
MATGRAPH BY EXAMPLE

EDWARD SCHEINERMAN

This document illustrates the use of MATGRAPH through the use of specific examples. Some of
the concepts (such as the notion of declaring graph objects) are explained in the accompanying
users’ guide Matgraph: A MATLAB Toolbox for Graph Theory that you should read in conjunction
with this document. A description of all the MATGRAPH functions can be found in the accom-
panying web pages in the html directory. We assume that you have a reasonable command of
MATLAB.

1. GETTING STARTED

1.1. Download MATGRAPH. To use MATGRAPH, you need to download the MATGRAPH com-
pressed tar archive file from the website
http://www.ams.jhu.edu/˜ers/matgraph

Click on the the words “clicking here” in the paragraph that begins “You can download Matgraph
by clicking here.” This places a file named matgraph-X.Y.tgz on your computer (where X.Y
is the version number). Double clicking this file or issuing the Unix command
tar xfz matgraph-X.Y.tgz

(replace X.Y) should extract a directory (folder) named matgraph that you can place anywhere
you wish on your computer.

1.2. Design Principles. MATGRAPH is designed to make interactive graph theory computation
simple by building on the power of MATLAB. Before we begin in earnest, there are important
principles behind the design of MATGRAPH that you must understand.

(1) All graphs in MATGRAPH are simple and undirected; there are no loops, multiple edges, or
directed edges.

(2) The vertex set of graphs in MATGRAPH is always of the form {1,2, . . . ,n} for some integer
n. One implication of this principle is that when a vertex is deleted, all vertices with larger
index are renumbered. (It is possible to attach a label to a vertex that is distinct from its
vertex number).

(3) Graph variable must be declared prior to use (see §1.3). If a graph variable is declared
within a .m function file, then it must be “released” before the function exits. Declaration
and release are accomplished with the commands
g = graph;

and
free(g)

(4) MATGRAPH functions are capable of changing their arguments. For example, the com-
mand delete(g,1,2) deletes the edge {1,2} from the graph g; the variable g is modi-
fied by this command. (This is unusual for MATLAB.) If a MATGRAPH function takes two
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(or more) graph arguments then only the first argument to the function might be changed;
all subsequent arguments are left unmodified.

1.3. A first session. Launch MATLAB and issue a command that looks like this:
>> addpath /home/ralph/Programming/matgraph/

This tells MATLAB where to find the MATGRAPH toolbox. Of course, replace the pathname with
the location of the matgraph folder that you downloaded as described in §1.1.

For the rest of this document, we tacitly assume that you have given this command before using
MATGRAPH. If you like, you may add this command to your startup.m file (see the MATLAB
documentation for more detail).

Next, we declare a graph variable g:
>> g = graph
Graph system initialized. Number of slots = 500.
Graph with 0 vertices and 0 edges (full)

Unlike most MATLAB variables, graph variables must be declared; see the users’ guide for more
detail.

Next set g to be the Petersen graph:
>> petersen(g)
>> g
Graph with 10 vertices and 15 edges (full)

The command petersen(g) overwrites g with the Petersen graph.
Now we draw the graph in a figure window:

>> ndraw(g)

The command ndraw draws the graph and writes each vertex’s number inside its circle. See
Figure 1. Note that the embedding of the graph is imparted to g by the command petersen.
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FIGURE 1. Petersen’s graph.

In addition to ndraw, MATGRAPH provides the following variations: draw (draw the graph with
vertices drawn as hollow circles), ldraw (draw the graph with the vertices inscribed with their
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labels—different from their vertex numbers), and cdraw (draw the graph with colored vertices).
Type, for example, help cdraw for more information.

It is well known that Petersen’s graph is not Hamiltonian. To verify this type:
>> hamiltonian_cycle(g)
ans =

[]

The empty matrix indicates that no Hamiltonian cycle was found. However, if we delete any vertex
from g, the graph is Hamiltonian:
>> delete(g,1)
>> hamiltonian_cycle(g)
ans =

1
2
3
4
9
7
5
8
6

The command delete(g,1) deletes vertex number 1 from the graph.
Notice that the delete command changes the graph. By a bit of fancy footwork, MAT-

GRAPH functions are able to modify arguments of type graph—this is counter to the usual MAT-
LAB call-by-value semantics. Many of the MATLAB commands modify their graph arguments,
but the following convention is observed: If a command is capable of modifying a graph, only the
first argument to the command can by modified.

Notice that the vertices have been renumbered. The output of hamiltonian_cycle re-
ports that

1 → 2 → 3 → 4 → 9 → 7 → 5 → 8 → 6 → 1
is a Hamiltonian cycle in g. At first this may be confusing since we had previous deleted vertex
1 from the graph. MATGRAPH follows the convention that the vertex set always consists of con-
secutive integers beginning with 1. When a vertex is deleted from a graph, all vertices with higher
numbers are renumbered accordingly. To see this, type this:
>> clf
>> ndraw(g)

The result is shown in Figure 2.
Notice that we issued the MATLAB command clf before drawing g. The clf command clears

the current figure window. This is necessary because MATGRAPH’s drawing commands draw their
graphs on top of whatever is already in the figure window (without erasing the figure window first).

If we are done using the graph variable g, we should not simply give the usual MATLAB com-
mand clear g. Rather, we do this:
>> free(g)
>> clear g

The command free(g) releases the graph g’s “slot” in a hidden data structure. When MAT-
GRAPH starts up (with the first g=graph command or by an explicit invocation of graph_init)



4 EDWARD SCHEINERMAN

1

23

4

5

6

78

9

FIGURE 2. Petersen’s graph with a vertex deleted is Hamiltonian.

a specific number of slots are allocated for graphs (at this writing, 500 slots). Each time a graph
variable is declared (by typing g=graph), one of these slots is used; the command free(g)
releases the slot held by the graph. See the users’ guide for more detail. To wipe out the entire
hidden data structure (and all the graphs contained therein) you can use graph_destroy.

One more important point. The typical behavior of MATLAB’s assignment operator is to make
a copy. So if A is a matrix, B=A sets B to be an independent copy of A. Changes to B do not affect
A. However, MATGRAPH graph objects behave differently. If g is a graph, then the command h=g
does not make a separate copy of g, and any modification to h also modifies g. It is nearly certain
this is not the behavior you desire. Instead, do this:
>> g = graph
Graph with 0 vertices and 0 edges (full)
>> petersen(g)
>> h = graph
Graph with 0 vertices and 0 edges (full)
>> copy(h,g)
>> delete(h,1,2)
>> h
Graph with 10 vertices and 14 edges (full)
>> g
Graph with 10 vertices and 15 edges (full)

The copy(h,g) overwrites h with an independent copy of g.

2. BASICS

2.1. A path. One of the simplest graphs is a path on n vertices, Pn. Here we create such a graph
in MATGRAPH.
>> g = graph
Graph system initialized. Number of slots = 500.
Graph with 0 vertices and 0 edges (full)
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>> for k=1:9, add(g,k,k+1), end
>> ndraw(g)

This creates the graph P10 and draws it in a figure window. Notice that the command add(g,u,v)
adds the edge uv to the graph. The variables u and v must be distinct positive integers; otherwise
the command has no effect. If vertices u and v are already in the graph, the edge uv is simply
added. However, if a graph has n vertices and either u or v is greater than n, then the graph’s vertex
set is first expanded to max{u,v} vertices and then the edge is added. [Remember, the vertex set
of a graph in MATGRAPH is always of the form {1,2, . . . ,n}.]

Notice that the drawing of g places the vertices around a circle. If a graph does not have an
embedding (e.g., the petersen command imparts an embedding to its argument), then then the
drawing commands (such as ndraw) give the graph a default embedding by placing the vertices
around a circle.

Now here is a simpler way to create (and view) P10:
>> path(g,10)
>> clf
>> ndraw(g)

The command path(g,10) overwrites g with a path on 10 vertices together with a sensible
embedding—the vertices are arranged in a straight line.

2.2. Adding and deleting. Let’s create the graph formed by deleting a perfect matching from K10.
Here are the commands:
>> complete(g,10)
>> for k=1:5, delete(g,k,k+5), end
>> clf
>> ndraw(g)

The command complete(g,10) overwrites g with K10. (We assume that we are simply contin-
uing from the previous section so the graph g has already been declared.) The delete(g,u,v)
command deletes the edge uv from the graph (assuming it exists). This 3-argument version of
delete does not remove any vertices from the graph.

To delete vertex u from a graph (and all its incident edges) give the command delete(g,u).
Type help graph/delete to see all the various ways delete can remove vertices and edges
from a graph.

To delete all vertices (and hence, all edges) from a graph, type resize(g,0). To delete all
edges (but no vertices) from a graph, type clear_edges(g).

Creating the graph formed from K5,5 by deleting a perfect matching is similar:
>> complete(g,5,5)
>> for k=1:5, delete(g,k,k+5), end
>> clf
>> ndraw(g)

The command complete(g,m,n) overwrites g with the complete bipartite graph Km,n. Type
help graph/complete to see what else complete can do.

Now try this:
>> resize(g,0)
>> add(g,3,6)
>> clf
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>> ndraw(g)

The command resize(g,0) converts g to an empty (vertexless) graph. add(g,3,6) asks to
add an edge between vertices 3 and 6, but since these vertices are not (yet) in the graph, the vertex
set of g is expanded to {1,2,3,4,5,6} and then the edge is added. Consequently, there are four
isolated vertices in g as the picture reveals.

Next we create the Möbius ladder on 12 vertices (a 12-cycle plus edges between diametrically
opposite vertices).
>> cycle(g,12)
>> elist = [1:6;7:12]’
elist =

1 7
2 8
3 9
4 10
5 11
6 12

>> add(g,elist)
>> clf; ndraw(g)

cycle(g,12) overwrites g with C12. Next, we prepare a 6×2 matrix elist that specifies the
extra edges we plan to add to g. The line elist = [1:6;7:12]’ is standard MATLAB to
create this matrix. Then add(g,elist) adds all the edges in elist to g.

2.3. Neighbors, degrees, etc. Create a grid graph like this:
>> grid(g,3,4)
>> clf;ndraw(g)
>> nv(g)
ans =

12
>> ne(g)
ans =

17

The grid is drawn nicely as shown in Figure 3. Notice that nv and ne report the number of vertices
and edges, respectively, of the graph. Also try size(g), disp(g), or simply typing g on a line
by itself.

We can learn the degree of a vertex, or the entire degree sequence of the graph, like this:
>> deg(g,1)
ans =

2
>> deg(g,2)
ans =

3
>> deg(g)
ans =

2 3 2 3 4 3 3 4 3 2 3 2

To learn the neighbors of a vertex, we have two choices:
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FIGURE 3. The 3×4 grid graph.

>> neighbors(g,2)
ans =

1 3 5
>> g(2)
ans =

1 3 5

[Note, the syntax g(v) does not seem to work inside .m file functions.]
To test if two vertices are adjacent we can use the has command or the syntax g(u,v) [which

does not seem to work inside .m file functions].
>> has(g,1,2)
ans =

1
>> has(g,1,5)
ans =

0
>> g(1,2)
ans =

1
>> g(1,5)
ans =

0

We can verify that this graph is connected
>> isconnected(g)
ans =

1

and find a shortest path between vertices 1 and 12:
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>> find_path(g,1,12)
ans =

1 2 3 6 9 12

Try dist(g,1,12) to see that the distance between these vertices is 5.

2.4. Matrices. To get the adjacency matrix of, say, the Petersen graph, do this:
>> petersen(g)
>> A = matrix(g)
A =

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

Next, we attempt to find the eigenvalues of this matrix, but run into trouble:
>> eig(A)
??? Function ’eig’ is not defined for values of class ’logical’.

The problem is that MATGRAPH’s matrix command returns a Boolean matrix (entries represent
true and false), but it is simple to convert this to a numerical matrix and get the eigenvalues:
>> A = double(A);
>> eig(A)
ans =

-2.0000
-2.0000
-2.0000
-2.0000
1.0000
1.0000
1.0000
1.0000
1.0000
3.0000

Use laplacian to get the Laplacian matrix of a graph.
The command spy(g) is equivalent to spy(matrix(g)); this creates a square image with

a dot in position i, j exactly when i j is an edge of g.
It is also possible to define a graph by specifying its adjacency matrix:

>> A = ones(6)-eye(6)
A =

0 1 1 1 1 1
1 0 1 1 1 1
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1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

>> set_matrix(g,A)
>> g
Graph with 6 vertices and 15 edges (full)

See also: incidence_matrix.

2.5. Standard graph constructors. MATGRAPH includes many functions for creating specific,
standard graphs. We have encountered a few already: path, cycle, complete, petersen,
and grid.

In addition to these, there are built-in methods for creating the Platonic solid graphs (for exam-
ple, dodecahdron), wheels, Paley graphs, and so forth. See the on-line documentation (in the
matgraph/html directory) for a complete list of all graph methods.

Graphs can also be built up from other graphs using graph operations; these are explored in §6.
Worthy of special mention are various methods to generate random graphs including random,

random_bipartite, random_regular, and random_tree.

3. EMBEDDINGS

3.1. Basics. As we have seen, graphs created in matgraph can be drawn on the screen. A graph
may have an embedding that is simply a specification of x,y-coordinates for all of the vertices.
Edges are always drawn as line segments.

Some graph constructors (e.g., petersen) imbue their graphs with a prespecified embedding.
However, if we start with a new graph and simply add vertices and edges, no embedding is created
for the graph:
>> g = graph
Graph system initialized. Number of slots = 500.
Graph with 0 vertices and 0 edges (full)
>> for k=1:5, add(g,k,k+1), end
>> g
Graph with 6 vertices and 5 edges (full)
>> hasxy(g)
ans =

0

This creates the path P6 but no embedding is associated with the graph; this is observed with the
hasxy command.

If we try to draw a graph that lacks an embedding, MATGRAPH gives the graph a default em-
bedding in which the vertices are placed around a circle.
>> draw(g)
>> hasxy(g)
ans =

1

We can specify the embedding for a graph by giving specific x,y-coordinates. Suppose we want to
site the vertices of P6 at (1,0), (2,0), . . . , (6,0); we can do this:
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>> xy = [ 1:6 ; zeros(1,6) ]’
xy =

1 0
2 0
3 0
4 0
5 0
6 0

>> embed(g,xy)
>> clf;draw(g)

If a graph possesses an embedding, rmxy(g) removes the embedding. To see the embedding
of a graph, use getxy.

A random embedding can be given to a graph with randxy(g). See also the scale function.

3.2. Automatic graph layout. MATGRAPH’s default embedding—vertices uniformly around a
circle—is usually unaesthetic and difficult to read. Fortunately, MATGRAPH provides a way to
create embeddings automatically. Unfortunately, the one viable method we provide—distxy—
is slow and requires1 the Optimization Toolbox. Nevertheless, distxy gives reasonable results
for moderately sized graphs. We invite readers who are expert in graph drawing algorithms to
submit alternatives for inclusion in future releases of MATGRAPH.

The distxy embedding attempts to place vertices in a graph in the plane so that their graph the-
oretic distance equals the embedded vertices Euclidean distance. This is possible for path graphs,
but otherwise is unattainable. Instead, we create a score function that measures how closely we
achieve this goal and then use the services of the Optimization Toolbox to find a (local) minimum
solution. Here is an example.
>> resize(g,0)
>> random_tree(g,10)
>> clf;draw(g)

This creates a random tree with 10 vertices and displays the tree in its default embedding. See the
left portion of Figure 4. Now we compute an embedding using distxy.

FIGURE 4. A random tree with its default embedding (left) and with a nice embed-
ding found by distxy (right).

1If the Optimization Toolbox is not included with your version of MATLAB, it is available (for a fee) from The
MathWorks.
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>> distxy(g)
Optimization terminated: relative function value
changing by less than OPTIONS.TolFun.
Embedding score = 2.7511
Elapsed time is 0.941816 seconds.
ans =

2.7511
>> clf;draw(g)

The result is show in the right portion of Figure 4.

4. HELPER CLASSES: PARTITIONS AND PERMUTATIONS

MATGRAPH includes two classes that are useful for supporting work: partitions and permuta-
tions.

4.1. Partitions. A partition is a set of pairwise disjoint, nonempty subsets of a set A whose union
is A. In MATGRAPH, all partitions must be of a set of the form [n] = {1,2, . . . ,n}. partition
variables do not need to be declared (only graph objects require that special treatment).

Partitions are useful in graph theory. In MATGRAPH the functions to find the connected com-
ponents of a graph or to find a coloring of a graph return partition objects.

There are a few ways to create a partition. The most basic is this:
>> p = partition(8)
{ {1} {2} {3} {4} {5} {6} {7} {8} }

The command partition(n) creates a default partition of [n] in which each element is in a part
by itself.

Alternatively, we can form a partition from a MATLAB cell array. Each cell in the cell
array is a list (vector) of integers; taken together, these cells should contain all of the numbers from
1 to n (for some n) exactly once. Here is an example.
>> c = cell(3,1);
>> c{1} = [1 3 5];
>> c{2} = [4 6 7];
>> c{3} = [2 8];
>> p = partition(c)
{ {1,3,5} {2,8} {4,6,7} }

The statement c = cell(3,1); builds a 3×1 cell array (a fundamental MATLAB data struc-
ture). The next three lines populate the array with three lists of numbers. Finally, the statement
p = partition(c) assigns to p a partition with the expected blocks.

The merge command is used to combine parts in a partition. Continuing with the example
above, we type this:
>> merge(p,1,2)
{ {1,2,3,5,8} {4,6,7} }
>> p
{ {1,3,5} {2,8} {4,6,7} }

merge(p,1,2) forms a new partition in which the parts containing elements 1 and 2 are com-
bined into a single part. Note that merge does not alter p; this is normal MATLAB behavior.

Now try this:
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>> p(1)
ans =

1 3 5
>> p(1,2)
ans =

0

The command p(v) returns (as a list) the elements in v’s block. The command p(v,w) returns
1 (true) if v and w are in the same block, and returns 0 (false) otherwise.

There are other ways to extract the parts of a partition.
>> pts = parts(p);
>> pts{1}
ans =

1 3 5
>> pts{2}
ans =

2 8
>> pts{3}
ans =

4 6 7

The function parts returns the parts of a partition as a cell array.
>> array(p)
ans =

1 2 1 3 1 3 3 2

The array function returns an index number for each element; an element has index number i if
it is in the ith part of the partition.

The binary operators == and != can be used to test if two partitions are equal or unequal.
The binary operators + and * can be used to compute the join and meet of two partitions.
nv(p) returns the size of the ground set of the partition and np(p) returns the number of

blocks in the partition. See also size(p).

4.2. Permutations. A permutation is a bijection of a set A to itself. In MATGRAPH, the set A is
always of the form [n] = {1,2, . . . ,n}.

A new permutation is created with the permutation function:
>> permutation(9)
(1)(2)(3)(4)(5)(6)(7)(8)(9)

The permutation(n) command creates the identity permutation of [n].
The permutation function can also be used to create a permutation from a list of numbers.

>> vec = [ 1 3 5 2 4 6 ];
>> permutation(vec)
(1)(2,3,5,4)(6)
>>

Here, the permutation is given by the matrix

π =
[

1 2 3 4 5 6
1 3 5 2 4 6

]
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The list vec gives the bottom row. This notation means that π(1) = 1, π(2) = 3, π(3) = 5,
π(4) = 2, π(5) = 4, and π(6) = 6.

A random permutation can be created like this:
>> p = permutation(9);
>> p = random(p)
(1,7,6,2,4,9)(3,8)(5)

MATGRAPH defines * to denote permutation composition. The notation p(j) applies the per-
mutation p to element j:
>> p(2)
ans =

4

The inverse of a permutation can be calculated like this:
>> inv(p)
(1,9,4,2,6,7)(3,8)(5)
>> pˆ-1
(1,9,4,2,6,7)(3,8)(5)

In general, pˆm is the m-fold composition of p with itself; m may be negative.
>> matrix(p)
ans =

0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

>> array(p)
ans =

7 4 8 9 5 2 6 3 1

matrix(p) creates a permutation matrix and array(p) gives the lower row of the permutation
when written in 2×n-matrix notation.
>> c = cycles(p);
>> c{1}
ans =

1 7 6 2 4 9
>> c{2}
ans =

3 8
>> c{3}
ans =

5

The cycles function creates a cell array containing the permutation’s cycles.
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5. VERTEX NUMBERS AND LABELS

MATGRAPH rigidly enforces the rule that the vertex set of any graph must be of the form
{1,2, . . . ,n}. If we delete some vertices of the graph, other vertices are renumbered and this can
make associating a vertex’s original number with its new number difficult. Also, one may wish to
give a vertex an alphanumeric name.

To deal with these issues, MATGRAPH provides a mechanism for labeling the vertices of a graph
with arbitrary text strings.

Try this:

>> g = graph
Graph with 0 vertices and 0 edges (full)
>> cycle(g,8)
>> label(g)
>> label(g,3,’X’)
>> delete(g,4)
>> ldraw(g)

When a graph is first created, there are no labels associated with its vertices. The command
label(g) causes g’s vertices to be given default labels. The default label assigned to a ver-
tex is simply a string containing the digits of its vertex number (e.g., vertex 23 would be labeled
’23’).

The command label(g,3,’X’) labels vertex number 3 with the string ’X’. The label need
not be a single character, we could have labeled this vertex like this: label(g,3,’three’).

Next we delete vertex number 4. This renumbers vertices 5 through 8 to new numbers 4 through
7. However, the label associated with a vertex remains the same. That is, the vertex now numbered
4 (and formally numbered 5) has the label ’5’.

Finally, the ldraw command draws the graph with each vertex’s label written in the middle of
its circle. See Figure 5.
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FIGURE 5. A drawing of a labeled graph.
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To learn the label of a vertex, or to extract a cell array containing all the labels of a graph, use
get_label.

It is possible to assign two different vertices the same label, so there need not be a one-to-one
correspondence between vertices and label.

6. GRAPH OPERATIONS

MATGRAPH provides various operations to perform on graphs. Here we present some examples.
>> g = graph
Graph system initialized. Number of slots = 500.
Graph with 0 vertices and 0 edges (full)
>> complete(g,[2,3,4])
>> deg(g)
ans =

7 7 6 6 6 5 5 5 5
>> complement(g)
>> deg(g)
ans =

1 1 2 2 2 3 3 3 3
>>

This sets g to be the complete multipartite graph K2,3,4, and then overwrites g with its own com-
plement, K2,3,4. This is equivalent to the disjoint union K2⊕K3⊕K4. MATGRAPH can compute
disjoint unions of graphs like this:
>> cycle(g,5)
>> h = graph;
>> cycle(h,6)
>> k = graph;
>> disjoint_union(k,g,h)
>> k
Graph with 11 vertices and 11 edges (full)

This code resets g to be the 5-cycle, defines a new graph variable h to be a 6-cycle, and then places
the disjoint union of these graphs in a third graph k. See also the union command.

The complement of C5⊕C6 can now be computed using complement(k). Alternatively, we
can do this:
>> complement(g); % g is now the complement of C_5 (which is C_5)
>> complement(h); % h is now the complement of C_6
>> join(k,g,h)
>> h
Graph with 6 vertices and 9 edges (full)

The join commands overwrites its first argument with a graph formed from the disjoint union of
its second and third arguments, plus all possible edges between these latter two graphs.

The Cartesian product of graphs G and H is a new graph G×H defined as follows:

V (G×H) = V (G)×V (H) = {(v,w) : v ∈V (G),w ∈V (H)}
E(G×H) =

{
{(v1,w1),(v2,w2)} : [v1v2 ∈ E(G) and w1 = w2] or [v1 = v2 and w1w2 ∈ E(H)]

}
We illustrate how to calculate Cartesian product in MATGRAPH:
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>> clf;draw(k)
>> cycle(g,10)
>> cycle(h,3)
>> cartesian(k,g,h)
>> k
Graph with 30 vertices and 60 edges (full)
>> distxy(k)
Optimization terminated: relative function value
changing by less than OPTIONS.TolFun.
Embedding score = 51.6601
Elapsed time is 5.263166 seconds.
ans =

51.6601
>> clf;draw(k)

The resulting drawing is shown in Figure 6. The hypercube Qn is defined to be the n-fold product

FIGURE 6. The Cartesian product C10×C3.

K2×K2×·· ·×K2. The command cube(g,n) overwrites g with the graph Qn.
MATGRAPH can find spanning trees in (connected) graphs. The two commands bfstree and

dfstree find breadth-first and depth-first spanning trees of their respective graphs.
>> dodecahedron(g)
>> bfstree(h,g)
>> clf; draw(g,’:’)
>> draw(h)

The command bfstree(h,g) overwrites h with a breadth-first spanning tree of g rooted at
vertex 1. (To start from another vertex, use bfstree(h,g,v).) We then draw the original
graph g using dotted lines (the extra argument to draw) and then draw the spanning tree (using
the default solid lines) without erasing the first drawing. The result is in Figure 7.

MATGRAPH can also find Hamiltonian cycles (but only in small graphs). Here’s an example.
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FIGURE 7. A breadth-first spanning tree of the dodecahedron graph.

>> dodecahedron(g)
>> hamiltonian_cycle(h,g);
>> clf;draw(g,’:’)
>> draw(h)

The result is in Figure 8.

FIGURE 8. A Hamiltonian cycle in the dodecahedron graph.

MATGRAPH can form induced subgraphs.
>> cycle(g,10)
>> induce(h,g,[1 2 3 4 5 9])
>> h
Graph with 6 vertices and 4 edges (full)
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The induce command above overwrites hwith the induced subgraph of g generated by the vertex
set {1,2,3,4,5,9}. This makes h the graph consisting of a 5-path (on vertices 1 through 5) plus
an isolated vertex (now numbered 6 in h). The new vertex 6 in h inherits the label of vertex 9 in g
(assuming g was labeled).

The trim command is useful for removing vertices of degree 0. More generally, trim(g,d)
removes all vertices of degree at most d from g, and then repeats this operation on the resulting
graph until g has minimum degree at least d +1 (or all vertices have been deleted).

7. GRAPH COMPUTATIONS

7.1. Basic invariants. As discussed earlier, nv(g) and ne(g) returns the number of vertices
and edges in g, respectively. size(g) reports the same information as a list.

The independence number, clique, and domination number can be computed by MATGRAPH;
note that the computation of these invariants requires MATLAB’s Optimization Toolbox.
>> g = graph
Graph system initialized. Number of slots = 500.
Graph with 0 vertices and 0 edges (full)
>> icosahedron(g)
>> alpha(g) % compute the independence number
Optimization terminated.
ans =

3
>> omega(g) % compute the clique number
Optimization terminated.
ans =

3
>> dom(g) % compute the domination number
Optimization terminated.
ans =

2

In each case, we can find the realizing set (independent, clique, or dominating) with an extra output
argument:
>> [d,S] = dom(g)
Optimization terminated.
d =

2
S =

4
7

>> sort([g(4),g(7),4,7])
ans =

1 2 3 4 5 6 7 8 9 10 11 12

7.2. Connection. MATGRAPH can determine if a graph is connected, find paths between vertices,
and determine distances. We illustrate this on the “Bucky ball” graph: the molecular graph of
Buckminsterfullerene C60 (a ball comprised of 60 carbon atoms) or, equivalently, the graph im-
plicitly drawn on a soccer ball.



MATGRAPH BY EXAMPLE 19

>> bucky(g)
>> isconnected(g)
ans =

1
>> find_path(g,1,60)
ans =

1 5 4 21 22 23 52 51 55 60
>> diam(g)
ans =

9
>> dist(g,1,60)
ans =

9
>>

MATGRAPH can find the connected components of a graph; these are returned as a partition object:

>> complete(g,[2,3,4])
>> complement(g)
>> components(g)
{ {1,2} {3,4,5} {6,7,8,9} }
>> component(g,3)
ans =

3
4
5

The last function, component(g,v), returns a list of the vertices in v’s component of g.
The split command finds a reasonable partition of the vertices of a graph into two sets that

are more tightly clustered among themselves than between the two sets. For example, consider a
graph formed by combining two disjoint copies of K8 linked by a single edge. This is a connected
graph, but clearly divides into two natural clusters. Here we show how this works in MATGRAPH:

>> h = graph
Graph with 0 vertices and 0 edges (full)
>> complete(g,8)
>> disjoint_union(h,g,g)
>> add(h,1,16)
>> components(h)
{ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} }
>> split(h)
{ {1,2,3,4,5,6,7,8} {9,10,11,12,13,14,15,16} }

7.3. Coloring. Perhaps the most celebrated invariant in graph theory is the chromatic number of
a graph, χ(G). This is the minimum number of colors needed so that we can color the vertices of
G such that adjacent vertices have different colors. Equivalently, this is the minimum number of
blocks in a partition of V (G) into independent sets.

The color command can be used to find such a partition. The default color(g) performs a
greedy coloring of the graph (which might not be optimal). Other algorithms can be specified; for
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example, to get a true optimal coloring, use color(g,’optimal’). This, of course, may take
a long time for large graphs.
>> icosahedron(g)
>> color(g)
{ {1,6,8} {2,4,11} {3,5,12} {7,9,10} }
>> bucky(g)
>> c1 = color(g);
>> size(c1)
ans =

60 4
>> c2 = color(g,’optimal’);
>> size(c2)
ans =

60 3
>> cdraw(g,c2)

Notice that the greedy coloring produces a proper 4-coloring of the graph, but the best-possible
coloring is with three colors. See Figure 9 produced by this code. The cdraw command draws

FIGURE 9. An optimal coloring of the Bucky ball.

a graph with a given coloring. Note that the coloring need not be a proper coloring. Here is an
example:
>> grid(g,5,5)
>> c = split(g);
>> clf; cdraw(g,c)

The result is in Figure 10.
MATGRAPH can find the chromatic polynomial of small graphs.

>> cube(g,3)
>> chromatic_poly(g)
ans =
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FIGURE 10. A 5×5 grid partitioned into two sets of vertices by split.

1 -12 66 -214 441 -572 423 -133 0

This tells us that

χ(Q3;x) = x8−12x7 +66x6−215x5 +441x4−572x3 +423x2−133x.

If a graph has a two-coloring (i.e., if the graph is bipartite) then we can use bipartition to
find the two color classes.
>> cycle(g,8)
>> bipartition(g)
{ {1,3,5,7} {2,4,6,8} }

Given a partition of a graph into two sets, we can find a maximum matching between those sets
with bipmatch.
>> random_bipartite(g,6,6,.5)
>> bipartition(g)
{ {1,2,3,4,5,6} {7,8,9,10,11,12} }
>> bipmatch(g,ans)
ans =

1 7
2 8
3 9
4 11
5 10
6 12

8. SPARSE GRAPHS

Graphs in MATGRAPH are housed in symmetric matrices. MATLAB can hold matrices either
as full or sparse arrays. The amount of memory used by a full array is proportional to the number
of entries in the matrix, while the memory used by a sparse array is proportional to the number of
nonzero entries in the matrix.
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Graphs in MATGRAPH are held, behind the scenes, in either full or sparse matrices. To find out
which, use the functions isfull or issparse. Alternatively, simply typing the graph variable’s
name reveals its storage type.
>> petersen(g)
>> g
Graph with 10 vertices and 15 edges (full)

For large graphs with relatively few edges, sparse storage is preferable; indeed, full storage may
not be feasible because the computer might not have enough RAM to hold the matrix. To convert
a graph to sparse storage, simply type sparse(g).
>> sparse(g)
>> cycle(g,1000)
>> g
Graph with 1000 vertices and 1000 edges (sparse)

When declaring a new graph variable, one may specify the number of vertices in the constructor:
h = graph(n). If n is large, then sparse storage is used.
>> k = graph(10000)
Graph with 10000 vertices and 0 edges (sparse)

How large is “large”? This is controlled by the function set_large.

9. INPUT AND OUTPUT

9.1. Saving graphs to disk with save and load. The usual mechanisms for saving variables
to disk do not work for graph variables in MATGRAPH. Were you to attempt to save a graph
variable, or the entire MATLAB workspace, the graphs you have created will be lost when you try
to load them back in. This is one of the prices we pay for creating a fast call-by-reference system.

Instead, MATGRAPH provides its own save and load commands. save(g,filename)
saves the graph g to a file in the current directory on your hard drive. A subsequent call to
load(g,filename) overwrites the graph g with the graph saved in the file. Here is an ex-
ample:
>> g = graph
Graph system initialized. Number of slots = 500.
Graph with 0 vertices and 0 edges (full)
>> petersen(g)
>> save(g,’pete’)
>> free(g)
>> g
Invalid graph object (index 1)
>> clear g
>> g = graph
Graph with 0 vertices and 0 edges (full)
>> g
Graph with 0 vertices and 0 edges (full)
>> load(g,’pete’)
>> g
Graph with 10 vertices and 15 edges (full)
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9.2. SGF: Simple Graph Format. The MATGRAPH function sgf is a mechanism to convert
graph objects to and from a two-column matrix format called Simple Graph Format. For a graph
with n vertices and m edges, the Simple Graph Format matrix has either m+1 or n+m+1 rows.
The first row of the matrix gives the number of vertices and the number of edges in the graph.
The following m rows specify the edges of the graph. Optionally, an additional n rows specify the
x,y-coordinates of the embedding of the graph. Here is an example.
>> complete(g,4)
>> sgf(g)
ans =

4 6
1 2
1 3
2 3
1 4
2 4
3 4

>> distxy(g)
Optimization terminated: relative function value
changing by less than OPTIONS.TolFun.
Embedding score = 0.34315
Elapsed time is 0.079532 seconds.
ans =

0.3431
>> sgf(g)
ans =

4.0000 6.0000
1.0000 2.0000
1.0000 3.0000
2.0000 3.0000
1.0000 4.0000
2.0000 4.0000
3.0000 4.0000
1.3651 1.3939
1.2374 2.5943
0.7011 1.9303
1.9014 2.0580

Not only can sgf be used to create a Simple Graph Format matrix from a graph, it can also be
used to specify a graph. For example, here we create the SGF matrix for the graph K1,5 and an
embedding using MATLAB commands, and then build a graph based on that matrix.
>> edges = [ ones(5,1), [2:6]’ ]
edges =

1 2
1 3
1 4
1 5
1 6
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>> xy = [ 0 0 ; -2 1 ; -1 1 ; 0 1 ; 1 1 ; 2 1 ];
>> S = [ 6 5 ; edges ; xy ]
S =

6 5
1 2
1 3
1 4
1 5
1 6
0 0
-2 1
-1 1
0 1
1 1
2 1

>> sgf(g,S)
>> clf;draw(g)

The result is show in Figure 11.

FIGURE 11. A star graph created using a Simple Graph Format matrix.

The Simple Graph Format is useful for working with other computing environments. You may
have, say, a C++ program that you use to create graphs. You can have that program write the graph
to disk in simple graph format. Then, using the usual MATLAB load command, the two-column
matrix can be read from disk and converted into a graph.

9.3. A C++ graph parser. Inside the main MATGRAPH directory, you can find a subdirectory
named tools that contains a further subdirectory named graph_parser. This directory con-
tains a C++ program to build a command-line tool that reads textual graph data from the standard
input and writes its output to a file named parsed_graph.m. This can then be converted into a
graph in MATGRAPH by giving the command parsed_graph(g). Here are the steps you need
to take to make this work.

Compile the program. We assume basic knowledge of the Unix shell (Linux, Mac OS X, Cygwin
on Windows, etc.) and that your computer has a C++ compiler installed. (This has been tested
using the GNU compiler g++.)

To build the program, simply change directory to the graph_parser directory and type
make:
$ cd /home/username/matgraph/tools/graph_parser/
$ make
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g++ -ansi -O -c -o main.o main.cc
g++ -ansi -O -c -o LineParser.o LineParser.cc
g++ main.o LineParser.o -o graph_parser
$

The program graph_parser is created. This can be moved to any convenient location.

Graph data file. The graph_parser program reads a specific type of data file. Vertices are
named as character strings (henceforth, “words”) such as head-node or city or 123. No white
space may appear in the name of a vertex and vertex names are case sensitive (the word hello is
not the same as Hello).

A typical line in the data file contains the name of exactly two words; such a line indicates that
there is an edge between the named vertices. If there are more than two words on a line, only the
first two words are processed; the rest of the line is ignored.

In order to accommodate isolated vertices, a line in the data file may contain just a single word.
This tells graph_parser that the given word is the name of a vertex. If this word has not been
previously encountered (e.g., on a previous line as part of an edge), then this names a new vertex
in the graph.

If a line begins with the same word twice, the second instance of the word is ignored and this
line is treated as if it contained only one word.

Finally, if a line is blank or if a line begins with the sharp character #, then the line is ignored
(this is useful for annotating the data file).

A typical input file (named test) is included in the graph_parser directory; we show the
contents of that file here:
one two
one three
four
five two
two six and the rest of this line is ignored
seven
eight nine
nine two
one one <-- a loop is not created
two nine

eight seven
eight one fifty
four six
seven six
four five

three five
# this line should be skipped
nine seven

Convert the data file into a .m file. Once the data file is prepared, we use graph_parser to
convert the data file into a .m file that can be run in MATLAB. In the shell, give the following
command:
./graph_parser < filename
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where filename is the name of the file containing the graph data. The result of running the
program graph_parser is the creation of a file named parsed_graph.m in the same direc-
tory in which graph_parser was run. You need to have write permission for that directory or
graph_parser will complain:
Unable to open file parsed_graph.m for output

The file parsed_graph.m can be moved to any convenient location. You should not change
the name of this file because it is a MATLAB function. If you wish to process two (or more) graph
files, run graph_parser on the first data file and then read the graph into MATLAB (explained
next) before processing subsequent data files.

Run the .m file in MATLAB. The final step is to execute the function parsed_graph inside
MATLAB.
>> parsed_graph(g)
>> g
Graph with 9 vertices and 13 edges (full)
>> distxy(g)
Optimization terminated: relative function value
changing by less than OPTIONS.TolFun.
Embedding score = 2.5448
Elapsed time is 0.210241 seconds.
ans =

2.5448
>> ldraw(g)

The graph defined textually in test is now saved as graph object in MATGRAPH and can be
handled like any other such graph. The drawing of this graph is shown in Figure 12.

9.4. Connecting with other programs. It is possible to create MATLAB programs to write
graphs to files in other formats. Included with MATGRAPH are ways to do this for Graphviz
and OmniGraffle.

Saving graphs for Graphviz. Graphviz is a graph visualization tool available from the website
http://www.graphviz.org/

One of the Graphviz tools is named dot, and MATGRAPH includes a function also named dot
to convert graph objects into a format that can be read by Graphviz’s dot. The MATGRAPH
command has the form dot(g,’filename.dot’). This writes a file to the computer’s disk
that can then be used by Graphviz. Here is an example of how to do this:
>> cube(g,4)
>> dot(g,’four-cube.dot’)
Wrote "four-cube.dot"

The file four-cube.dot is now read into a Graphviz tool to produce attractive drawings such
as the one shown in Figure 13. See the Graphviz website for more information.

Saving graphs for OmniGraffle. OmniGraffle is a graph drawing program for Macintosh available
from this website:
http://www.omnigroup.com/
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FIGURE 12. A drawing of a graph read into MATGRAPH via the graph parser program.

FIGURE 13. A picture of Q4 produced by exporting a graph from MATGRAPH and
then laid out using GraphViz.

MATGRAPH can save graphs in a format that can be read by OmniGraffle. The MATGRAPH com-
mand graffle(g,’filename.graffle’) writes the graph to disk. Double clicking the
created file launches OmniGraffle. Here’s an example:

>> cube(g,3)
>> graffle(g,’cube.graffle’)

Using OmniGraffle’s layout tool, we can produce a nice embedding of the graph as shown in
Figure 14.
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FIGURE 14. A picture of Q4 produced by exporting a graph from MATGRAPH and
then laid out using OmniGraffle.

To a limited extent, it is possible to convert graphs prepared in OmniGraffle for import into MAT-
GRAPH. Inside the matgraph/tools directory resides a program named graffle2sgf.py.
This is a Python language program so, in order to run it you must have Python installed on your
computer. This program takes as input a graph saved by OmniGraffle and returns as output a matrix
specifying the graph in Simple Graph Format (see §9.2).

Suppose you have created a graph using OmniGraffle and saved it on your hard disk in a file
called mygraph.graffle. Issue the following command in the Unix shell:
./graffle2sgf.py < mygraph.graffle > mygraph

This reads the graph saved by OmniGraffle and writes the relevant data into the file mygraph.
Now, inside MATLAB, do the following:

>> load mygraph
>> sgf(g,mygraph)
>> g
Graph with 5 vertices and 6 edges (full)

The MATLAB command load mygraph reads the file mygraph and saves the matrix con-
tained therein into a variable that is also named mygraph. The command sgf(g,mygraph)
overwrites g with the graph specified by the SGF matrix mygraph.

The graffle2sgf.py tool is not completely reliable. It works well on diagrams that con-
tain only nodes and edges. If there are other extraneous lines or text in the diagram (which an
OmniGraffle diagram certainly may have), then the program can get confused and give poor per-
formance. Readers are invited to submit a better version.

DEPARTMENT OF APPLIED MATHEMATICS AND STATISTICS, THE JOHNS HOPKINS UNIVERSITY, BALTI-
MORE, MARYLAND 21218-2682 USA

E-mail address: ers@jhu.edu


	1. Getting Started
	1.1. Download Matgraph
	1.2. Design Principles
	1.3. A first session

	2. Basics
	2.1. A path
	2.2. Adding and deleting
	2.3. Neighbors, degrees, etc.
	2.4. Matrices
	2.5. Standard graph constructors

	3. Embeddings
	3.1. Basics
	3.2. Automatic graph layout

	4. Helper Classes: Partitions and Permutations
	4.1. Partitions
	4.2. Permutations

	5. Vertex Numbers and Labels
	6. Graph Operations
	7. Graph Computations
	7.1. Basic invariants
	7.2. Connection
	7.3. Coloring

	8. Sparse Graphs
	9. Input and Output
	9.1. Saving graphs to disk with save and load
	9.2. SGF: Simple Graph Format
	9.3. A C++ graph parser
	9.4. Connecting with other programs


