
Graphical MATLAB

Lesson 1: Programming a GUI

Husam Aldahiyat



Functions

� Each function has inputs and outputs

� For our GUI, we need a function with 
no inputs or outputs

� This is because the function only calls 
the GUI



Creating an m File



Naming the m File

� Be sure the m file has the same name 
as the function



Creating the Function

� Make sure the function name is the 
same as the m file’s.

� No input

� No output



Figure Command

� Creates a FIGURE with default 
properties



Running the Code

� To run the code, do one of the 
following:

� 1. Calling it in the main window



Cont.

� 2. Go to Debug->Run in editor window



Cont.

� Use the shortcut F5 from editor window



Setting Figure Properties

� Figures have properties and property 
values.

� Syntax for setting figure properties is:

figure('PropertyName',propertyvalue,�)



Some Figure Properties

[2, 3, 2, 1][x, y, w, l]‘position’

‘inches’{‘pixels’}

‘normalized’

‘inches’

‘centimeters’

‘points’

‘characters’

‘units’

[0.5, 0.9, 0.7][R, G, B]‘color’

‘on’{‘on’}

‘off’

‘NumberTitle’

‘none’‘none’

{‘figure’}

‘MenuBar’

‘Example’string‘name’

ExamplePropertyValuePropertyName



Setting Figure Properties



Running the Function



Figure Property: Color
� The figure property ‘color’ takes the vector 
value [R, G, B], where each vector element 
takes a value in the range [0, 1].

Examples:

� [0, 1, 0] = GREEN

� [1, 1, 0] = YELLOW

� [1, 1, 1] = WHITE

� [0.5 0.5 0.5] = GRAY

� [0.5 0.2 0.75] = PURPLE



Using “�”

� Makes for better readability



Figure Property: Position

� Takes the vector value [x, y, w, l]

� Each element is a value in the units specified by 
the figure property ‘units’

� x- Distance from left side of the screen
� y- Distance from bottom side of the screen
� w- Width of figure (horizontally)
� l- Length of figure (vertically)



Figure Property: Units

� Safest bet is to use the property value 
‘normalized’.

� With ‘normalized’ chosen, each element 
is relative to the screen and takes the 
value in the range of [0, 1].

� Bottom left side of the screen is [0, 0].

� Upper right side of the screen is [1, 1].



Applying More Properties



Result



RAND function

� Creates a random number in the range [0, 1].

� Can be used in [R, G, B] vector

To create a randomly coloured

FIGURE.



Result



UICONTROL Command

� Very important command.

� Creates edit boxes, text boxes, 
pushbuttons, sliders, popup menus and 
more.

� Syntax:

Uicontrol(‘propertyName’,propertyvalue)



UICONTROL Property: ‘Style’

� ‘style’ property specifies the 
UICONTROL type and can have one of 
the following as its value:

� pushbutton, togglebutton, radiobutton, 
checkbox, edit, text, slider, frame, 
listbox, popupmenu.



UICONTROL Property: Position

� ‘position’ behaves similarly to the FIGURE 
property, only here the position is taken 
relative to the figure window. Likewise, ‘units’
is treated in the same vein.

� For example, the point [0, 0] lies on the 
lower left corner of the figure on which the 
UICONTROL is laid upon.



Example



Result



Important UICONTROL Properties

Execute specified 
function on 
UICONTROL 
interaction

@myfunc1String or 
function handle

‘callback’

Sets UICONTROL to 
visible/invisible

‘off’{‘on’}

‘off’

‘visible’

UICONTROL colour[1, 1, 1][R, G, B]‘backgroundcolor’

Font colour[0, 0, 0][R, G, B]‘foregroundcolor’

Writes string in 
UICONTROL

‘Enter Number’string‘string’

ExplanationExamplePropertyValuePropertyName



Creating Another UICONTROL

� Let’s create another UICONTROL, 
namely a text box.

� Notice how the (y) element of position 
is slightly higher than that of the our 
edit box.





Result



Problem

� Notice how the background colour of the text 
box is distracting

� It would be better if the ‘backgroundcolor’
property was set to the same as that of the 
FIGURE.

� However, the FIGURE has a random colour 
combination, so what is the solution?

� We need to use the command GET.



GET Command

� Along with the command SET, essential 
commands for GUI building

� Syntax:

get(handle,’propertName’)



Giving Handles to Objects

� We need to give handles for objects so 
we could reference them later.

� Not all objects need handles; only those 
which will be referenced later.

� Nearly anything can be given a handle.



Examples



Using GET

� Now that you’ve given something a 
handle, you can obtain its properties for 
later use, as shown.

� First, get the colour of the created 
FIGURE (with handle “f”)



Cont.



Cont.

� Now that the FIGURE colour is known 
and stored in the variable “col”, we can 
use this value as background colour for 
our text box UICONTROL.





Result



Using the SET Command

� Gives pre-existing objects new values 
for properties.

� Syntax:

set(handle,’propertyName’,propertyvalue)



Example

� Change background colour of text box 
from white to that of the current figure 
(random).





Result

� Same as before.



Problem

� FIGURE colour is given a random 
choice.

� What if resulting random combination 
produces a figure that is too dark?

� How can we create a random 
combination for the FIGURE colour, yet 
maintain that it’s still random?



More on RGB Vectors

� Each element in the [R, G, B] vector 
controls the intensity of its 
corresponding value (red/green/blue).

� This means for high values in the vector 
we get brighter colours.

� Thus it is possible to make sure colour 
combination produces a bright colour if 
its elements are rather large.



Cont.

� So if we somehow control the RAND command into 
giving values for a higher range, we would make sure 
that each time a colour combination is produced, it is 
on the lighter side.

� For this we use

rand*0.5+0.5

Instead of

rand

Which gives us values in the range [0.5 1].



Example



Result



Creating Another Text Box

� Let us create another text box and give 
it its own handle.



Result



Creating a Pushbutton

� Creating a pushbutton has the same 
syntax as other UICONTROLs.



Pushbutton Callback

� Notice how the recently created 
pushbutton has the ‘callback’
propertyname with the propertyvalue
“@go1”.

� This means that whenever the user 
interacts with the UICONTROL (in our 
case push the pushbutton), we will 
execute the function “go1”.



Creating the Callback Function



Programming the GUI

� We want to put lines of code inside the 
callback function. That way, whenever the 
user clicks the pushbutton, something 
happens.

� What happens is the number in the edit box 
is obtained, an operation is performed on it, 
then the result is to be displayed on the text 
box on the right.



Cont.

� First we want to obtain the value found in the 
edit box.

� To do this, we need to get the ‘string’ value 
of the edit box.

� However, the value found here is in character 
format. To convert it into a numerical value, 
we use the command STR2NUM.



Example



Notes

� The input to the function “go1” is the phrase 
“varargin”, which stand for variable 
arguments input.

� This is due to the fact that the function has 
no inputs to it.

� The command STR2DOUBLE can be used 
instead of STR2NUM for scalar values.



Programming the Pushbutton

� After obtaining the number in the edit box, we will 
want to perform an operation on it, say square it.

� After the operation is done, the result should be 
placed in the text box with handle “ht2”.

� Remember: the numeric value should be converted 
to character format before being set as string. The 
command NUM2STR will be used for this purpose.

� The command SET will be used to display the 
answer.



Example



Result



Creating a Popupmenu

� A popupmenu is a UICONTROL which 
gives the user a list of possibilities 
which they can choose from.

� The defining properties of the 
popupmenu are the properties ‘string’
and ‘value’.



Popupmenu Property: ‘String’

� The ‘string’ property contains a cell 
matrix with each row containing the 
string of one value (option).

� Cell matrices automatically stack strings 
of different lengths together.



Example



Result



Popupmenu Property: Value

� The ‘value’ property is numeric and 
contains the row of string from the 
popupmenu which was chosen.

� In our case, we want to edit our 
pushbutton callback into producing 
differing results based on the 
popupmenu options chosen.



Cont.

� For this, we edit the popupmenu string 
and have the user chose between 
squaring and cubing the value in the 
edit box.

� Thus when the pushbutton is pressed, 
the popupmenu value is checked and 
based on it, the operation performed 
will be different.



Example



Result



Problem

� Each time the pushbutton is pressed, 
the value in the text box updates 
depending on the chosen value from 
the popupmenu.

� Say we want the answer to update 
every time the popupmenu is updated, 
what should we do?



Solution

� We want the pushbutton callback to be executed 
whenever the popupmenu is interacted with.

� This means we should give the popupmenu a 
callback function.

� Let this be the same as the pushbutton callback 
function.

� The result is the same callback, but this time being 
executed when the user either click the pushbutton, 
or updates the popupmenu.



Example



Result



Other UICONTROLs

� There exists many other useful 
UICONTROL styles, but the most 
important ones have been covered.

� Also to be covered are the listbox, the 
slider, the checkbox and the 
radiobutton.



Listbox UICONTROL

� Its function is very similar to the 
popupmenu.

� In fact it behaves exactly the same in 
regards to the properties ‘string’ and 
‘value’.



Listbox Value

� We want to create a listbox just as we did 
with the popupmenu.

� Notice how the listbox needs to have a large 
value for its length.

� In the “go1” callback, the value in the listbox 
is checked and an operation is performed 
accordingly.



Example



Result



Slider UICONTROL

� Sliders can be used in many different 
ways.

� Important slider properties include MIN, 
MAX, VALUE and SLIDERSTEP 
properties.



Slider Properties: MIN, MAX 
and SLIDERSTEP

� MIN and MAX properties take the values 
of the minimum and maximum of the 
slider, respectively.

� SLIDERSTEP is a two element vector 
that controls how much the slider 
VALUE changes with each click.



Slider Property: SLIDERSTEP

� The first value of SLIDERSTEP controls how much the 
slider moves when one of the arrows on its far sides 
is clicked.

� The second element governs the change of slider 
value when clicking on an empty space in the slider 
itself.

� Both SLIDERSTEP element are scaled to the MIN to 
MAX scale, meaning they are to be in the range

[0, 1].



Example



Result



Using the slider to its full 
potential

� What we want to do is make the slider control the 
number to be inputted.

� To do this, we give the slider a callback.

� When interacting with the slider, its value will be 
placed in the edit box.

� Then the operation specified by the listbox will be 
performed, and the answer will be displayed in the 
text box.



Example



Result



Problem

� What if we want the edit box to control 
the slider?



Solution

� Just like any other UICONTROL, the edit 
box can be given a callback as well.

� In the edit box callback, we change the 
value of the slider accordingly and then 
apply the main pushbutton callback 
“go1”.



Example



Result



Problem

� Remember how we have set the MAX 
property of the SLIDER to 10?

� Well what if this value is exceeded in 
the edit box, what should happen?



Solution

� If the value to be set in the slider is 
higher than its MAX property or lower 
than it MIN property, then the SLIDER 
wouldn’t be created.

� A solution to this problem is to create 
an error dialog box whenever this 
happens, and then proceed to reset the 
slider.



ERRORDLG Function

� The function ERRORDLG produces an error 
dialog box with two input parameters.

� The second input is the box title, while the 
first is the error message itself.

� Syntax:

errordlg(title,message)



Example



Result



Checkbox UICONTROL

� The checkbox UICONTROL is similar to the 
listbox and popupmenu in which it has a 
defining VALUE property.

� The value for each checkbox can either be “1”
(i.e. checked) or “0”.

� Another handy property is the ‘string’
property.



Example.



Result



Radiobutton UICONTROL

� The radiobutton is very similar to the 
checkbox.

� You can create a radiobutton group. 
That way, only one of the buttons in 
the group can be selected “on” (i.e. has 
the value of “1”)



Example



Result


