of the most common layouts is the 

“left to right layout”.  In left to right layout, the signal flow starts on the left side of the 

diagram and flows to the right. Signals flowing right-to- left indicate a feedback loop.  

Goto and From blocks can be used to simplify the diagram layout, following the MAAB 

rule jc_0171. 

 
 



Page 8 of 34 

Implementation 
This paper supports two methods for resolving data dependencies; function call driven 

and manual insertion. Both methods will resolve the data dependencies, however the two 

methods can, in some cases, result in different simulation behavior.  For both methods the 

code generation and the simulated behavior will match. 

 

 Pros Cons 

Function 

call  
 Directly maps onto traditional 

schedulers 

 Direct explicit control of 

execution order 

 Any execution order can be set 

 Requires additional 

scheduling subsystems 

 

Unit 

 Delay  
 Uses Simulink data dependency 

algorithms to minimize data 

delays 

 Does not require additional 

scheduling subsystems / 

architecture 

 Not all execution orders can 

be set 

 Changes to the model may 

require rearchitecting the 

unit delay configuration 

 

Function--Call Method 

The function-call method uses function-call initiators to explicitly set the order of 

execution. Since the order of execution is set all data dependencies are resolved.  

 

 

For the function-call method to work best, adhere to the basic rules:   

 Trigger a subsystem from only one function-call initiator. 

o You can trigger subsystems with more then one function call signal, 

provided the signals come from a common function-call initiator. 



Page 9 of 34 

 For multiple rate do the following: 

o Use a single Stateflow diagram to mimic a multiple rate system 

o Use multiple function-call initiators 

o There should only be one function call initiator per rate and offset 

o Rate Transition blocks exist between blocks running at different rates. 

 

Manual Control of Execution Order 

You can control the execution order by using Unit Delay blocks.  Unit Delay blocks 

maintain state information which breaks the downstream data dependency.  If the user 

starts with a clean model, i.e. there are no Unit Delay blocks between the atomic 

subsystems, then only the first two steps of the process are required.   

 

1. Set the desired execution order 

2. Resolve data dependencies 

3. Remove unnecessary Unit Delays 

 

Setting the Desired Execution Order 

The first step is to enforce the user desired execution order.  The following steps will 

configure the model with the desired execution order.  If two subsystems are data 

independent, e.g. there are no signals directly exchanged, Unit Delays can not be used to 

control their relative execution order. 

 

If all the subsystems, in the model are included in the ordering routine this last step in the 

process. 

 

Step 1: Starting with the first subsystem and proceeding to the last, add Unit Delay 

blocks to the inputs for the N
th

 subsystem from the N
th

+1 subsystem. 

 All inputs to A from B should have a Unit Delay blocks. 

 All inputs to B from C should have a Unit Delay blocks. 

 

Step 2: Starting with the last subsystem add Unit Delays to all it’s outputs when they 

used by “earlier subsystems”.  Perform an update diagram you add the Unit Delay 

blocks. 

 All outputs from H going to subsystem AG should have a Unit Delay 

 All outputs from G going to subsystem AF should have a Unit Delay  

 

Example: The model Control_Exe_Base.mdl is used for in this example 

For these steps, assume you have the following model with eight subsystems, A to H, and 

the desired order of execution is ABCDEFGH 

Step 1: Breaking signal flow between direct upstream subsystems (B A and G  

H) 



Page 10 of 34 

 
 

Step 2: 1
st
 pass: Feedback from H 

 
 

Step 2: 2
nd

 & 3
rd

 passes: (G & F) 

Note: Since G runs after F, there is a unit delay 



Page 11 of 34 

 
Step 2: 4

th
, 5

th
, 6

th
 passes (E, D, C) 

Note: D does not feed any earlier subsystems. Therefore, it has no unit delays added.  

After subsystem C, the models data dependencies are fully resolved and the desired 

execution order has been set. 

 

Resolve Remaining Data Dependencies 

In the example above, every subsystem was included in the order of execution.  If the 

execution order was only specified for B, D, F, H and E then A, C and G would be 

considered “free”.  This could happen when the user only has requirements for a subset of 

the model and wants to optimize the remaining execution order.  However, this will result 

in a model with algebraic loops.   

 



Page 12 of 34 

 
 

There are two basic approaches to solving these loops.  Arbitrarily specify an order of 

execution for the remaining subsystem.  Then repeat the steps in phase 1, this time with 

the “free” subsystems controlled.  To avoid the inclusion of unnecessary unit delays, start 

the process from a clean model without any Unit Delay blocks.  

 

 
 

 Resolve the data dependencies based on the error messages provided by Simulink.  

Following this approach will result in a system with the fewest unit delays.   

 

Types of Error Messages 

When Simulink finds a data dependency in a model it returns an error message.  The 

error messages have two forms a direct backwards loop and multiple co-existing.  The 

distinguishing characteristic of a direct backward loop is that when you click on the error 

messages in order, the signal flow between subsystems is direct and constant.  In multiple 



Page 13 of 34 

coexisting loops, the order of the error message is “broken.”  At some point in the error 

message, the block order either jumps without a direct connection between the 

subsystems or the connecting signals are broken by a unit delay.  Both types of error 

message can be used to resolve model data dependencies. 

 

 Direct 

backwards 

Multiple  

co-existing 

Number of loops in system 1 2 or more 

Data loop can be directly 

traced from error message 

Yes No: error message “jump” at 

location of extra loops 

Can be broken at a single 

point between two 

subsystems 

Yes No 

Requires multiple iterations 

to resolve loops 

No Yes 

Building a Connection Table 

Starting with a simple model, we will look at how error messages can be used to break 

algebraic loops.  We will examine the error messages using a connection table.  The 

connection table is a map of all the subsystems in the loop and how they connect to each 

other.    

 

  
 

 

 A C B 

A NA Output 

Input 

Output 

C Input 

Output 

NA Input 

B Input Output NA 

 

 The order the subsystem appear is in the column. The row header is based on their 

appearance in the error message 

 Input: The row subsystem receives an Input from the column subsystem 

 Output: The row subsystem has an Output that goes to the column subsystem 



Page 14 of 34 

 NA: The column / row are the same subsystem (e.g. A/A) 

 None: There are no connections between the row and column subsystem 

 *: There is a connection however it is already broken by a unit delay; e.g. Input* 

indicates that the row subsystem is connected to the column subsystem  

 If included the cells above the NA diagonal are a mirror of the cells below the NA 

diagonal. 

 Length (optional column): A metric used to determine the distance between 

blocks in the loop 

Heuristics for Using the Connection Table 

The loops are broken by adding in unit delay blocks to the model.  The following 

guidelines illustrate how to priorities the addition of unit delays.  After each step of 

inserting unit delay the user should perform an update diagram.  If the order of the 

subsystems in the error message changes the connection table should be re-drawn.  

 
For larger models with longer update times the several sets of unit delays can be added 

between update diagrams.  However as the size of the error loop decreases it is important 

to run the update diagram frequently to avoid the inclusion of unnecessary unit delays. 

 

The basic premises of the heuristic are 

 Break the shortest loops first 

o Break the loop between the subsystems where the direction changed.  

 Add to the subsystem with the most “resolved” signals.  A signal is 

resolved if 

 It is a root level inport or constant block 

 It comes from a unit delay 

 It comes from a subsystem with no data dependencies. 

 The subsystem closer to the start of the loop 

Has 

Errors 

Update 

Diagram 

Redraw 
Connection 

Table 

Order 

changed 

Yes 

Apply 
heuristics 

Add Delay 

Yes 

No 

Process Complete 



Page 15 of 34 

 For multiple co-existing loops once the zero length pairs are broken fixes the 

dependencies prior to the break first, working from the row before the break to the 

top of the table. 

 

 

The connection table shows where loops exist.  For a given row when the cell contents 

changes from input to output there is a loop between the subsystems.   In the example 

table bellow a loop exists between  

 F and G: The change from Input to Output (F/H  F/G) 

 E and H: The change from Output to Input (E/F  E/H) 

o Loop would be broken between F & H 

 G and H: The change from Output to Input in the same cell (H/G) 

o Loop would be broken between H & G 

 G and E: The change from Input to Output (G/F  G/E) 

o Loop would be broken between F & E 

 F E H G Length 

F NA Input Input Output 1 

E Output NA Input Input 2 

H Output Output N A Output 

Input 

0 

G Input Output Input 

Output 

NA 0,1 

 

The length is determined by counting the number of columns between the start of one 

direction and the next. 

 

Applying the Heuristics: A Direct Backwards Loop  

Example 1:  This example uses the model “Loop_E1.mdl” 

Using the model and table from the “Building a connection table” section we apply the 

heuristics.   

 
 

 

 

 A C B 



Page 16 of 34 

A NA Output 

Input 

Output 

C Input 

Output 

NA Input 

B Input Output NA 

 The shortest loop is between A / C 

o The unit delay is added to the input of subsystem A.  

o A is selected because it has a root level input.   

 Update Diagram: The loops are resolved. 

 

 

Example 2: This example uses the model “Loop_E2.mdl” 

 

 

 

 

  F E H G Length 

F NA Input Input Output 1 

E Output NA Input Input 1 

H Output Output N A Output 

Input 

0 

G Input Output Input 

Output 

NA 0 

 The shortest loop exists between H & G 

o The unit delays are added to the inputs of subsystem H. 

o H is selected because it has the most resolved signals.  The subsystem C 

and D are fully resolved, where as E and F (the inputs to G) are not. 

  

Example 3: This example uses the model “Loop_E3.mdl” 



Page 17 of 34 

 

 

 

 H D G F E 

H NA Input Output* 

Input 

Output Output 

D Output NA Input None Output 

G Input* 

Output 

Output NA Input Input* 

F Input None Output NA Input 

E Input Input Output* Output NA 

 

 The shortest loop is between F and G (F/H (input)  F/G (output)) 

The H/G Output / Input pair is already broken by a unit delay 

o The unit delay is added to the inport of G. 

 Update diagram: The loop is resolved 

 

Applying the Heuristics: Multiple Coexisting Loops 

In the first case the error message was easily interpreted because there was only one loop 

in the system.  When there is more then one loop the error message maybe less clear.  

However the same methods can be used to determine useful information.   

Example 4: This example uses the model Loop_E4.mdl 



Page 18 of 34 

 

 

 

The update results in the following table.  The gray shaded boxes represent subsystem 

pairs that are directly part of the error message loop.  The table has four subsystems that 

have both inputs and output connections; A/C, B/A, G/H and F/B.  The subsystem pair 

F/B can be ignore since the output connection is already broken by a unit delay. 

 

 H D C A E B F G 

H NA Input Output None Output None Output* Output 

Input 

D Output NA Input None Output None None Input 

C Output Output NA Output 

Input 

None Input Input None 

A None None Input 

Output 

NA Input Output 

Input 

None None 

E Input Input None Output NA None Output* Output 

B None None Output Input 

Output 

Input NA Output* 

Input 

None 

F Input* None Output None Input* Input 

Output* 

NA Output 

G Input 

Output 

Output None None Input None Input NA 

 

 Shortest loop: G/H 

o Inserted break on inport to G.   

 Update diagram: No change to error message 

 Shortest loop: B/A 

o Inserted break into B since 2 out of three inputs already broken 

 Update diagram: No change to error message 

 Shortest loop: A/C 



Page 19 of 34 

o Inserted break before Inport for C.  Both A & C  

 Additionally, coupled with the previous step, results in the A row 

having all “Input” entries which removes it from the loop. 

 Update diagram: Error message is updated 

 Create new connection table 

 

 

 

 

 H D C B E F G 

H NA Input Input None Output Output* Output* 

Input 

D Output NA Input None Output None Input 

C Output Output NA Input None Input None 

B None None Output NA Input Output None 

E Input Output None Output NA Output* Output 

F Input* None Output Output* 

Input 

Input* NA Output 

G Output 

Input* 

Output None None Input Input NA 

 

The break in the connection table occurs at F/E.  The error message shows a loop even 

though the loop is broken by a unit delay.  Because of this we start by working on entries 

in rows H~E, prioritizing the bottom of the table. 

 Shortest loop: E & G (change from output at E/G to Input at E/H) 

o Inserted break on the input to G.   

 Update diagram: No change to error message 

 Shortest loop: B & E (change from output B/C to input B/E) 

o Inserted break on the input to B 

 Update diagram: No error messages 

 

Remove Unnecessary Unit Delays 

A common problem when manually controlling the execution order is the introduction of 

unnecessary unit delays.  The difficulty arises from determining which unit delays are 

required.  The appendix section on data independent subsystems addresses how to 

remove unnecessary unit delays. 



Page 20 of 34 

 

Mixed Function Call and Manual Control 

Using a combination of Function called and Manual control can be done, however it is 

not a recommended approach.  Lets assume in our example model that A, C, E, G are 

controlled by function calls and B, D, F, and H are controlled by unit delays.  Simulink 

requires that all function calls subsystems triggered by a common function call initiator 

execute without interruption.  In our case that means that once A is triggered, C,E and G 

must run before any other subsystem runs.  B, D, F and H could execute either before or 

after A, C, E and G.   

 

Correct Incorrect 

  
All inputs into D are delayed.   This allows 

subsystem D to run prior to the function call 

blocks. 

The unit delay between G and D will 

cause D to run before G.  However since 

there are no delays between C and D it 

should run after C. 

 

Model Analysis 

Verification of Execution Order for Manual Control Method 

If the manual method for controlling execution has been used then the Simulink 

Debugger can be used to find the order of execution of the subsystems.  

 

Launch the 

debugger  or sldebug('ModelName') 

Start the 

simulation 

from the 

debugger  

Open the 

Sorted List Tab 

 



Page 21 of 34 

View the 

sorted list 

Note: this list 

is filtered to 

just show the 

subsystems 

 
 

Verification of Execution Order for Function Call Driven Method 

Unlink the unit delay case the Simulink debugger will not directly give the execution 

order of the subsystems for function call triggered subsystems.  However by using break 

points the debugger can be used to determine the order of execution.  

 

Launch the debugger 
 or sldebug('ModelName') 

For each atomic 

subsystem select the 

block and then add it 

to the break point list 

 
Start the simulation 

from the debugger 

 



Page 22 of 34 

Advance the 

simulation until the 

model is in the 

“SimulationLoop” 

“Outputs.Major” 

sub-group. 

 

Each step of the 

model will now 

advance to the next 

active subsystem.  In 

the image A is the 

current active 

subsystem. 

 
 

 



Page 23 of 34 

Appendix 

Understanding Execution Order 

How Simulink Determines the Sorted Order 

 

Simulink uses the following basic rules to sort the blocks: Each block must appear in the 

sorted order ahead any of the blocks whose direct-feed through ports (see About Direct-

Feed through Ports) it drives.  This rule ensures that the direct-feed through inputs to 

blocks will be valid when block methods that require current inputs are invoked.  Blocks 

that do not have direct feed through inputs can appear anywhere in the sorted order as 

long as they precede any blocks whose direct-feed through inputs they drive. Putting all 

blocks that do not have direct-feed through ports at the head of the sorted order satisfies 

this rule. It thus allows Simulink to ignore these blocks during the sorting process. The 

result of applying these rules is a sorted order in which blocks without direct feed through 

ports appear at the head of the list in no particular order followed by blocks with direct-

feed through ports in the order required to supply valid inputs to the blocks they drive. 

During the sorting process, Simulink checks for and flags the occurrence of algebraic 

loops, that is, signal loops in which a direct-feed through output of a block is connected 

directly or indirectly to the corresponding direct-feed through input of the block. Such 

loops seemingly create a deadlock condition, because the block needs the value of the 

direct-feed through input to compute its output.  However, an algebraic loop can 

represent a set of simultaneous algebraic equations (hence the name) where the block's 

input and output are the unknowns. Further, these equations can have valid solutions at 

each time step. Accordingly, Simulink assumes that loops involving direct-feed through 

ports do, in fact, represent a solvable set of algebraic equations and attempts to solve 

them each time the block's output is required during a simulation. For more information, 

see Algebraic Loops. 

 

About Direct-Feed through Ports 

 

In order to ensure that the sorted order reflects data dependencies among blocks, 

Simulink categorizes a block's input ports according to the dependency of the block's 

outputs on its inputs. An input port whose current value determines the current value of 

one of the block's outputs is called a direct-feed through port.  Examples of blocks that 

have direct-feed through ports include the Gain, Product, and Sum blocks.  Examples of 

blocks that have non-direct-feed through inputs include the Integrator block (its output is 

a function purely of its state), the Constant block (it does not have an input), and the 

Memory block (its output is dependent on its input in the previous time step). 

Data Dependency 

Fundamentally Simulink uses data dependency to determine the order in which 

calculations are performed.  If block B uses the output of block A then block B is said to 



Page 24 of 34 

be dependent on block A.  Dependency propagates through blocks, so if C uses B’s 

output then C depends on A. 

 

B(n) = f(A(n)) 

C(n)= f(B(n))  

C(n) = f(f(A(n)) 

 

 

Blocks that maintain state information, such as integrators and unit delays break data 

dependency for the blocks following them.   

 

B(n) = f(A(n)) 

C(n) = f(B(n-1)) 

 

The same principal can be extended to Atomic Subsystems. 

Basic Algebraic Loops 

Algebraic loops are the result of Simulink block connections with ambiguous data 

dependency.  Ambiguity arises when the output of a block is used, directly or through a 

chain of blocks, as an input to itself. 

 

 
Note: The subscript letter “i” indicates the iteration count 

Yi = Si  

Si = Xi + Si   

Subtracting Si from both sides results in  

Xi = 0 

 



Page 25 of 34 

 
Yi = Ui  

Ui = Si-1 

Si = Xi + Ui 

By substitution  

Yi = Xi-1 + Yi-1 

 

The resulting equation is not ambiguous; however the output result is based on a delayed 

value of the input X.   

 
Yi = Si 

Si = Xi + Ui 

Ui = Si-1 

By substitution: 

Yi = Xi + Si-1  = Xi + Yi-1 

 

This configuration of the block diagram results in the desired calculation; the output 

value is based on the current value of X and the last value of Y. 

The Affect of Breaking Data Dependencies on System Behavior 

As the previous section showed unit delay blocks can be used to resolve data 

dependencies.  At the system root level the data dependencies will exists between the 

atomic subsystems.   



Page 26 of 34 

 
In the figure above there is a data dependency loop between subsystems A and C; there is 

a data dependency between A and B but there is not a loop.  There are three different 

ways in which the loop can be broken. 

 
 

The placement of the unit delay affects both the order of execution and the TIME SLICE 

of the data consumed by the subsystem.   

 

 Method 1 Method 2 Method 3 

Execution Order 1. B / C 

2. A 

1. C 

2. A 

3. B 

1. A 

2. B / C 

A Inputs In 1 current 

In 2 current 

In 1 current 

In 2 current 

In 1 current 

In 2 last pass 

B Inputs In 1 current 

In 2 last pass 

In 1 current 

In 2 current 

In 1 current 

In 2 current 

C Inputs In 1 last pass In 1 last pass In 1 current 

 

For both methods 1 and 3 subsystems B & C are show as executing at the same time.  

This is because there is no data dependency between them.  They can be executed in any 

order without changing the simulation behavior.   

 

Examining this simple model yields two rules basic guidelines. 



Page 27 of 34 

1. Break dependency loops at the sink 

Breaking dependencies at the source (for example Method 1) introduces delays in 

the signal that may not be required (A to B) 

2. Place unit delays such that the time frame of the inputs are consistent. 

 

Because of these guidelines the recommendation is to use method 2.  

 

Data Independent Subsystems 

A subsystem with no input data dependences or output data dependences is called data 

independent.  A subsystem is input data independent if all of the inputs are either root 

level inports or unit delayed signals.  These subsystems run at the start of the time step.  

They should not have any delays on their output signals.  Subsystems receiving signals 

from an input data independent subsystem will run after the source.  

 

 If all the input signals to a subsystem are from a combination of input data independent 

subsystems, root level inputs and unit delayed signals then the subsystem is called 

inherited data independent.  These subsystems act like data independent subsystems with 

respect to the down stream subsystems.  However they may have unit delays on their 

outputs. 

 

A subsystem is output data independent if all the outputs are either delayed or root level 

inports.  These subsystems will run near the end time step.  These subsystems should not 

have any unit delays on their inports.   

 

Understanding which subsystems are data independent facilitates the removal of 

necessary unit delays.  We will start off with an example model that does not have any 

extra unit delays to illustrate this concept. 

 
In the model above the subsystem B is input data independent; 3 out of its four inputs are 

delayed and the fourth is a root level input.  Subsystem E is not data independent because 



Page 28 of 34 

of the connection to subsystem A.  Examining the remaining subsystems, proceeding left 

to right across the diagram we observe the following 

 F is dependent on B, E and H.   

o The signals from E & H are directly broken with unit delays.   

o B is a data independent subsystem 

Therefore 

o F is an inherited data independent. 

o F will run after B, before E & H 

 A is dependent on C, E and B.   

o For now A is uncertain.   

 C is dependent on A, B and F 

o The signal from A is broken with a unit delay 

o Signals from F and B are inherited and data independent signals 

Therefore 

o C is an inherited data independent subsystem 

o C will run after B and F, and before A. 

 G is dependent on F, E and H 

o The signals from E and H are broken by unit delays 

o F is an inherited data independent subsystem 

Therefore 

o G is an inherited data independent subsystem 

o G will run after F, before H & E. 

o The execution order of G & C are independent of each other. 

 By inspection D, H and E are inherited data independent subsystems.   

 Once E is resolved A can be stated to be inherited data independent. 

 

Guidelines for removing unnecessary unit delays 

 Subsystems should not have both input and output unit delays 

 The majority of unit delays should be near the start of the signal flow (e.g. the left 

hand side of the diagram) 

o Unit delays near the right hand side of the diagram should be to resolve 

local loops 

 

Simulink Sorted Order 

The figure below shows part of a Simulink model with the block sorted order turned on.  

(Simulink >> Format >> Block Displays >> Sorted Order)  It is important to note that the 

number shown for the subsystem “0:F{1}” is not the execution order of the system.  The 

F{1} denotes it as the 1
st
 subsystem.  Blocks contained in that subsystem take the label 

1:N where N is there location in the order of execution. 

   



Page 29 of 34 

 
 

Function Call Initiators 

Function call subsystems are triggered by function call signals.  Function call signals are 

generated by function call initiators.  Stateflow and Function Call Generator blocks are 

the most common methods for creating a function call signal. 

 

 
 

Common function call initiators are either direct or indirect.  In direct common function 

call initiators all the subsystems are directly triggered by the function call source.  

Indirect common function call initiators use a root function call source to trigger sub-

function call sources.   



Page 30 of 34 

 

Direct Common Function Call Initiator 

Single Stateflow diagram 

 

 

Direct Common Function Call Initiator 

 

 

Indirect Common Function Call Initiator 

 The Stateflow diagram 

“TopLevel” triggers the two sub 

schedulers. 

 

 

  For the Function Call Driven approach to work the model must use one common 

function call initiator for each rate / offset. 

 

Atomic Subsystems and Execution Order 

Subsystems in Simulink are either Virtual or Atomic.  Virtual subsystems are a method of 

visually organizing the model and have no affect on either the simulation behavior the 

generated code.  Designating a subsystem as atomic forces Simulink to treat the 

subsystem as a unit when determining the execution order of block methods. For 

example, when it needs to compute the output of the subsystem, Simulink invokes the 



Page 31 of 34 

output methods of all the blocks in the subsystem before invoking the output methods of 

other blocks at the same level as the subsystem block.  

 

If this option is not selected, Simulink treats all blocks in the subsystem as being at the 

same level in the model hierarchy as the subsystem when determining block method 

execution order.  This can cause execution of methods of blocks in the subsystem to be 

interleaved with execution of methods of blocks outside the subsystem 

 

Designating the subsystem as atomic provides control over how the code is generated; 

inline, function or reusable function.  Additionally the subsystems data can be placed into 

unique data structures if the code is either function or reusable function. 

 

Changing a subsystem from virtual to atomic affects how Simulink determines the data 

dependency of the system.  Because of this the recommendation is to only use atomic 

subsystems the partitioning control is required.  The next section goes into detail on how 

atomic subsystems affect the model’s behavior. 

 

 

 
In the example above, if the subsystem Case_A is a virtual subsystem then the full model 

reduces to a system without data dependencies.  However if the subsystem Case_A is an 

atomic subsystem then Simulink treats the system as having a data dependency.  This sort 

of data dependency can be resolved by using the subsystem configuration option 

“Minimize algebraic loops.”  This method will only work if the data contains a block that 

has state information.  More information on how this option works can be found in the 

Simulink documentation. 



Page 32 of 34 

Referenced MAAB Rules 
The following MAAB style guide rules where referenced in this document.  They are 

included here for reference only. 

jc_0171: Maintaining signal flow when using Goto and From blocks 

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks 

Priority strongly recommended 

Scope MAAB 

MATLAB 

Version 
All 

Prerequisites  

Description 

 Visual depiction of signal flow must be maintained between subsystems 

 Use of Goto and From blocks is allowed provided that 

 At least one signal line is used between connected subsystems 

 If the subsystems are connected both in a feedforward and 

feedback loop then at least one signal line for each direction must 

be connected 

Correct 

 

Incorrect 

 
 

 



Page 33 of 34 

Rationale 

 Readability 

 Workflow 

 Simulation 

 Verification and Validation 

 Code Generation 

 

Last Change V2.0 

 

db_0143: Similar block types on the model levels 

ID: Title db_0143: Similar block types on the model levels 

Priority strongly recommended 

Scope MAAB 

MATLAB 

Version 
All 

Prerequisites  

Description 

Every level of a model must be designed with building blocks of the same 

type. (i.e. only subsystems or only basic blocks).  

Blocks which can be placed on every model level: 

Inport  

Outport  

Enable (not on highest model 

level)  

Trigger (not on highest model 

level)  

Mux 

Demux 

Bus Selector  

Bus Creator 

Selector 

Ground  

Terminator  

From  

Goto  

Switch  

Multiport Switch  

Merge  

Unit Delay  

Rate Transition 

Type Conversion  

Data Store Memory  

If block 

Case block 

Note: Trigger and Enable blocks can not 

be placed at the root level.  

 

 

Rationale  Readability  Verification and Validation 



Page 34 of 34 

 Workflow 

 Simulation 

 Code Generation 

 

Last Change V2.0 

 


