Bus best practice guidelines
For Models Targeted for Production Code Generation
Version 1.0
March 30th, 2009
The MathWorks

Introduction	5
Notes on the paper	5
What is a Bus	5
Virtual and Nonvirtual Buses	5
Bus Objects	6
Understanding Bus Objects	6
Storing Bus Objects	6
Bus Limitations	6
Working with Buses	7
Basic Guidelines	7
Bus Diagnostics	7
The Bus and Mux Blocks	8
Use Virtual Buses when Possible	8
When are Nonvirtual Buses Required	8
Avoid Non-Local Sub-Buses when working with nonvirtual buses	9
Multi-Rate Buses	10
Specifying the Sample Time Rates	12
Setting the Initial Value of Bus Signals	12
Simulink	12
Stateflow / Embedded MATLAB	13
Buses of Constants	14
Extract Nonvirtual Bus Signals Inside of Atomic Subsystems	15
Virtual Bus Signals Crossing Atomic Boundaries	16
Arrays in Buses are Supported, not Arrays of Buses	18
Advanced Usage Scenarios	18
Initializing Data with Persistent information	18
Working with Bus Arrays and Reusable Subsystems	20
Building Bus Arrays in Reusable Subsystems	21
Simulink implementation	22
Stateflow Implementation	23
Appendix	24
Terms	24
Atomic:	24
Buses and S-Functions	24
Defining Buses in MATLAB-Files	25

Author: Michael Burke (mburke@mathworks.com)

Bus Best Practices
[bookmark: _Toc223251214][bookmark: _Toc223251426]Introduction
Buses provided are a valuable tool for managing signals in the Simulink environment both visually and from a code interface perspective. Using buses properly results in efficient code and visually clean models. This document provides guidelines for the proper usage of buses.
The document is broken down into three main sections
· What is a bus
A basic overview of how buses are defined in Simulink environment. This section can be skipped by advanced users
· Basic guidelines
The 8 most important guidelines for working with buses.
· Advanced Usage Scenarios
This section shows how the basic guidelines apply to common advanced usage scenarios.

[bookmark: _Toc223251215][bookmark: _Toc223251427]Notes on the paper
· This paper was written using R2009a
· Code was generated using Real-Time Workshop Embedded Coder
· Unless otherwise noted the storage class of Nonvirtual buses where set to Exported Global. This was done to improve the appearance of the code only.
· Code Comments where turned off to reduce the image size
[bookmark: _Toc223251216][bookmark: _Toc223251428]What is a Bus
A bus is a type of composite signal, that is to say a signal composed of other signals. Buses can have
· Mixed data type signals (e.g. double, integer, fixed point)
· Mixture of scalar and vector elements
· Buses as elements
· N-D signals
· Mixture of Real and Complex signals

[bookmark: _Toc223251217][bookmark: _Toc223251429]Virtual and Nonvirtual Buses
A bus can be either virtual or nonvirtual. Both virtual and nonvirtual buses provide the same visual simplification, but the implementations are different. Virtual buses exist only graphically. They have no functional effects and do not appear in generated code; only the constituent signals appear. Nonvirtual buses appear as structures in generated code and may have functional effects.
[image:]
Figure 1: Virtual Bus
[image:]
Figure 2: Nonvirtual bus
[bookmark: _Toc223251218][bookmark: _Toc223251430]Bus Objects
A bus object is a Simulink Data Object used to define the data type and size of members of the bus. Bus objects are saved in the base workspace. Bus objects can be created either programmatically or by using the bus editor dialog.
[image:]
Figure 3: Bus Editor
Nonvirtual buses require the use of a bus object to define the members of the bus. Virtual buses can use bus objects but do not require them.
[bookmark: _Toc223251219][bookmark: _Toc223251431]Understanding Bus Objects
Bus objects are analogous to structure definitions in C; they define the members of the bus but do not create a bus.
[bookmark: _Toc223251220][bookmark: _Toc223251432]Storing Bus Objects
Bus objects can be saved as part of a MAT file. Additionally bus objects can be created using M-Code. The appendix contains an example of buses created using M-Code. The data management aspect of Bus Objects is not covered in this document.
[bookmark: _Toc223251221][bookmark: _Toc223251433]Bus Limitations
· Root level bus outputs can not be logged using the Data / Import > Save to Workspace > Output option. Buses can be logged using standard signal logging
· Buses created using an ENUM data type you cannot be passed through a block that requires an initial value (e.g. Unit Delay)
[bookmark: _Toc223251222][bookmark: _Toc223251434]Working with Buses
Buses are not intended to support computation performed directly on the bus. Therefore, only a small subset of blocks, called bus-capable blocks, can process buses directly. All virtual blocks are bus-capable. The following nonvirtual blocks are also bus-capable:
· Bus assignment
· Bus converter
· Bus selector
· Memory
· Merge
· Multiport Switch
· Rate Transition
· Signal copy
· Switch
· Unit Delay
· Zero-Order Hold
All signals in a nonvirtual bus input to a bus-capable block must have the same sample time, even if the elements of the associated bus object specify inherited sample times. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus.
[bookmark: _Toc223251223][bookmark: _Toc223251435]Basic Guidelines
These guidelines have three basic goals, bus usage for
· Efficient code generation
· Defining data structures for
· Specification of subsystem / function interfaces
· Matching existing data structures in external C code
· Simplified model layout
[bookmark: _Toc223251224][bookmark: _Toc223251436]Bus Diagnostics
Simulink provides diagnostics to promote the best usage of buses. As part of the best practices turning on the following diagnostics is recommended
[image:]
The final error diagnostic “Bus signals treated as vector:” is only enabled when “Mux blocks used to create a bus signals” is set to error. Setting the diagnostics to warning will allow users to debug other issues prior to addressing bus issues.
[bookmark: _Toc223251225][bookmark: _Toc223251437]The Bus and Mux Blocks
A Simulink mux is a virtual signal that graphically combines two or more vector signals into one signal line. A Simulink mux does not combine signals in any functional sense: it exists only virtually, and has no purpose except to simplify a model's visual appearance. Using a mux has no effect on simulation or generated code.
You can use a mux anywhere that you could use an ordinary (contiguous) vector, including performing calculations on it. The computation affects each constituent value in the mux just as if the values existed in a contiguous vector, and the result is a contiguous vector, not a mux. Models can use this capability to perform computations on multiple vectors without the overhead of first copying the separate values to contiguous storage.
The Simulink documentation refers, sometimes interchangeably, to "muxes", "vectors", and "wide signals", and all three terms appear in Simulink GUI labels and API names. This terminology can be confusing, because most vector signals, which are also called wide signals, are nonvirtual and hence are not muxes. To avoid confusion, reserve the term "mux" to refer specifically to a virtual vector.
If you want to create a composite signal, in which the constituent signals retain their identities and can have different data types, use a Bus Creator block rather than a Mux block. Although you can use a Mux block to create a composite signal, The MathWorks discourages this practice because it can lead to inefficient code and models that are more difficult to debug. See Avoiding Mux/Bus Mixtures for more information.
[bookmark: _Toc223251226][bookmark: _Toc223251438]Use Virtual Buses when Possible
Virtual buses do not impact the generated code, they are a graphical convenience. As a result the code generation engine is able to fully optimize the signals in the bus.
[bookmark: _Toc223251227][bookmark: _Toc223251439]When are Nonvirtual Buses Required
There are several cases where the Simulink requires the use of nonvirtual buses
· To generate a specific structure from the bus
· For non-auto storage classes
· Inports and Outports of Model blocks
· Root level Inport or Outport blocks when the bus has mixed data types
Nonvirtual buses cannot be used for bundling of function call signals.
[bookmark: _Toc223251228][bookmark: _Toc223251440]Avoid Non-Local Sub-Buses when working with nonvirtual buses
Buses can be constructed out of sub-buses. The storage class of the sub-bus should be set to “auto” which results in a local signal. Setting the sub-bus to a non-auto storage class has two problems
· Results in allocation of redundant memory (memory for the sub-bus object and memory in the final bus object)
· Results in additional copy operations (first copying to the sub-bus and then copying from the sub-bus to the final bus)
	[image:]

	[image:]

In this first example the final bus is created from local scoped sub-elements. The resulting assignment operations are relatively efficient. By contrast in the next example the sub-elements (sub_bus_1 and sub_bus_2) are global in scope. First the assignment to the sub-bus is made (lines 54~59) then the copy of the sub-bus to the main bus (lines 60~61).
	[image:]

	[image:]

In most cases this is not a desirable design pattern.
[bookmark: _Toc223251229][bookmark: _Toc223251441]Multi-Rate Buses
Non virtual buses do not support multiple rates. Virtual buses support multiple rates as long as the bus does not cross the root level inport or outport.

Figure 4: busMulti_Rate_a_updated
[image:]
The image above contains two examples. The first example shows a bus being created from multiple rates (denoted by the D2 and D3). This is allowed since it is a virtual bus. Prior to connection to the root level Outport (Out1) the bus is converted into a single rate bus using the Rate Transition block. Changing the bus to single rate is required in this case because Out1 is a root level output block.
In the second example a nonvirtual bus is created. Because it is nonvirtual the rates of all the signals must be equal when the bus is created.
When working with more than two rates and a Virtual Bus it is possible to use a single Rate Transition block on the output of the bus creator block. However for full control it is recommended that Rate Transition blocks are used on each input signal to give full control over both the output rate data transfer method. As the image shows when a single Rate Transition block is used the block sets all the signals to the fastest rate (D1).
[image:]
[bookmark: _Toc223251230][bookmark: _Toc223251442]Specifying the Sample Time Rates
The sample time for buses should be specified through the signals that define the bus; as shown above if the sample times do not match a rate transition block should be used to create a uniform rate. The rate should not be set using the sample time in the Bus Object; e.g. set the sample time in the Bus Objects to -1 inherited.
[image:]

[bookmark: _Toc223251231][bookmark: _Toc223251443]Setting the Initial Value of Bus Signals
Unlike scalar and vector signals there is not a way of directly initializing bus signals. The following two sections show how to initialize buses in Simulink or Stateflow / Embedded MATLAB.
[bookmark: _Toc223251232][bookmark: _Toc223251444]Simulink
Initial values on the bus can be set by using a set of conditionally executed subsystems (such as function called subsystems), and a merge block. Both subsystems (InitBus and StandardUpdate) create a bus signal of type CounterBus, however the assignment to the variable “GlobalCounter” is controlled by the merge block.
[image:]

There are limitations to this method. The StandardUpdate subsystem does not use the initial values from the InitBus subsystem, therefore if the calculations depend on past information from the bus you should consider using the Embedded MATLAB or Stateflow examples shown below.
[bookmark: _Toc223251233][bookmark: _Toc223251445]Stateflow / Embedded MATLAB
Stateflow and Embedded MATLAB allow for conditional execution internally. In this case the init and update code where written as Functions in the Stateflow diagram; this was done to simplify the presentation in the generated code.
	[image:]

	[image:]

In this example you can see that the past value of GlobalCounter.cnt is used during the “UpdateCnt” function.
In this example Stateflow Graphical functions where used to initialize and update the buses. It would have been equally valid to use Embedded MATLAB functions or Simulink subsystems embedded in the Stateflow diagram. In the image bellow the Simulink subsystems are the same subsystems used in the earlier Simulink only example.

[image:]
[bookmark: _Toc223251234][bookmark: _Toc223251446]Buses of Constants
The code for setting a bus of constant values will be placed in either the “Step” or the “Init” function of the model. The location of the code depends on the configuration of the bus. In most cases the code will be placed in the step function. However if the following conditions hold the code will be placed in the <model>_Init function
· It is a Virtual bus
· All the data types on the bus are the same
· All the signals are constants
	[image:]

	[image:]

In the example above only the “Out_2” bus meets all the requirements. The other buses are placed in the step function.
To avoid continual updating of the bus of constants place the bus code into a function called / triggered subsystem context (see the section “Setting the Initial Value of Bus Signals”). If the route is taken make sure the subsystem is called at the start of execution.
[bookmark: _Toc223251235][bookmark: _Toc223251447]Extract Nonvirtual Bus Signals Inside of Atomic Subsystems
Selecting signals off of a nonvirtual bus can result in unnecessary data copies when those signals cross an atomic boundary. In the following example the same code is executed three times, a simple multiplication of two elements in a vector. In the second instance when the bus signals are selected outside of the atomic subsystem an unnecessary copy of the bus data is created.
	[image:]

	[image:]

In the example shown the input signals where global in scope. It does not matter if the signals are global or local, in either case the selection of the signals outside of the model results in an unnecessary copy while the internal selection does not.
[bookmark: _Toc223251236][bookmark: _Toc223251448]Virtual Bus Signals Crossing Atomic Boundaries
Virtual buses crossing atomic boundaries can result in the creation of unnecessary data copies. The following example shows the data copy that occurs when a virtual bus crosses the atomic boundary. Lines 25~26 show the signals being selected out of the bus before they are used in the function on lines 19~20.
	[image:]

	[image:]

By comparison the nonvirtual bus does not require the use of temporary variables.
If the bus passed into the subsystem consists of constants only then use of a Virtual bus is more efficient. In this case Simulink is able to inline the values into the code.
	[image:]

	[image:]

[bookmark: _Toc223251237][bookmark: _Toc223251449]Arrays in Buses are Supported, not Arrays of Buses
Simulink and Real-Time Workshop both fully support the use of arrays in members of a bus; however arrays of buses are not supported. At this time there is not a way of creating an array of buses; however often the functionality of an array of buses can be emulated using arrays in buses. See the section “Working with Bus Arrays”
[bookmark: _Toc223251238][bookmark: _Toc223251450]Advanced Usage Scenarios
[bookmark: _Toc223251239][bookmark: _Toc223251451]Initializing Data with Persistent information
State information can be maintained in the bus through the use of a loop back. Cases where this would be required include the use of integrators with non-zero initial values.

[image:]
1. The atomic subsystem InitBus must be executed before
a. The subsystem StandardUpdate
b. The signal GlobalCounter is used down stream
2. The two conditionally executed subsystems are both triggered by the same function call generator
3. By merging signal loops back into the standard update subsystem
a. This insures that the StandardUpdate code uses the initial values from the InitBus subsystem
b. It does not result in an algebraic loop since there is a single function call generator enforcing execution order
4. The bus name GlobalCounter is assigned after the merge; it is utilized in both the InitBus and StandardUpdate subsystem
	[image:]
	[image:]

	[image:]
	[image:]

Additionally it should be noted that in the subsystem StandardUpdate the structure member GlobalCounter.Other (<signal3>) is not updated. As a result it does not show up in the generated code.
In the generated code the bus is initialized to zero values as part of the standard Simulink initialization routine. In your final build process you may want to consider discarding this initialization function
[image:]
[bookmark: _Toc223251240][bookmark: _Toc223251452]Working with Bus Arrays and Reusable Subsystems
A special case of the “Select inside” section is when the atomic system is defined as reusable. A common usage scenario is when the bus is used to pack multiple identical signals, for example information about wheels on a car.
The standard practice in would be to create a structure “WheelStruct” and then create an array of structures. Since Simulink does not support array of buses the structure is inverted
	C version
	Simulink Version

	Struct {
 Double estSpeed;
 Double estAcell;
 Integer estTq;
} wheelVect [4];
	Struct {
 Double estSpeed[4];
 Double estAccel[4];
 Integer estTq[4];
} wheelVect;

An index into the array is passed into the reusable subsystem along with the bus. Inside the reusable subsystem the vector signals are selected out and then indexed using the MultiPortSwitch block.
	[image:]

	[image:]

	[image:]

[bookmark: _Toc223251241][bookmark: _Toc223251453]Building Bus Arrays in Reusable Subsystems
In the same way that it is desirable to use reusable functions for redundant computation it is also desirable to use them during the assignment stage. The basic approach for assigning sub-members is similar to the approach taken for initializing buses, e.g. use of conditionally executed subsystems and a merge block to create the final signal.
[image:]
In this case both subsystems are executed in a signal time step. Since they are writing to different members of the bus there is no conflict between the functions.
[bookmark: _Toc223251242][bookmark: _Toc223251454]Simulink implementation
Because the Simulink model is working with vectors use of Assignment blocks is required. Unfortunately the resulting code is less efficient then in the simple vector case shown in the Initialization section. The resulting code copies the full bus (all vector entries) for each update. Care needs to be taken when the Simulink implementation is used in that there are multiple unnecessary data copies.
	[image:]

	[image:]

[bookmark: _Toc223251243][bookmark: _Toc223251455]Stateflow Implementation
The Stateflow implementation provides an efficient method for updating individual bus members. In the Stateflow example the actual computation of the members of the structure are computed outside of the Stateflow model.
	[image:]

	[image:]

[bookmark: _Toc223251244][bookmark: _Toc223251456]Appendix
[bookmark: _Toc223251245][bookmark: _Toc223251457]Terms
[bookmark: _Toc223251246][bookmark: _Toc223251458]Atomic: A functional unit that executes to completion before the next unit executes. Examples include function called subsystems and model reference blocks.
[bookmark: _Toc223251247][bookmark: _Toc223251459]Buses and S-Functions
The MathWorks recommended approach for using Buses with external code is to use the legacy code tool. The demo model sldemo_lct_bus shows how to use the legacy code tool with buses.
[image:]

[bookmark: _Toc223251248][bookmark: _Toc223251460]Defining Buses in MATLAB-Files
Buses can be defined in an MATLAB-File. The following code snippet shows MATLAB-File for the bus. This file type of file can be generated by using the Export to File option in the Bus Editor dialog.[image:]

%----------------------
% Next Entry: SimpleBus_1
%----------------------
SimpleBus_1 = Simulink.Bus;
SimpleBus_1.Description = char([]);
SimpleBus_1.HeaderFile = char([]);
eleTmp(1) = Simulink.BusElement;
eleTmp(1).Name = 'enableFlag';
eleTmp(1).DataType = 'int8';
eleTmp(1).Complexity = 'real';
eleTmp(1).Dimensions = double(1);
eleTmp(1).SamplingMode = 'Sample based';
eleTmp(1).SampleTime = double(-1);
eleTmp(2) = Simulink.BusElement;
eleTmp(2).Name = 'calValues';
eleTmp(2).DataType = 'int32';
eleTmp(2).Complexity = 'real';
eleTmp(2).Dimensions = double(2);
eleTmp(2).SamplingMode = 'Sample based';
eleTmp(2).SampleTime = double(-1);
SimpleBus_1.Elements = eleTmp;
clear eleTmp;

%----------------------
% Next Entry: BusOfBuses
%----------------------

BusOfBuses = Simulink.Bus;
BusOfBuses.Description = char([]);
BusOfBuses.HeaderFile = char([]);
eleTmp(1) = Simulink.BusElement;
eleTmp(1).Name = 'Simp_1';
eleTmp(1).DataType = 'SimpleBus_1';
eleTmp(1).Complexity = 'real';
eleTmp(1).Dimensions = double(1);
eleTmp(1).SamplingMode = 'Sample based';
eleTmp(1).SampleTime = double(-1);
eleTmp(2) = Simulink.BusElement;
eleTmp(2).Name = 'Simp_2';
eleTmp(2).DataType = 'SimpleBus_2';
eleTmp(2).Complexity = 'real';
eleTmp(2).Dimensions = double(1);
eleTmp(2).SamplingMode = 'Sample based';
eleTmp(2).SampleTime = double(-1);
eleTmp(3) = Simulink.BusElement;
eleTmp(3).Name = 'A_Vector';
eleTmp(3).DataType = 'double';
eleTmp(3).Complexity = 'real';
eleTmp(3).Dimensions = double(3);
eleTmp(3).SamplingMode = 'Sample based';
eleTmp(3).SampleTime = double(-1);
BusOfBuses.Elements = eleTmp;
clear eleTmp;

Note: The definition of the parent bus can come before or after the child bus.
	15
	

image2.png

image3.png

image4.jpeg

image5.jpeg

image6.jpeg

image7.png

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image1.png

