w: ezos7+ | NIHNINAN A

The University of Texas Libraries - Interlibrary Services - IXA

Borrower: DRB

e asorasss (HINNNNARNIMINRN AN D

Lending String: *IXA NTE,GZM,GZMMYG

Journal Title: Proceedings.
Volume: Issue:
Month/Year: 10 1978

Pages: < paéef

Article Title: Douglas Michels; A Concise
Extensible Metalanguage for Translator
Implementation

Article Author: USA-Japan Computer
Conference.

Imprint: [Montvale, N.J., American Federation of

Call #: QA 76 U59 3RD 1978
Location: PCL

Charge
Maxcost: $30.00IFM

Patron: McKeeman, William
Shipping Address:
Dartmouth College

6025 Baker-Berry Library -ILL
Wentworth Street

Hanover, NH 03755-3525

Ariel: 129.170.117.37

Odyssey:206.107.42.94
E-Mail:
Fax: 603-646-2167

3rd USA-JAPAN Computer Conference, 1978 291

A CONCISE EXTENSIBLE METALANGUAGE FOR TRANSLATOR

IMPLEMENTATION*

DOUGLAS L. MICHELS
Scotts Valley, California

A very concise metalanguage is presented. This language is capable of describing context free lang-
uages, including itself. Several mutually recursive functions define an interpreter for this language.
The metalanguage and interpreter are extended to allow the inclusion of emitters. This makes possible
the description of translations. A metatranslater is shown which is capable of self-translation. The
addition of labeled productions makes possible a metatranslation language in the style of BNF.

Key words and phrases: metalanguage, metatranslator, metacompiler, self-describing grammar

1. INTRODUCTION

McKeeman (4) has suggested a refinement approach to
the construction of translator writing systems.

This approach is based on partitioning the system
into several languages, one for each major component
of the resultant translators. Instead of construct-
ing the translator writing system in its totality,
it is to be "evolved", each generation a product of
the tools created by the previous generation. The
design objective for each generation is the creation
of the most useful tools with which to "evolve" the
next generation.

McKeeman has named the basis step in this evolution
the SEED. The seeds of a translator writing system
are the tools necessary to create the minimal trans-
lators required for the description of more sophisti-
cated Tanguages. An ideal seed would have the capa-
bility to build several very simple but significant-
ly different translators. The seed and the langu-
ages constructed with it serve only as development
steps and therefore execution efficiency is far less
important than conceptual clarity and extensibility.

Schorre (7) proposed a meta translation system which
added output rules to BNF (6) style syntax equations.
This class of translators is of sufficient capability
to be used as a seed; but appears to be more complex
then necessary. This complexity results from the
structure of the generated machine language, which
requires the compiler to generate addresses for
branching. The predefined scanner adds rigidity

and additional complexity.

We propose that a meta translation system based on a
prefix operator machine language is conceptually
simple and easy to implement. In addition scanning
is viewed as yet another translation and is not

*This research was performed as an Information
Science student at the University of California,
Santa Cruz, California and was supported in part by
ONR Contract No. N0O0014-76-C-0682.

defined in the system.
2. GO: A SELF-RECOGNIZING RECOGNIZER

A very concise meta-language (GO) can be defined
using only four prefix operators. This language can
recognize context free languages. To demonstrate
this the syntax of the GO is expressed using GO.

GO contains two binary operators, concatenation ('&')
and alternation ('1'). The '&' is true if both of
the rules which follow it are true. If either of
these operators are false the input is backed up to
the point preceding that operator's evaluation. A
unary literal operator ('"') 1is provided to test the
next character of input. The '"' is true if the
character which follows it is identical to the next
character of input. The input character is consumed
from the input string. The recursion operator {'.')
is used to re-invoke the entire grammar. It is true
only if the first operator in the grammar is true.
The full specification of the machine which executes
this grammar is given in section 3.

Figure 2.0 shows the syntax of GO in a BNF-like lang-
uage. Non-terminals are defined by single symbols on
the left of '=', terminals are quoted by single
quotes '‘'. Alternate productions are separated by
*1' and concatenation is denoted by juxtaposition of
rules. Parentheses are used to alter the normal
precedence. The first non-terminal is the start
symbol. This notation will be used throughout the
paper and a full grammar for it given in a Tater sec-
tion.

S U
|&|] I'II)

SS
(NN (|&| 1 ' 1

] IIII'I |‘|)

wr ——]

Figure 2.0: GO in BNF-Tike notation

Session 15-4-1

292 3rd USA-JAPAN Computer Conference, 1978

Remaining (G,R,I) =

1 CASE first (R) OF
181 "8 '.' : Remaining (G,G,I)
iy '&' : Remaining (G, Sk1p(re t(R)),
3 Remaining(G,rest(R),I))
: 1" ¢ IF Test(G,rest(R),I)
& IIH' THEN
1 "8 Remaining(G,rest(R),I)
ELSE
1" . .
1 ne Remaining(G,Skip(rest(R)),I)
0 e rest(l)
) END CASE
Figure 2.1: GO in GO END Remaining
Skip (R) =
CASE first ER; OF
".' : rest (R
3. MO: AN INTERPRETER FOR GO ‘&' Skip(Skip(rest(R)))
A machine which will directly execute GO can be de- .1. : Sk12ESk1EEE§§t(R)))
fined by several simple, mutually recursive func- END éAEES res
tions. In order to define these functions several END Skip

primitive string operators are required. The func-

tionality and function of each is described: Figure 3.0: Machine MO, executes GO

first: STRING -> STRING
first { S) results in the left-most charac-

ter of 5. 4. 61: A SELF-TRANSLATING TRANSLATOR
rest: STRING -> STRING
. . . In order to perform translations it is necessary to
g:?Ztéds) results in S with first (S) augment GO with emitters. This is done with the
’ emit operator, ('>'). This operator functions much
. _ like the Titeral operator, except that it outputs
equal: 225;?G(XS?T§£N§ i; ?gSEE?¥ and only if S the character which follows it. The emit operator

and S2 are identical. is always true.

Machine is a BOOLEAN function. Machine (Grammar, 5
Input) is TRUE if and only if Input is in the

language defined by Grammar. The following func-

tions define Machine:

(‘&' 1) SS
(IIII |

1
1 I>l)(‘I]I&I]I'Il'll>l)

Figure 4.0: G1 in BNF-like notation

Machine (G,I) = 1a0"
IF Test EG,G,I) AND()) >'
equal(Remaining (G,G,I), NULL ’ "
THEN Talere
TRUE & i1
ELSE 1
FALSE 8 .
END Machine :

Test (6,R,I) = 148
CASE first (R) OF g "
"' ¢ Test (G,G,1) >3
‘&' : IF Test (G,rest(G),I) 18"

THEN :
Test (G,Skip(rest (R)), 18 g
Remaining(G,rest(R),I)) &
ELSE 18
FALSE]
'‘1' : IF Test (G,rest(R),I) 1 g
THEN
TRUE g
ELSE
Test (G,Skip(rest(R}),I) i
END éAEE“a1 (first(rest(R)), f1rst(I)) Figure 4.1: G1 to Gl in Gl

END Test

Session 15-4-2

3rd USA-JAPAN Computer Conference, 1978 293

5. Mi: A TRANSLATION MACHINE

To execute G1 we must not only determine if the input
string is in the language, but what output should be
generated if it is. A new function Emit (G, R, I)

is needed. Emit (Grammar, Grammar, Input) is return-
ed if Machine (Grammar, Input) is true. Remaining,
Test, and Skip need a case added for ' '. A new
string function is needed to assemble the output:

concat: STRING X STRING ->STRING
concat (S1,52) appends S2 to S1;
S = concat (first (S), rest (S))

To save space only the new function Emit is shown in
figure 5.0. The other functions are modified in
a way analogous to section 7.

Emit (G,R,I) =
CASE first(R) OF
'&' : concat(Emit(G,rest(R),I),
Emit(G,Skip(rest(R)),
Remaining(G,rest(R),1)))
"1' ¢ If Test (G,rest(R),I)
THEN
Emit (G,rest(R),I)
ELSE
Emit (
‘st first{rest(R
"o NULL
END CASE

END EMIT

?SSkip(rest(R»,I)

Figure 5.0: M1 Emit function
6. G2: BELLS AND WHISTLES

In order to specify languages in a production system
format we will need the ability to label productions.
A new operator (':') is introduced. This operator
is a unary prefix operator and is true if the rule
labeled by the character which follows it is true.

It essentially is a subroutine call.

This capability makes possible a BNF-like notation
to G2 translator expressed in itself. Output string
are delimited by brackets ('{','}'). One such
translator is shown in figure 6.1.

G=LRG
1TLR

R= (|:|] s ‘l |>|) L
1 (' 1'1T")RR

L="A"1"'B"1 ‘c''1'D' 1 O'E'] 'F!
1'6' 1 H' 1 'T 1 J' 1 'K et
1 'M' 1 'N'] 0''1 'P'] IQI 1 'R’
1°'Ss* 1 'T" 1 W'V "W 'd
] IYI] IZ|
1 '=' 1 I;I 1 I(l 1 I)I 1 "1 1 '8!
I ERE S DL DR I{I

Figure 6.0: G2 grammar expressed in
BNF-1ike notation

R=1L"'=*A"3;'R
‘llelAl,l

A={:3C"'1"A
1¢C

C=1{}I1"'"'C
11

Izlll(lll{lll}'ls)lll
P01 B 3))
-I I(I A |)|
1 {:} L

S={&"F (L1 Y {31)Ss
T{"P (LT Y 0y

0=1{& (LY ¢'y)0
T {>} (L1 " {"}

L="'A" {A} 1 'B' {B} 1 'C" {C}
1 'D' (D} 1.'E' {E} 1 'F' {F}
1 'G' {G} 1 'H' {H} 1 'I' {I}
7030 {dF 1K' KP1T 'Lt (L}
7 'M' {M} 1 'N' {N}1'0' {0}
7P (P} 1'Q" {Q} 1 'R' {R}
1'ST {ST 1 'T (Ty 1 'U* {U}
T WU OVE T W OWT 1T UK (XD
7YY LYY (T
1= {=} 1 "y (LG
TS0 0 e (&)
RS IR ER I BN
T

Figure 6.1: BNF-1ike notation to G2 trans-
lator in BNF-1ike notation

7. M2: AN INTERPRETER FOR G2

The interpreter for G2 is very similar to the in-
terpreter for GO and G1. Besides inciuding the
additional operator ':' in each of the case state-
ments, a simple function Find is needed to locate
the start of a named rule.

Machine (G,1) =
IF Test (G,rest(G),I) AND
equal (Remaining(G,rest{G),I1),NULL)
THEN
(TRUE,Emit (G,rest(G),I)
ELSE
(FALSE ,NULL)
END Machine

Test (G,R,I) =
CASE first (R) OF
':' s Test (G,Find(G,rest(R)),I)
‘&' : IF Test (G,rest(R),I)
THEN
Test (G,Skip(rest(R))
Remaining(G,rest(R),I

)

Session 15-4-3

294 3rd USA-JAPAN Computer Conference, 1978

'1' ¢ IF Test (G,rest(R),I)

THEN
TRUE
ELSE
Test (G,Skip{rest(R)),I)
'>' ¢ TRUE
"o equal (first{rest(R)),first(I))
END CASE
END Test

Remaining (G,R,I) =
CASE first(R) OF
":' : Remaining (G,Find(G,rest(R)),I)
'&' : Remaining (G,Skip{rest(R)),
Remaining(G,rest(R),I))
"1' : IF Test(G,rest(R),I)
THEN
Remaining(G,rest(R),I)
ELSE
Remaining(G,Skip(rest(R)),I)
|>| : I
M rest(I)
END CASE
END remaining

Emit (G,R,I) =

CASE first(R) OF

"' ¢ Emit (G,Find(G,rest(R)),I)
" Concat(Emit(G,rest(?),I),

Emit(G,Skip(rest(R)),Remaining
(G,rest(R),1)))
"1'" : IF Test (G,rest(R),I)
THEN
Emit (G,rest(R),I)
ELSE
Emit (G,Skip(rest(R)),I)
'>' 1 first(rest(R))
"' NULL
END CASE
END Emit
Skip (R} =
CASE first (R) OF
: rest(rest(R))
'&' : Skip(Skip(rest(R)))
"1' ¢ Skip(Skip(rest(R)))
'>' ¢ rest(rest(R))
"' rest{rest(R))
END CASE
End Skip
Find (G,R) =
IF equal (first(G),first(R))
THEN
rest(G)
ELSE
Find (Skip(rest(G)),R)
END Find

Figure 7.0: Machine M2 executes G2
8. LIMITATIONS

These Tanguages have several significant 1imita-
tions. The object code, while adequate for expres-
sing many interesting languages is nearly 1mposs1—
ble for a human reader to comprehend. Al1 versions
of the language are sensitive to the ordering of
the productions. It is difficult to verify that
the ordering is completely correct. The type of
translations that can be produced are 1imited to

those which do not require radical restructuring of
the source code.

CONCLUSIONS

A class of grammars has been defined for which a
translator can be concisely stated and simply im-
plemented. This class of grammars is sufficiently
powerful to allow the definition of more expressive
languages.

Fay (2) has demonstrated that a direct implementa-
tion of the interpreter executes painfully slow. He
provides an example of a similar implementation that
is easily implemented and has reasonable execution
characteristics.

Techniques to facilitate the creation of powerful
problem oriented languages will continue to be in-
vestigated. Limiting the problem to finding the
smallest useful yet implementable system has provid-
ed several important insights, as well as a possibly
fertile seed for evolving more sophisticated trans-
lation systems.

AKNOWLEDGMENT

The ideas summarized in this report originated in a
research group consisting of Bill McKeeman, Jim
Horning, Dan Ross and Bill Fitler. Many UCSC facul-
ty and staff provided helpful insights and sugges-
tions. In particular the author would 1ike to thank
Frank DeRemer, Frank Frazier and Michael Fay. In
addition the author is indebted to Bill McKeeman;
without whom this paper would not have been started,
let alone completed.

REFERENCES

{1} Chomsky. floam, Syntactic Structures, Mouton and
Co., The Hague, The Netherlands (1957).

{2} Fay, Michael, Bootstrapping a Small Translator
Writing System, UCSC technical report 77-3-002,
University of California at Santa Cruz, March
1977.

{3} Hopcroft, J. E., and Ullman, J. D., Formal
Languages and Their Relation to Automata, Addi-
son-WesTley, Reading, Mass. (1969).

{4} McKeeman, W. M., Private Communication, (1976).

{5} Michels, Dougtas, A Concise Extensible Meta-
language for Translator Implementation, UCSC
technical report 78-4-001, University of Cali-
fornia at Santa Cruz, July 1976.

{6} Naur, P. (ed.) et al., Report on the Algorith-
mic Language ALGOL 60 Comm ACM, 3:5, 1960
299-314

Session 15-4-4

