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Abstract. This paper presents a local feature vector based method for
automated Multiple Sclerosis (MS) lesion segmentation of multi spec-
tral MRI data. Twenty datasets from MS patients with FLAIR, T1,T2,
MD and FA data with expert annotations are available as training set
from the MICCAI 2008 challenge on MS, and 24 test datasets. Our lo-
cal feature vector method contains neighbourhood voxel intensities, his-
togram and MS probability atlas information. Principal Component Anal-
ysis(PCA) [8] with log-likelihood ratio is used to classify each vorel. MRI
suffers from intensity inhomogenities. We try to correct this ”bias field”
with 8 methods: a genetic algorithm, edge preserving filtering and atlas
based correction. A large observer variability exist between expert classifi-
cations, but the similarity scores between model and expert classifications
are often lower. Our model gives the best classification results with raw
data, because bias correction gives artifacts at the edges and flatten large
MS lesions.

Key words: Multiple Sclerosis, Lesions, PCA, MR, Bias Field, Non-
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1 Introduction

Multiple Sclerosis (MS) is thought to be a disease in which the patient immune
system damages the isolating layer of myelin around the nerve fibers. This nerve
damage is visible in Magnetic Resonance (MR) scans of the brain. For instance,
in MRI FLuid Attenuation Inversion Recovery (FLAIR) damage is visible as
small bright spots called lesions or plaques. In both clinical trials and every day
diagnostic use, the MR scans are manually read and marked by a human expert.
This manual segmentation is extremely time consuming because of the large
number of MR slices of each patient. Therefore, fully automated MS detection
methods are being developed which can classify large amounts of MR data, and
do not suffer from inter observer variability [12] [5] [7]. Currently automated
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classification results show less agreement with manually classified scans, than
there is between independent experts classifications.

Human experts have learned from a large number of scans to look in certain
regions of a MR scan for certain abnormalities based on local parameters such
as intensity, texture and size. In this paper we present an automated method for
MR lesion detection which takes a similar approach. Our model describes every
point in a scan by a feature vector, containing voxel intensities of 5 MR modali-
ties, neighbourhood histogram and information from a MS registered probability
atlas. A training data set consisting of 20 datasets with T1, T2, FLAIR MD
and FA scans with expert classified lesions data, and a test set of 24 datasets
without lesion data was provided by the Children’s Hospital Boston (CHB)and
University of North Carolina (UNC) as part of the MICCAI 2008 MS Lesion
Segmentation challenge. The training dataset is used in our model to learn the
difference between and correlations in the feature vectors from MS voxels and
non-MS voxels.

This paper is organized as follows. In the next section we introduce our
method, which uses a PCA model, feature vectors and atlas registration. Bias
field correction algorithms are described in the third section. The fourth section
describes our results, followed by the last section with our conclusions.

2 Method

Our method consist of three parts which are describe in seperate subsections
below. The first subsection is about Principal Component Analysis(PCA) [8],
which is the basis of our Model and used to find the correlations in feature
vectors of an MS and non-MS class. The second subsection describes the features
we used for our model. The third subsection describes an non-rigid registration
method for development of the MS probability atlas.

2.1 The PCA Model

Detection and quantization of MS in MR images can be seen as a two class
problem. A class of voxels which displays MS properties and class of voxels
which do not. Each voxel can be described by a local feature vector, containing
features such as voxel and neighbor voxel intensities. A training set of known MS
voxels and non-MS voxels can be used to construct the two classes. A distance
measure between the feature vector of a certain voxel and the class feature
means and variances can be used to classify a voxel as MS or non-MS. We used
the PCA classification method introduced in [10] as basis for our classification
algorithm. It consists of the following steps: Constructing a matrix L, with the
feature vectors x of MS voxels from training data, and a matrix G, from features
vectors X of non-MS voxels in the training data.
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The mean p is subtracted in order to center the feature vector matrices.
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PCA with singular value decomposition (SVD) is used to find the eigenvectors
Ug and eigenvalues A in the mean centered non-MS feature data Gy, .

Gm=UgZcVEvn (5)
AN =3%0 A=A, A (6)

After solving the SVD the 99% largest eigenvalues which describe the main
variance in the data are kept Ug and the smallest (1% ) are discarded. Then
the eigenvectors are multiplied with both the data sets, now the non-MS data is
orthogonal.

chal = UGTLm ’ Gpcal = UGTGm (7)

PCA is used to find the eigenvectors and values of the MS feature data, the 99%
largest eigenvalues which describe the main variance in the data are kept Uy,
and the 1% smallest are discarded.

Lpca1 = UL VL v (8)

Then the variance in the eigenvectors is normalized to one, and eigenvectors are
multiplied with both the data sets. Now the MS data is orthogonal.

U
Upn =~ )
diag(Xy)
cha2 = ULNTchal ) G"pca2 = ULNTGpcal (10)

PCA is used to find the eigenvectors and values in the non-MS feature data.
Then the eigenvectors are multiplied with both the data sets. Now both the
datasets have orthogonal features.

Gpeaz = UgaXq2Va2' v (11)

cha3 = UG2Tcha2 ) Gpca3 = UGZTGpca2 (12)
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All the PCA rotations can be merged to one rotation matrix Uyt , and after
calculating the covariance matrix Cqg,.., from the Gpcaz data the model is
finished and can be used to classify test data.

Uiot = UgULnUg: (13)

The Mahalanobis distance is used to calculate the distance of the feature vector
of a certain test voxel on coordinates x,y,z to both the MS and non-MS classes.
A threshold is applied to the log-Likelihood ratio /I(u7 v) of the distances to get
the binary MS classification.

u=Uot' (x—pa), v="Ust (x— p) (14)

1 _ _
A (2,y,2) = 50 Cqpeus 0= [[VI[*) +1n(|Cpens 1) (15)
MS(z,y,2) = Az, y,2) >t (16)

2.2 Features

The feature vector used to classify each voxel contains MR neighbourhood inten-
sities because they will describe the texture of the MS area. The derivatives of
the voxel intensities are added to the feature vector because MS lesions are often
lines or blobs in the image. The histogram information is added to provide the
model with low pass intensity information of a certain region. To exclude false
MS voxel detection in areas were MS is less probable, the location and distance
to the brain center, and the MS atlas probability of a voxel are used as features.
The table below shows the whole feature vector.

Table 1. Feature Vector

Number  Feature Description

165 Intensities of 33 voxel neighbourhood of T1, T2, FLAIR, MD and FA.

30 Intensities derivates of T1, T2, FLAIR, MD and FA in the xyz directions.

19 Local 19 bins histogram of 20220220 voxel area of the FLAIR dataset.

6 From the T1, T2 and FLAIR dataset the location and height of the highest
peak in a local 30 bin histogram.

3 Normalized location in xyz coordinates of the voxel.

1 Distance to approximate center of brain

1 Atlas based MS probability of the voxel

225 (total)

2.3 Non-Rigid Atlas Registration

Our method uses a MS atlas as feature vector. This atlas is constructed from the
expert annotated lesions in the training data. First the widely used NMI T1 atlas
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from SPM [4] is affinely fitted (rotation, translation and resize) to all T1 training
datasets. Next a non-rigid B-spline based algorithm and white matter atlas is
used to get a better alignment in the white matter area. The inverse transform of
the atlas registration is used to align the expert annotated lesion datasets of all
patients, which are used to generate a MS probability atlas. This MS probability
atlas is Gaussian smoothed, to ”compensate” for the small number of datasets
used.

The rigid alignment of the T1 atlas with the T'1 patient datasets is based on
a nonlinear least-squares optimizer from Matlab. This algorithm is a subspace
trust-region method and is based on the interior-reflective Newton method de-
scribed in [3] and [2]. Our system input variables are 3D rotation, size and
translation. The error solved is the squared distance between the intensities of
the voxels in the affine transformed atlas and the voxels on the same location in
the patient T1 data.

The non-rigid alignment with the white matter probability atlas is based on
the method introduced by Ruecker et al. [9]. This method is based on a Free
Form Deformation (FFD) with a B-spline grid, and error calculation is done with
normalized mutual information. To define a spline based FFD, we denote the
domain of the image volume as 2 = (z,4,2)[0 <2< X,0<y<Y,0<z< Z.
Let @ denote a n, x ny, x n, mesh of control points ¢; ; with uniform spacing
ds,d, and d,. Then, the FFD with transformation T can be written as the 3-D
tensor product of the familiar 1D cubic B-splines

3 3 3
T = ZZZ B, (w)®(i+ 1,7 +m,k +n) (17)

=0 m=0n

where
i=lz/n.] -1, j=1y/ny] -1, k=|z/n.] -1 (18)

u=a/dy —|2/d:] ; v=y/dy = ly/dy] , w=2z/d.—|z/d:|  (19)

Note: equation 19 is our corrected version of the equation in the paper of Ruecker
et al. [9] which stated that u = x/n, — [x/ny].

B, represents the Ith basis function of the B-spline
(20)

The alignment of the transformed atlas A(®) to the T1 dataset B with a certain
control grid @, can be described by the normalized mutual information C(®),
which can be written as an error measure E(®).

H(A(®)) + H(B)
H(A(®),B)

C(®) = , E(®) =2 - C(®) (21)
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The iterative alignment is done with a steepest gradient decent of the error
function E. The gradient of a certain control point ®(7) is calculated by moving
a control point a A step up, down, right, left, forwards and backwards, and
calculation of the error € in the affected area for all those 6 atlas transformations,
after which the gradient VE(® (7)) on the point is known.

P(t+1)= <I>(t)+u||§g|| (22)
 OE(®)
VE=—¢ (23)

Our final implementation of this algorithm contains control mesh refinement and

other improvements, and is available as ”"Matlab C-code” on Mathworks.com !.

3 Bias Field Correction

MR scans suffer from slowly varying intensity inhomogeneities which is called
”the Bias Field”. This low frequency artifact is caused by imperfections in the
RF coils, inhomogenities in the magnetic field and some problems associated
with the acquisition sequences. Our PCA method will also be influenced by the
bias field, because the varying intensity influences the linear correlation between
the used features. Therefore we will test different bias field correction methods: a
genetic algorithm, atlas based correction, edge preserving filtering and histogram
correction.

3.1 Genetic Bias Field Correction

The Genetic bias field method introduced here can be used to correct MR modal-
ities with a single histogram peak, such as FLAIR, FA and MD. The RF inho-
mogenities will broaden the histogram peaks. This characteristic will be used to
correct the datasets. As basis of this method, a genetic algorithm was used to
select, cross and mutate a pool of intensity correction models. The bias field is
slowly varying in a single slice and can be described by a small intensity grid with
size 929. Initially, a pool of 100 random grids is generated with values between
0.5 and 2. With every iteration, a three model tournament system [1] is used to
randomly select, cross and mutate the population in the pool. In a tournament
system, a fixed number of models are randomly selected from the population.
The ones with the lowest fitness score are deleted and replaced by crossing and
mutating the remaining models. Those models are then returned to the pool and
the process is repeated.

To determine the fitness of a model, this grid model is resized with bicubic
interpolation to fit a MRI slice. This matrix is then multiplied with this slice
to apply the correction. The fitness ¢ of this corrected slice is calculated with
the following function. Note that h represents the histogram of the slice and

b url: http://www.mathworks.com/matlabcentral /fileexchange/loadFile.do?object1d=20057
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that the highest (256) and lowest bin (1) are ignored to prevent the model from
converging on an all black or all white solution.

255

t= Z h(i)? (24)

The final population of 100 models is used to correct every slice of the data by
processing every slice and applying the model with the highest fitness for that
slice.

3.2 Atlas Based Correction

Atlas based bias field correction can be done in two ways. The first method is
to non-rigidly fit a T1 or T2 atlas to a T1 respectively T2 patient scan, and
improve the low-pass correspondence between the patient scan and atlas. The
second method is to fit a white, gray and CSF probability atlas to the patient
scan, and combine intensity based probabilities with the probabilities from the
atlas to determine the bias field.

Our method is based on the probabilities atlases. First step of our method is
to non-rigidly fit the white, gray and CSF probability atlases. Second step is to
calculate a weighted histogram for each tissue type. The equation below is used
looping through all voxel locations x,y,z.

H(|I(x)Npins]) = H(|I(z, ¥, 2) Npins |) + Pwnite(x,y,2) , with I €[0,1] (25)

Third step is to calculate the white, gray, CSF and background intensity
probabilities by simply dividing each histogram by the sum of all bins. Fourth
step is combining the atlas P, and intensity P; probabilities for each class.

P(xvyaz) = Pa(x,y,z)Pi(I(m‘,y,z)) (26)

Fifth step is take only voxels with high probability for a certain matter (1%),
and calculate the bias field on this pixels by dividing through the mean intensity
of the class.

Ibias(Z, U, 2) = Lwnite (%, Y, £)/ fhwhite (27)

This sparse bias field is interpolated with Delaunay triangulation interpola-
tion to fit the whole volume. Last step is dividing by the bias field to correct it,
after which the total method is repeated a couple of times.

3.3 Edge Preserving Filtering

The most straightforward method to correct the slowly varying bias field, is to
low pass filter the MR scans, and divide the MR, scan by the low pass filtered
scan. Simple Gaussian filtering will filter over region edges which causes under
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and over compensation of the bias field. A filter which smooth regions while
preserving the edges is diffusion filtering. We use gradient anisotropic diffusion
filtering (FGAD) which is available in ITK [6]. In this implementation the con-
ductance term C(z) is chosen as a function of the intensity gradient magnitude
[[VI(x)|| reducing the strength of diffusion at edge pixels. We set the conduc-
tance constant k to 3.

_(I\Vllsm)H )2

Clz)y=e "% (28)

4 Results

We have split our training set with expert annotations in two groups, 5 datasets
from UNC (1,3,5,7 and 9) are used as test set and the other 15 datasets with
annotations of a CHB expert are used as training set. The training sets and
test sets are compared, and because there are large differences in appearance,
only the 6 datasets with the closest features are used to train the model for a
certain test set. The Sgrensen [11] similarity index of pixel overlap is used to
compare the annotations of the CHB expert with the annotations from a UNC
expert, with raw data and bias corrected data classification results from our
model. The threshold values for binary model segmentations from the obtained
likelihood segmentations are values chosen for maximal pixel overlap with the
CHB expert.

The classification similarity scores are shown in figure 1. The similarity be-
tween the CHB expert and UNC expert is higher than our model classifications
on datasets 1,3,5 and 7, but also shows high observer variability. Our model
classification with raw data scored 3.7 times better than the expert on dataset
9. The reason that bias corrected data scored often lower than raw MR data, is
probably due to artifacts at the edges and large lesion areas which are intensity
flattened. In FLAIR data MS shows as bright spots but also those bias correc-
tion edge artifacts, see figure 2. Figure 2 also shows a typical classification result
with RAW data, which seems to match the bright spots in FLAIR.

The results for the test data are shown in tables 2,3 and 4. Note that the
STAPLE results are discarded with regards to the overall score. The results show
that our method scores about the same on the UNC and CHB rated data. Only
the volume difference is slightly better with the CHB rater. It is also noteworthy
that the scores vary by a large amount. With some cases the score is higher than
the human expert (e.g. CHB case 03), but with others it is very poor (e.g. CHB
case 01). It is also obvious that in some cases the gap between the CHB and the
UNC rater is quite large. For example, the score for the volume difference for
UNC case 02 is 0 with the UNC rater and 95 with the CHB rater. In general, the
scores show that the number of true and false positives is not yet good enough.
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Fig. 1. Similarity between model results and CHB expert annotations

Flair RAW Flair Bias Corrected Model Result (RAW)

Fig. 2. Raw FLAIR data, FGAD bias corrected FLAIR and classification result. Bright
artifacts visible at the image edges after filtering and large MS areas less bright. Clas-
sification result using raw data and threshold value of zero.
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Table 2. Results part 1

Ground Truth

UNC rater

All Datasets |Volume Diff. [%]|Score|Avg. Dist [mm]|Score| True Pos. [%]|Score|False Pos. [%]|Score
UNCtest1Case01 178.9| 74 6.4| 87 32.6| 70 92.4| 53
UNCtest1Case02 908.2| 0 6.5 87 64.7| 88 95.4| 52
UNCtest1Case03 103.1| 85 7.0] 86 16.9| 61 85.3| 58
UNCtest1Case04 149.7 78 15.3| 68 44.71 77 85.8| 57
UNCtest1Case05 359.0| 47 5.8 88 59.5| 85 96.1| 51
UNCtest1Case06 55.4] 92 7.2| 85 41.41 75 92.9| 53
UNCtest1Case07 212.9| 69 6.5| 87 27.9| 67 92.5| 53
UNCtest1Case08 247.9| 64 7.4] 85 3401 71 82.5| 59
UNCtest1Case09 573.6| 16 38.3| 21 0.0] 51 100.0| 49
UNCtest1CaselO 237.4| 65 18.5| 62 15.0| 60 96.9| 51
CHBtest1Case01 1768.8] 0 14.6| 70 40.0] 74 98.7| 50
CHBtest1Case02 615.9| 10 10.9| 78 50.0| 80 97.5| 50
CHBtest1Case03 24.9| 96 7.7 84 35.7| 72 93.2| 53
CHBtest1Case04 282.3| 59 10.2| 79 72.7| 93 95.7| 51
CHBtest1Case05 2519.2| 0O 9.8| 80 51.9| 81 98.8| 49
CHBtest1Case06 59.8| 91 4.4| 91 66.7| 89 89.0| 55
CHBtest1Case07 401.5| 41 7.4] 85 31.7| 69 94.3| 52
CHBtest1Case08 371.4| 46 59| 88 74.1| 94 92.0| 54
CHBtest1Case09 159.2| 77 4.71 90 28.9| 68 67.2| 69
CHBtest1Casel0 773.3] 0 10.4| 79 47.41 78 97.6| 50
CHBtest1Casell 7272 0 11.1 77 36.4| 72 96.5| 51
CHBtest1Casel2 20.4| 97 4.2 91 18.1| 62 74.5| 64
CHBtest1Casel3 465.6| 32 14.5| 70 60.0| 86 91.5| 54
CHBtest1Caselb 35.6] 95 5.0] 90 32.9| 70 84.0| 58

All Average 469.6| 51 10.0| 79 41.01 75 91.3| 54

All UNC 302.6| 59 11.9| 75 33.7| 71 92.0| 54
All CHB 588.8| 46 8.6 82 46.2] 78 90.8| 54
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Table 3. Results part 2
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Ground Truth CHB rater
All Datasets |Volume Diff. [%]|Score|Avg. Dist [mm]|Score| True Pos. [%]|Score|False Pos. [%]|Score

UNCtest1Case01 307.8| 55 8.9| 82 34.4| 71 94.1| 52
UNCtest1Case02 33.1] 95 2.0 96 52.3| 81 80.3| 61
UNCtest1Case03 162.5| 76 6.8| 86 19.9| 63 85.0 58
UNCtest1Case04 287.5| 58 18.3| 62 59.3| 85 89.0| 55
UNCtest1Case05 937.0 0 8.2| 83 78.3| 96 97.7| 50
UNCtest1Case06 99.2] 85 16.6| 66 62.5 87 96.6| 51
UNCtest1Case07 626.0] 8 8.6 82 40.0] 74 93.3| 53
UNCtest1Case08 468.6| 31 9.2| 81 66.7| 89 80.7| 61
UNCtest1Case09 850.3| 0 45.8| 6 0.0| 51 100.0| 49
UNCtest1CaselO 1119.7 O 23.5| 52 33.3| 70 97.4| 50
CHBtest1Case01 2595.8| 0 19.5| 60 61.3| 86 99.2| 49
CHBtest1Case02 205.1| 70 5.6| 88 52.6| 81 93.0| 53
CHBtest1Case03 39.6| 94 6.9| 86 40.0] 74 88.3| 56
CHBtest1Case04 83.9] 88 5.2| 89 61.1] 86 91.4| 54
CHBtest1Case05 396.8| 42 3.2 93 65.2] 89 93.2| 53
CHBtest1Case06 66.9| 90 4.5| 91 40.9| 75 93.2| 53
CHBtest1Case07 205.1| 70 2.7| 95 28.9] 68 89.5| 55
CHBtest1Case08 215.5| 68 4.5 91 61.8| 87 93.5| 53
CHBtest1Case09 118.6| 83 3.3 93 22.2| 64 62.5| 72
CHBtest1Casel0 327.0| 52 3.7 92 48.3] 79 90.0| 55
CHBtest1Casell 167.5| 75 6.1 87 34.5| 71 89.1| 55
CHBtest1Casel2 20.8| 97 4.1 92 17.9| 62 72.3| 66
CHBtest1Casel3 246.6| 64 4.9 90 38.1 73 86.6| 57
CHBtest1Caselb 78.8| 88 5.4| 89 29.8| 68 85.0 58
All Average 402.5| 58 9.5| 80 43.71 76 89.2| 55
All UNC 489.2] 41 14.8| 70 44.7) 77 91.4| 54

All CHB 340.6| 70 5.7| 88 43.0] 76 87.6| 56
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Table 4. Results part 3

Final Score STAPLE

All Datasets  |Total Score|Specificity |Sensitivity| PPV
UNC testl Case01 68 0.8822 0.4505 |0.1523
UNC testl Case02 70 0.7635 0.7344 0.3158
UNC testl Case03 72 0.8664 0.4108 |0.1451
UNC testl Case04 68 0.7793 0.3512 |0.1158
UNC testl Case0b 63 0.7805 0.5510 |0.0934
UNC testl Case06 74 0.9730 0.1715 |0.2918
UNC testl Case07 62 0.8157 0.1419 |0.0294
UNC testl Case08 68 0.8757 0.3792 |0.0803
UNC testl Case09 30 0.9362 0.3213 |0.1607
UNC testl CaselO 51 0.9389 0.3213 |0.1607
CHB test1 Case01 49 0.6243 0.7091 0.0455
CHB testl Case02 64 0.8284 0.5202 |0.1343
CHB testl Case03 7 0.9853 0.2813 |0.2298
CHB testl Case04 75 0.9581 0.6480 |0.4469
CHB testl Case05 61 0.7655 0.5986 0.1192
CHB testl Case06 79 0.9257 0.4546 |0.3023
CHB testl Case07 67 0.8238 0.6850 |0.2279
CHB testl Case08 72 0.8500 0.7620 0.2139
CHB testl Case09 7 0.8856 0.4703 |0.2268
CHB testl CaselO 61 0.8710 0.6355 |0.1943
CHB testl Casell 61 0.8657 0.6425 |0.2087
CHB testl Casel2 79 0.9515 0.4085 |0.4104
CHB testl Casel3 66 0.7631 0.7073 ]0.1517
CHB testl Caselb 77 0.8979 0.5156 |0.3628
All Average 66 0.8586 0.5039 |0.2009
All UNC 63 0.8611 0.4054 |0.1548

All CHB 69 0.8568 0.5742 |0.2339
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5 Conclusions

We have described a local feature vector based method for automated MS lesion
segmentation of multi spectral MR data. All the described bias correction meth-
ods causes artifacts at region edges, which is the main reasons that our model
performs better with RAW than bias corrected MR data. The two expert MS
classifications have large inter-observer variability with similarities scores in the
neighbourhood of 0.20. On most of the data sets, our model has a significant lower
similarity with a expert classification than the classification similarity between
experts. Future improvements in this model can be made by research for better
local features and using separate PCA reductions for MS and non-MS data. A
larger training set may also help to improve our method. Main conclusion, our
method does it’s intended job but needs improving before it can compete with
a human expert. Also, be careful with enabling or using bias correction on MR
data. The resulting artifacts can give falls MS positives/negatives.
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