
1

Using the xPC Target Driver Authoring Tool to Create a Delay Timer
December 2, 2008

Introduction
The xPC Target driver authoring tool, xpcdrivertool, helps you create Simulink S-function
blocks to run in the xPC Target environment. Use the tool to create simple utility blocks and
custom device drivers that include calls to xPC Target kernel functions1

This document describes how to create a time delay block using xpcdrivertool. When you
add the block to a model, the delay block will wait a user-specified amount of time during each
simulation time step. This is useful when you need to profile or investigate timing results as well
as when you want to reserve or pre-allocate a specified amount of the simulation time step to
account for future functionality. A test model is provided to demonstrate use of the delay block.
Test results are also included

.

2.

This work was performed using xPC Target Version 4.0 (R2008b).

Using xpcdrivertool to Create a Time Delay Block
To invoke the xPC Target driver authoring tool, type the following in the MATLAB Command
Window

>> xpcdrivertool

Figure 1 displays the user interface.

Figure 1 – xPC Target Driver Authoring Tool.

1 For a complete list of kernel functions, refer to the xPC Target Function Library Quick Reference Sheet,
xPCTargetFunctionLibraryQuickReference.pdf. This document is in the directory
matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers.
2 A separate MATLAB Central File Exchange post, xPC Target Delay Timer Block, provides additional examples
and detail on the use of this block.

2

The typical work flow to create an S-function block using xpcdrivertool is as follows:

1. Specify the block requirements (e.g., inputs, outputs, parameters, work variables).
2. Generate source code files, which will include the above requirements.
3. Modify the block template C file with your custom code.
4. Compile the source code and generate the Simulink block.
5. Customize the block mask.

The S-function in this example is named delayTimer. Start by entering the name in the
Driver name edit box on the Main tab as shown in Figure 2. Change the Sample time option to
Inherited so that the block inherits its sample time from the Simulink model.

Step 1: Specify the Block Requirements

Figure 2 – Main tab.

Because the block implements a simple delay, no input or output ports are needed. As indicated
in Figures 3 and 4, you can skip and leave unchanged the Input Ports and Output Ports tabs.

Figure 3 – Input Ports tab.

3

Figure 4 – Output Ports tab.

The delayTimer block needs one parameter to allow the user to specify the desired delay time
in seconds. In the Parameters tab, add a delay variable as shown in Figure 5. The S-function
uses this variable to pass the time delay value to the model’s mdlOutputs routine. Inside of
mdlOutputs, the xPC Target kernel function xpcBusyWait is called with argument delay
to generate the requested delay.

Figure 5 – Parameters tab.

Work variables are required when you need to share data between model routines (e.g.,
mdlStart, mdlOutputs, mdlTerminate). In this example, no work variables are needed
so you can leave the Work Variables tab unchanged (see Figure 6).

4

Figure 6 – Work Variables tab.

Return to the Main tab and select the Generate C file template checkbox then click the Build
button. This creates the C file template (delayTimer.c),which will contain the block
functionality, the associated header file (delayTimer.h), and the Simulink S-function
wrapper files (sfcn_delayTimer.*) as shown in Figure 7.

Step 2: Generate Source Code Files

Figure 7 – Build process.

delayTimer.c contains a void function delayTimerOutput that is invoked by
mdlOutputs at each simulation time step. Within delayTimerOutput, insert the call to
the function xpcBusyWait. This is the kernel function used to create the delay. Specify the
delay parameter as the input argument to xpcBusyWait as shown in Figure 8. Save
delayTimer.c.

Step 3: Modify the Template C File – delayTimer.c

5

Figure 8 – C function delayTimer.c.

With code changes complete, return to the Main tab of xpcdrivertool. Clear the Generate
C file template checkbox and select Generate block and mask. Click the Build button. This
creates the Simulink S-function block, compiles all the source code, and generates the block
binary MEX-file sfcn_delayTimer.mexw32 as shown in Figure 9.

Step 4: Compile Source Code and Generate the Simulink Block

Note 1:

 During this step, ensure that the checkbox for Generate C file template is cleared;
otherwise, the build command will create a new C file template and overwrite the file you
previously edited.

Note 2: You can save your xpcdrivertool session at any time to a MAT-file (e.g.,
delayTimer.mat) by checking the Save settings button. Afterwards, you can exit
xpcdrivertool and perform other tasks if desired. This allows you to break your work into
multiple sessions. To return to and restore your work, run xpcdrivertool and click the
Load setting button. Choose the MAT-file you previously saved.

6

Figure 9 – Creating the delay timer model block.

Customize the block created by xpcdrivertool (see Figure 10).
Step 5: Customize the Block Mask

Figure 10 – Editing the delay timer model block.

Right-click on the block and select Edit Mask. Modify the Icon, Parameters, and
Documentation tabs as illustrated in Figures 11 – 13.

7

Figure 11 – Changing the block label using the Mask Editor.

Figure 12 – Changing block parameters using the Mask Editor.

8

Figure 13 – Changing block documentation using the Mask Editor.

When done, click the OK button. Double-click the block to display the Block Parameters dialog
so that you can specify the delay time as shown in Figure 14. Save the model as
delayTimerLib.mdl. This model now contains the single block, Delay Timer. To use
this block, drag it into a model.

Figure 14 – Delay Timer and Parameters dialog.

9

You can optionally place delayTimerLib.mdl (and accompanying support files) in a
“library” or “utility” directory to keep it separate from application models that use the block. To
do this, create an rtwmakecfg.m file as shown in Figure 15. The M-file contains path
statements that specify the location of the block source and include files. Set
makeInfo.includePath and makeInfo.sourcePath accordingly. These are needed
during the application build process. rtwmakecfg.m is typically placed in the same directory
as the files delayTimer.h and delayTimer.c. Add this directory to your MATLAB path.

Optional Step: Create rtwmakecfg.m

>> path(path,'C:\work')

Figure 15 – rtwmakecfg.m.

10

Test Case
To demonstrate the Delay Timer block, the example xpcDelayTimerTest.mdl shown in
Figure 16 is provided. The sample time for xpcDelayTimerTest.mdl is 250 µsec. This
model includes a transfer function driven by a square wave signal. It also contains a circular
counter that counts from 0 to 100, and then repeats. The example uses the counter to provide a
trigger to the Busy Time Delay subsystem containing the time delay block. When the counter
reaches a value of 100, it triggers the subsystem. This causes the simulation to delay by the time
specified in the Delay Timer Parameter dialog box.

Figure 16 – Test model.

The counter, trigger, and Task Execution Time (TET) are logged as the simulation runs. TET is
the amount of time it takes to execute the model code during the sample step. As a test case, the
model was configured with the delay time set to 100 µsec. The example uses the MATLAB
script

 xpcDelayTimerTestResults.m

to run the application and generate the plot results shown in Figures 17. Note that the TET is
very small (~ 6 µsec) when executing the model except when the counter equals 100. When this
occurs, the Delay Timer block is triggered and the model takes an extra 100 µsec to complete
– as reported in the TET.

11

Figure 17 – Test results (100 µsec delay).

Conclusion
This document describes the xPC Target driver authoring tool and shows how it can be used to
create a simple time delay block. In addition, a test model is provided that demonstrates the
block’s utility. All files referenced in this document are listed below and included in the
compressed file xPCTDN_DriverToolExample_R2008b.zip.

Contents of xPCTDN_DriverToolExample_R2008b.zip3

3 The file sfcn_delayTimer.mexw32 is not included. This file is created by following the steps above.
Alternately, it can be created by invoking the mex command as follows:
>> mex('sfcn_delayTimer.c', 'delayTimer.c')

delayTimer.c
delayTimer.h
delayTimer.mat
delayTimerLib.mdl
ReadMe.pdf (this document)
rtwmakecfg.m
sfcn_delayTimer.c
sfcn_delayTimer.tlc
xpcDelayTimerTest.mdl
xpcDelayTimerTestResults.m

