MATGRAPH: A MATLAB TOOLBOX FOR GRAPH THEORY

EDWARD R. SCHEINERMAN

OVERVIEW

MATGRAPH is a toolbox for working with simpleﬂ graphs
in MATLAB. The goal is to make interactive graph theory ex-
ploration simple and efficient.

In order to use this toolbox, you need a copy of MATLAB,
available from The MathWorks. A few of the MATGRAPH
functions require the additional Optimization Toolbox, also
available from The MathWorks.

This document gives an overview of the MATGRAPH tool-
box. More information can be found in the accompanying web
pages (see §3).

In addition to providing a graph class, MATGRAPH also
defines helper classes for working with permutations (see
and partitions (see §D).

1. GETTING MATGRAPH

1.1. Download and install. MATGRAPH is available for free
from my web site. Go to

http://www.ams. Jhu.edu/ ers/matgraph

and select the link in the sentence “You can download Mat-
graph by clicking here.”

This should cause the file matgraph-X.X.tgz to be down-
loaded to your computer. (The X.X is the version number.)
This is a compressed archive. To unpack on a UNIX system,
give the command

tar xfz matgraph-X.X.tgz

(where X.X is replaced by the correct version number). On
other computers, double clicking on the file’s icon should serve
the same purpose.

This should create a directory named matgraph. You may
move this directory to any convenient location on your hard
drive.

1.2. License. This software is copyrighted by Edward
R. Scheinerman and released free of charge under the GNU
General Purpose Licenses. A copy of this license can be found
at

http://www.gnu.org/licenses/gpl.html

I would like to make this tool as useful to as many people as
possible. I invite you to send me improvements for the current
.m files as well as new .m files for added functionality.

2. USING MATGRAPH

2.1. Basic principles. We assume the reader is familiar with
MATLAB. Before we discuss how to use MATGRAPH, it is
crucial that the following basic principles be understood.

e All graphs handled by MATGRAPH are simple and
undirected. That is, these graphs do not have loops
or multiple edges. Each pair of distinct vertices either
is not adjacent or else is joined by a single edge.

e The vertex set of all graphs in MATGRAPH is always
of the form {1,2,...,n} where n > 0 is the number of
vertices in the graph.

An important consequence of this is that when a
vertex is deleted from a graph, all vertices with higher
value are renumbered.

e All graphs in MATGRAPH are specially defined graph
objects. They do not behave in the same manner as,
say, matrices in MATLAB. For the sake of efficiency,

Date: 2008:03:04:09:47.
ISimple graphs are undirected graphs without loops or multiple edges.

MATGRAPH functions are capable of modifying their
arguments.

Most MATLAB functions use call by value seman-
tics. That is, a copy of the argument is sent to the func-
tion. For example, suppose we have a function named
func defined in a file func.m. In MATLAB, issuing
the command func (A) does not affect the value held
in the ordinary variable A.

MATGRAPH, however, is designed differently.
Function arguments of type graph use call by refer-
ence semantics. This means that a command such as
add (g, 2,4) can modify the graph g (in this case, by
adding an edge joining vertices 2 and 4).

Not all MATGRAPH functions modify their argu-
ments, but they all use call by reference for graph ar-
guments. For functions that are capable of modifying
graphs, the graph that is modified is always the first



2 ED SCHEINERMAN

argument to the function. For example, MATGRAPH
provides a 1ine_graph function. The command
line_graph(g,h)
overwrites g with the line graph of h. The graph h is
not affected. For more detail, see §2.3

e As a consequence of how graphs are stored in
matgraph, the only time a graph variable should ap-
pear on the left hand side of an assignment statement
is when the variable is initialized like this:

g = graph
At no other time should a graph variable appear to the
left of an equal sign.

2.2. Starting MATGRAPH. Launch MATLAB and be sure
that the MATGRAPH directory is visible on MATLAB’s path.
This can be done with MATLAB’s addpath function. For ex-
ample:
addpath (' /home/betty/programming/matgraph/’)
assuming Betty placed the matgraph directory inside a folder
named programming on her computer.

The next step is to initialize the MATGRAPH system. This
is done by giving the following command:

graph_init
This sets up hidden data structures (see §6) used by MAT-
GRAPH. MATLAB responds:

Graph system initialized. Number of slots = 500.

MATGRAPH is now ready to work with graphs. By default,
the system can handle 500 different graphs. This should be
adequate for most purposes. However, if you need an array
of, say, 1000 graphs, then this is not sufficient. Alternatively,
MATGRAPH may be initialized with an explicit argument spec-
ifying the number of “slots” (place holders for graphs) like
this:

graph_init (20000)

If you ever wish to delete all of the hidden data structures
(and thereby erasing all graphs held therein), use the function
graph_destroy.

See als the free_all,
max_available functions.

num_available, and

2.3. Declaring graph objects and memory management.
Before working with graphs, it is necessary to declare vari-
able(s) to be of type graph. This runs against MATLAB’s
philosophy that variables do not need to be declared, but is
necessary for the sake of efficiency.

To declare a variable, say g, to be of type graph, we give
the following command:

g = graph;
It is helpful to read this as “let g be a graph.” This is the only
circumstance in which a graph object may appear to the
left of an equal sign.

Behind the scenes, one of the “slots” allocated for graphs
(by graph_init) is set aside for the graph g.

Every time a graph variable is declared, one these slots is
taken to hold the data for the graph. If a graph variable is no
longer needed, then its slot can be released like this:

free(qg)

If, inadvertently, a graph variable is cleared from MATLAB’s
workspace, there is no convenient way to free the slot it occu-
pied.

Freeing a graph’s slot is not generally necessary when
working at MATLAB’s command prompt. Graphs can be
modified repeatedly and one need not declare more graph vari-
ables than the number of graphs one is currently considering.

However, releasing the slot held by a graph is vital in .m
files. It is often useful for a function to declare a graph vari-
able temporarily. Every graph that is created using the
g=graph constructor must be released by a matching call
to free (g). Otherwise, each time the function is invoked,
another slot in MATGRAPH’s hidden data structure is con-
sumed until no slots remain available.

To make a copy of a graph, we must not use the statement
h=g. Rather, use copy (h, g).

2.4. Basic graph operations. The statement g=graph creates
anew graph with no vertices or edges. It is now possible to add
and to delete vertices and edges using the resize, add, and
delete functions. For each of these, the graph to be modified
is the first argument (see the discussion of basic principles in

\'

e resize (g, n) changes the number of vertices in g to
the value held in n. If n is greater than the number
of vertices in g, then additional, isolated vertices are
added. On the other hand, if n is less than the number
of vertices in g, then the highest numbered vertices
are deleted leaving a graph with n vertices. For ex-
ample, if g has 10 vertices and we invoke the com-
mand resize (g, 7), then vertices 8, 9, and 10 are
deleted (and all edges incident on these vertices are
also deleted).

e add(g,u,v) adds an edge between u and v to the
graph. If either of these values is nonpositive, or if
they are equal, nothing happens. If either u or v is
greater than the number of vertices currently in g, the
graph is expanded to have max{u,v} vertices.

Another way to use add is like this: add (g, elist)
where elist is a k x 2 array of positive integers. Each
row of elist is considered an edge, and all of these
edges are added to the graph. If any end point of any
edge is larger than the number of vertices currently in
the graph, the graph is resized to accommodate.

The automatic resizing has the potential side effect
of adding isolated vertices. For example, if g has 5
vertices, and we then give the command add (g, 3, 7)
the graph is resized to have 7 vertices. Vertex 6 is
added as an isolated vertex.

2See for a description of the web-based information on all MATGRAPH functions. When we direct the reader to see a particular function, we typically
mean to view that function’s documentation with a web browser or by using MATLAB’s help command.



MATGRAPH 3

Remember: The vertex set of all graphs in MAT-
GRAPH are always of the form {1,2,...,n} where

n>0.
e delete is used to delete vertices or edges from a
graph.
— delete(qg,v) deletes the vertex v from the

graph. (If v is not a vertex of the graph, there
is no effect.)
All vertices with number greater than v have their
values decreased by 1. For example, suppose g
is a path graph with edges 1 ~2 ~3 ~4 ~ 5.
When we give the command delete (g, 3) ver-
tex 3 is deleted from the graph, and vertices 4 and
5 get renamed 3 and 4, respectively. Thus, af-
ter delete (g, 3) the vertex set of gis {1,2,3,4}
and the only edges are 1 ~ 2 and 3 ~ 4.
— delete(g,vlist) deletes an entire set of ver-
tices. In this form, v1ist is a k x 1 array of pos-
itive integers. All vertices in v1ist are deleted
from the graph, and then vertices are renamed so
the vertex set remains of the form {1,2,...,n}.
For example, if g is a cycle on 5 vertices
with edges 1 ~2 ~3 ~ 4 ~ 5 ~ 1, then
delete(qg, [2;3]) deletes vertices 2 and 3 from
the graph (leaving edges 4 ~ 5 ~ 1) and then
renumbers vertices 4 and 5 with the new names 2
and 3, so the final result is the path 2 ~ 3 ~ 1.
— delete(g,u,v) deletes the edge between u and
v from the graph. If this edge is not present in the
graph, nothing happens.
— delete(g,elist) deletes a list of edges from
the graph. The variable elist must be a k x 2
array of positive integers.
Point to notice: delete (g, [3;4]) deletes vertices
3 and 4 from the graph (second argument is a column
vector) whereas delete (g, [3,4]) deletes the edge
3 ~ 4 from the graph (second argument is a k x 2 ar-
ray where k happens to equal 1).

See also the clear_edges function that deletes all
edges from a graph.

See also set_matrix (described in §2.8).
contract.

See also

2.5. Standard graphs. MATGRAPH provides several func-
tions for forming standard graphs. One of the more versatile is
the complete function for creating complete graphs, complete
bipartite graphs, and complete multipartite graphs:

e complete (g) adds all possible edges to g without
changing its vertex set.

e complete (g, n) sets g to be the complete graph K,,.

e complete (g, n,m) sets g to be the complete bipartite
graph K, ,,.

e complete (g, list) sets g to be the complete mul-
tipartite graph K(aj,az,...,a;) where the indices are
the entries in list.

Other general graph builders include path, cycle, grid,
wheel, cube, circulant, and paley. Specific graphs can be
formed using these: bucky, dodecahedron, icosahedron,
octahedron, and petersen. Various random graphs
can be built using these functions: sprandom,
random_bipartite, and random_regular.

random,

2.6. Graph operations. MATGRAPH provides a variety of
operations to form new graphs from old. For example,
line_graph (h,g) sets h to be the line grap}ﬂ of g. Other
operations include cartesian, complement, mycielski,
induce, intersect, union, and trim.

Breadth-first and depth-first spanning trees can be found us-
ing bfstree and dfstree. See also nsptrees.

2.7. Graph inspectors. The functions nv (g) and ne (g) give
the number of vertices and edges of g. These two values are
returned by size (g) ina 1 x 2 array.

There are two ways to see if an edge is present in a graph
g. The command has (g, u, v) returns 1 (for true) if the edge
between u and v is present in g, and O otherwise. Alternatively,
the same result is produced by g (u, v).

The neighborhood of a vertex is returned by the command
neighbors (g, v); the result is a list (one-dimensional array)
of the vertices adjacent to v. The same result is returned by
g(v).

The degree of a vertex is given by deqg (g, v). With only
a single argument, deg (g) returns the degree sequence of the
graph.

find_path (g, u,v) finds a shortest path from u to v (re-
turned as a list of vertices on the path); if no such path exists,
an empty array is returned.

isconnected(g) returns 1 (true) if g is connected and O
(false) otherwise.

The components of a graph can be found using
components (g) . This returns a partition object (see §5) each
of whose blocks is the vertex set of a component of g.

The distance between vertices can be found with
dist (g,u,v). The form dist (g, u) returns an array giving
the distances from u to all the vertices in the graph. Calling
dist (g) returns a square matrix giving the distances between
all pairs of vertices. See diam.

2.8. Graph-matrix conversions. The adjacency matrix of a
graph is returned by matrix(g). This returns a square log-
ical matrix. To use this matrix arithmetically, convert it to
class double; for example, the following command returns the
eigenvalues of (the adjacency matrix of) a graph:

eig(double (matrix(qg)))

Conversely, given a square, symmetric, zero-one, zero-
diagonal matrix A, we can set g to have this matrix as its adja-
cency matrix like this: set_matrix(g,2).

See also spy, laplacian, and incidence_matrix.

3The line graph of G is a graph L(G) whose vertex set is E(G). Two vertices e and e, of L(G) are adjacent in L(G) provided, when considered as edges

of G, they are incident with a common vertex.



4 ED SCHEINERMAN

2.9. Graph invariants and partitions. In addition to basic
information functions described in MATGRAPH can cal-
culate other invariants and features of graphs of interest to
graph theorists. These include alpha (independence number),
omega (clique number), and dom (domination number). (All
three of these use the integer programming facilities in MAT-
LAB’s Optimization Toolbox.) See also diam.

The bipartition function determines whether a graph is
bipartite; if it is, it returns the bipartition as a partition
object (see §5). Otherwise (the graph is not bipartite)
bipartition returns an empty partition.

A graph coloring algorithm is available in the color func-
tion. This returns a partition of the vertex set of a graph into
independent sets by a greedy coloring algorithm (step through
the vertices in decreasing degree order and give the first avail-
able color to each vertex in turn). Alas, this generally does not
find a coloring with ¢ (G) colors.

The chromatic polynomial of a graph can be found for small
graphs. For example:
>> g = graph;
>> cycle(g,5)
>> chromatic_poly(q)
ans =

1 -5 10 -10 4 0

shows that the chromatic polynomial of Cs is
X0 —5x* +10x° — 10x% + 4.

2.10. Input-output. MATGRAPH can read and write graphs
in files on the user’s hard disk.

Suppose the user wishes to build a graph using some other
software (such as a C program written by the user) and then
read that graph into MATGRAPH. To do this, the data should
be saved in a file as a list of edges. Each line of the file should
contain exactly two integers separated by white space. These
integers should range from 1 to the number of vertices in the
graph. Let’s say that this data is saved in a file named mygraph.

The MATLAB command load mygraph reads the file
mygraph and saves the contents of that file in a variable that
is also named mygraph. (MATLAB’s current working direc-
tory must be the same as the directory that contains the file
mygraph.)

The variable mygraph is an m x 2 array of edges. This can
be converted into a graph like this:

g = graph (mygraph)

or if the graph g already exists, like this:
resize(qg,0)

add (g, mygraph)

(The resize (g, 0) clears all data from g.)

MATGRAPH also provides its own save and load com-
mands.

e save (g, filename) saves the graph g to the user’s
hard drive in a file named in filename. (For example,
save (g, 'mygraph’).) This saves all the information
about the graph and not just a list of edges.

e load(g,filename) reads the graph data in the file
named in filename and sets g to be that graph. The

file named in filename must be one created by MAT-
GRAPH’s save command and not just a list of edges.

MATGRAPH provides a function named sgf which stands
for simple graph format. This function converts graphs to and
from a 2-column matrix whose rows have the following mean-
ings:

o The first row is [n m] where n is the number of vertices
and m is the number of edges in the graph.

e The next m rows give the edges of the graph; each row
is of the form [u v] where 1 <u #v <n.

e Optionally, an additional n rows give the locations of
the vertices. Row number m + 1+ is [x; y;| and spec-
ifies the coordinates of vertex i.

Matrices of this form are easy to read or to write on disk, and
this format is easy for other programs to produce.

In addition, it is possible to create .m files for saving graphs
to be used by other programs. For example, MATGRAPH’s
dot command writes graphs to disk in a format that can be
processed by GraphViz’s dot program. See also graffle and
nauty.

2.11. Handling large graphs. Behind the scenes, graphs in
MATGRAPH are saved as square matrices. A graph with, say,
ten thousand vertices would occupy an array with 100 million
entries. MATLAB provides the ability to handle matrices large
matrices with few nonzero entries efficiently. This ability is
embedded into MATGRAPH.

Small graphs are best handled using full storage. By de-
fault, a graph created by g = graph uses full storage. It is
easy, however, to convert a graph to use sparse storage.

e sparse (g) converts a graph’s storage method to be
sparse. This is useful for extremely large graphs with
relatively few edges (i.e., small average degree).

e full (g) converts a graph’s storage to full mode. This
is the preferred method for small graphs and graphs
with many edges.

One can check the type of storage in use with the issparse
and isfull functions.

The graph constructor g = graph takes an optional argu-
ment; one can write g = graph (n) where n is a nonnegative
integer. This creates a new graph with n vertices. If n is small,
full storage is used for g. If n is large, sparse storage is auto-
matically provided. How large is “large”? See set_large.

2.12. Labels. Naming vertices as consecutive integers from
1 to n can be inconvenient. MATGRAPH provides a means
to assign text labels to vertices. The command label can be
used to assign such labels to vertices: label (g, v, string)
assigns the characters in string to be a label for vertex v. If
a vertex of a graph is deleted, all higher numbered vertices
are renumbered, but their labels are retained. The command
get_label is used to learn the label of an individual vertex or
to return a list of all labels on all vertices in a graph. See also
clear_labels.



MATGRAPH 5

2.13. Visualization. It is often useful to be able to see pic-
tures of graphs. MATGRAPH provides a basic means to do
this.

One may associate an embedding with a graph; this is a
mapping from the vertex set to points in the plane.

The command draw draws a picture of the graph in the
plane by placing each vertex at its x, y-coordinates and joining
adjacent vertices by line segments. See also ndraw and 1draw.
Note that draw simply draws the graph in the current figure
window without erasing the contents of that figure; to see only
the graph, first give the MATLAB command c1f. See also the
functions ndraw and cdraw.

When draw is invoked for graphs without embeddings,
a default, circular embedding is automatically constructed.
Some graph building operations attach an embedding to the
graphs they form; for example, petersen (g) sets g to be the
Petersen graph with vertices located at classic coordinates.

It is possible to set a graph’s embedding to coordinates of
your choosing with the embed command. If g has n vertices

and xy is an n X 2 matrix of real numbers, then embed (g, xy)
sets the coordinates of the vertices to the corresponding rows
of xy. The command randxy (g) sets the coordinates of the
vertices to random locations.

To learn the current embedding of a graph, use getxy (g).
To erase a graph’s embedding, use rmxy (g) . See also hasxy.

The best MATGRAPH method to generate an embedding is
distxy. This function uses MATLAB’s Optimization Tool-
box. It works reasonably well on small graphs. It attempts
to place vertices in the plane so that the Euclidean distance
matches their graph-theoretic distance, but the penalty is less-
ened the further apart the nodes.

We also provide mdsxy which creates an embedding based
on multidimensional scaling. It’s fast, but produces mediocre
results.

Readers are warmly encouraged to submit other embedding
algorithms for incorporation into MATGRAPH.

3. DOCUMENTATION

This introduction to MATGRAPH does not list every func-
tion available to the user. However, all functions (in .m
files) are documented in the accompanying web pages. These
web pages are housed in the html subdirectory of the main
matgraph folder. Double clicking on the file index.html
opens the main documentation page in a web browser. From
here, all the .m files can be found including descriptions, cross
references, and source code. This includes the supporting
classes partition and permutation.

In addition, the user may get help on any MATGRAPH com-
mand with MATLAB’s usual help command. Some command

names are overloaded. For example, the name delete is both
a built-in MATLAB command and a MATGRAPH function.
Type help graph/delete to access the MATGRAPH version.

For a list of all methods available for graph objects, type
methods graph.

See also Matgraph By Example in the doc directory.

The web pages in the html directory were generated by by
the m2html package created by Guillaume Flandin; this utility
can be found on the MathWorks’ web site.

4. THE PERMUTATION CLASS

Included in this toolbox is a class called permutation.
These objects represent permutations of the integers
{1,2,...,n}. Unlike graphs, these object behave accord-
ing to the usual MATLAB conventions and do not need to be
specially declared. permutation objects are used by MAT-
GRAPH’s renumber command.

The standard way to build a permutation p is to specify its
action with a vector of the form [ay,as, ... ,a,] where a; = p(i).
For example:

>> p = permutation(
(1,2)(3) (4,5,6)

[213564])

This assigns to p a permutation in which p(1) =2, p(2) =1,
p(3) =3, p(4) =5, p(5) =6, and p(6) = 4. Note that p is
displayed on the console using the standard disjoint cycle no-
tation.

The basic operations of applying a permutation to an ele-
ment and composition of permutations are implemented. Typ-
ing p (k) returns the action of the permutation p on the ele-
ment k. If k is not in scope (outside the range 1 to n), then 0 is

returned. Composition of permutations is denoted by multipli-
cation, *. Repeated composition can be achieved using the "
operator: p”3 is equivalent to p*p*p. The power may be zero
or negative.

Equality and inequality of permutations can be checked
with == and "=, respectively.

Here are the functions defined for the class permutation.
Their .m files are found in the @permutation folder.

e array: convert a permutation to an array. The syntax
is array (p). This returns a 1 X n array whose i en-
try if p(i). For example, if p = (1,2)(3)(4,5,6), then
array (p) returns the array [2,1,3,5,6,4].

e cycles: determine the cycle structure of a permuta-
tion. The syntax is cycles(p). This returns a cell
array. Each member of the cell array contains the
elements (in order) of a cycle of p. For example, if
p=(1,2)(3)(4,5,6), then c=cycles (p) sets c{1} to
[1,2], c{2} to [3], and c{3} to [4,5,6].

e inv: permutation inverse. The syntax is inv (p). This

returns the inverse permutation, p~'.



6 ED SCHEINERMAN

e length: number of elements permuted. The syntax
is length (p). For example, if p = (1,2)(3)(4,5,6),
then length (p) is 6.

e matrix: return a permutation matrix that represents
the permutation. The syntax is matrix (p). For ex-
ample, if p = (1,2)(3)(4,5,6), then matrix (p) gives
this:

O O O - O
O O O O O
O O P O O
O P O O O O
O O O O O
O B O O O

0 0 1 0

e permutation: class constructor. This can be called
two ways. If n is a positive integer, permutation (n)
returns the identity permutation on {1,2,...,n}. If
x is an array containing the elements 1 through
n, then permutation (x) creates the permutation
specified by those elements. For example, if x is
[2 135 6 4], then permutation(x) gives the
permutation (1,2)(3)(4,5,6).

e random: shuffle a permutation. The syntax is

random (p). This returns a permutation on the same
elements as p but in a random order. Typically, to gen-
erate a random permutation on n elements, one would
type this: random (permutation (n)).

sign: sign (parity) of a permutation. The syntax is
sign(p). This returns 1 is p is an even permutation
and —1 is p is an odd permutation.

size: give the number of elements and number of cy-
cles in a permutation. The syntax is size (p). This
returns a two-element array. The first element is the
number of objects permuted by the permutation and
the second element is the number of cycles in the
disjoint-cycle representation of p.

MATLAB uses this when reporting on per-
mutation variables in the workspace. The
permutation (1,2)(3)(4,5,6) is described as a
<6x3 permutation>. The 6 refers to the fact that
this is a permutation of the set {1,2,...,6} and the 3
refers to the fact that this permutation has 3 cycles.

5. THE PARTITION CLASS

The partition class represents partitions of sets of the
form {1,2,...,n}. A partition can be created with the com-
mand p=partition(n). This creates a partition in which all
parts have size 1; that is, the partition {{1},{2},...,{n}}. A
partition can also be created from a cell array. Each cell in the
array should list the elements of a block; the integers 1 through
n should appear exactly once in each member of the cell array.
For example, if we type

c {([1 2 41,13 5 6]1,[7:10]};

p = partition(c)

Then p is the partition {{1,2,4},{3,5,6},{7,8,9, 10}} and
MATLARB types this:

{ {1,2,4} {3,5,6} {7,8,9,10} }

If p is a partition and k is an integer, the expression p (k)
returns the elements in the same part as k. For the partition
presented above, p (2) would return the array [1 2 4]. For
integers j and k, the expression p (J, k) returns true if j and k
are in the same part of p and false otherwise.

The meet and join of two partitions is computed using p*q
and p+q, respectively. Equality and inequality can be checked
with == and ~=.

Partitions can be converted into cell arrays with the parts
function.

Here is a list of the various functions defined for the
partition class; these can be found in the Q@partition
folder.

e merge: combine two parts. The syntax is
merge (p, j, k). This returns a new partition in which

the parts containing j and k have been merged into a
single part.

np: number of parts. The syntax is np (p) ; the number
of parts in the partition is returned.

nv: size of the ground set. The syntax is nv (p); the
number of elements in the ground set of the partition
is returned.

partition: constructor for this type. The simple syn-
tax is partition(n) (where n is a positive integer).
This builds a partition with ground set {1,2,...,n} in
which there are n parts (all of size one).

Alternatively, if ¢ is a cell array, then
partition(c) creates a partition based on the ar-
rays in ¢. Each of c{1}, c{2}, and so on, is a list of
integers. Together, these lists should contain each of
the integers in [n] exactly once.
parts: get the parts of the partition. The syntax is
parts (p). This returns a cell array. Each cell con-
tains a list (vector) of positive integers in one of the
parts of p.
size: report the number of elements in the ground set
and the number of parts. The syntax is size (p). This
returns a 1 X 2 array [n m] where n is the size of the
ground set and m is the number of blocks.

This is used by MATLAB when it reports the vari-
ables in a workspace. A partition is reported like
this: <10x3 partition>. This means the partition’s
ground set is [10] and there are three parts in the par-
tition.




MATGRAPH 7

6. UNDER THE HOOD (STUFF YOU DON’T NEED TO KNOW)

All data about graphs are held in a hidden global data struc-
ture named GRAPH_MAGIC. Objects of type graph are simply
indices into this structure. This enable us to simulate call-
by-reference semantics for graph objects; that is, MATLAB
functions can modify graph arguments.

It is possible to save the entire GRAPH_MAGIC structure into
another variable; this would allow multiple “graph theory uni-
verses” to coexist. It’s not clear this is needed.

6.1. The GRAPH MAGIC structure. The global data struc-
ture is named GRAPH_MAGIC. To access this structure directly,
use the following line in your .m files:

global GRAPH_MAGIC
The GRAPH_MAGIC structure contains the following fields:

e ngraphs: the number of “slots” available in
this structure (equal to the size of the arrays
GRAPH_MAGIC.graphs and GRAPH_MAGIC.in_use).

e graphs: this is a cell array containing the graphs.
(See §6.1.1])

e in_use: an array that indicates which slots are taken.
A 11in position i of this array signals that slot i is taken;
a 0 means the slot is available to hold a new graph.

e (: a structure implementing a double-ended queue.
(See §6.1.2])

e large_size: a variable holding the cutoff between
“large” and ‘“small” graphs. If the graph construc-
tor graph is fed a large argument, it creates a sparse
graph.

6.1.1. Inside GRAPH_MAGIC.graphs. The cell array
GRAPH_MAGIC.graphs holds the graphs. Each cell in this
array is a structure with two fields: array and xy. The array
field holds the adjacency matrix of the graph (a zero-one,
symmetric matrix). The xy field holds the embedding for the
graph; this is an n x 2 array of real values giving the coordi-
nates of the vertices.

6.1.2. The private double-ended queue. The Q field of
GRAPH_MAGIC is a double-ended queue available for use by
graph algorithms (e.g., bfstree). It is a structure that con-
tains three fields:

e array: a one-dimensional array that holds the
stack/queue values.

e first: an index pointing to the first (front most) ele-
ment of the queue.

e last: an index pointing to the last (back most) ele-
ment of the queue.

There is a small suite of tools for working with the queue in
the directory @graph/private. These are visible to functions
inside the @graph directory, but not generally available. Here
they are (in alphabetical order):

e _capacity: gives the maximum capacity of the
queue.

e g_get: returns a list of the elements in the queue (that
is, array (first:last)).

e g _init: called with one argument, this initializes the
queue with a given capacity.

e g_pop_back: pops off (and returns) the last element
of the queue. This is a stack-like operation.

e g pop_front: pops off (and returns) the front most
element in the queue. This is a queue-like operation.

e g push: called with one argument, this adds an ele-
ment to the back of the queue.

e ¢_size: returns the number of elements in the queue.

6.2. The graph type. The graph type is simply a “wrap-
per” for an integer; that integer is an index into the
GRAPH_MAGIC.graphs array. A graph object contains just one
field, 1dx, which holds that integer.

In many graph functions (in the @graph directory) we see
the following:

GRAPH_MAGIC.graphs{g.idx}.array
This is how we refer to the adjacency matrix of the graph g.

7. FUTURE PROJECTS

There are many additions I would like for this project. Here
are few:

e Planarity testing and embedding. 1 would like an
is_planar method to test if a graph is planar and a
good planar_embed method for finding a crossing-
free embedding.

e The distxy layout routine works reasonably well, but
is hardly fast. It also relies on the Optimization Tool-
box. I'd like a better layout engine.

e A GUI for creating and editing graphs. I'd like to
see this invoked with a command such as gui (g) or
graph_edit (g).

e We need .m files for connectivity, edge connectiv-
ity, maximum matching (in general graphs), approx-
imate isomorphism, better heuristic coloring algo-
rithms, girth, and so forth.

DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS, THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MARYLAND 21218-2682 USA

E-mail address: ers@jhu.edu



	Overview
	1. Getting Matgraph
	1.1. Download and install
	1.2. License

	2. Using Matgraph
	2.1. Basic principles
	2.2. Starting Matgraph
	2.3. Declaring graph objects and memory management
	2.4. Basic graph operations
	2.5. Standard graphs
	2.6. Graph operations
	2.7. Graph inspectors
	2.8. Graph--matrix conversions
	2.9. Graph invariants and partitions
	2.10. Input-output
	2.11. Handling large graphs
	2.12. Labels
	2.13. Visualization

	3. Documentation
	4. The Permutation Class
	5. The Partition Class
	6. Under the Hood (Stuff You Don't Need to Know)
	6.1. The GRAPH_MAGIC structure
	6.2. The graph type

	7. Future Projects

