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Abstract

A common problem in radar, ultrasound, acoustics and other fields is that of
determining the delay between two signals. In many situations, it is possible to
determine the delay of a sampled signal to an accuracy better than the sample period.
This paper presents a comparison of a number of correlation-based methods of
estimating this subsample delay, with special attention to the case of periodic signals.
The authors also suggest two new methods, which perform better than previous
methods in some situations.

Introduction

A common problem in radar [1], medical imaging [2–5], seismology [6] and acoustic
signal processing (among others) is determining the time delay between two signals .
For example, this may be the delay between a signal’s broadcast and the reception of its
echo (radar) or the time of flight for an acoustic signal across a measurement area
(acoustic tomography) [7].

In the simplest case, the delay can be estimated by finding the peak of the cross
correlation between the two signals. In a discrete time (sampled) signal, the best
resolution one can achieve for the delay using this method is equal to the sampling
period. However, it is often possible to improve the delay estimation resolution by
interpolating the cross correlation function between samples, using various
methods [5, 8]. This paper compares the accuracy and computation time for a number
of such subsample methods from the literature, as well as two improved methods.
Particular attention is paid to the case of periodic signals.

The block diagram of a typical delay estimation system is shown in Fig. 1. A
band-limited signal, u(t), passes through two paths to two sensors. On each path is a
filter, G0(s) and G1(s) (although they are often the same), including the dynamics of
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the sensors as well as the plant (e.g. the atmosphere in an acoustic problem). One path
includes a pure time delay, td, which is assumed to be constant. Noise is added to each
signal (here, we assume it is added after the filter). A sampling process returns the
sampled discrete measurements, x0(k) and x1(k). It is assumed that the sampling rate,
fs, is greater than twice the maximum frequency of any signal component to avoid
aliasing.

The problem is then to estimate td, given a set of measurements of x0(k) and x1(k).
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Figure 1. System block diagram, showing common source signal, filters,
pure time delay, additive noise, and a sampling process.

Often the first step is to calculate the cross correlation of the measurements. For a
periodic signal u(t) with a period of Np samples, the periodic discrete cross correlation
between the sampled and noisy signals x0(k) and x1(k) is

xc01(n) =

Np∑
k=1

x0(k)x1(k + n) (1)

where n is the lag. Circular convolution can be performed more efficiently using the
Fast Fourier Transform, especially for large Np:

XC01(n) = X0(n)X1(n)† (2)

where XC01, X0, and X1 are the Discrete Fourier Transforms (calculated using the Fast
Fourier Transform) of xc01, x0, and x1, and † denotes the complex conjugate.

Delay Estimation Methods

Three Point Interpolation Methods

Since, for sampled measurements, the discrete cross correlation is only calculated at
integer lags, it is necessary to interpolate the function in order to improve the
estimation accuracy. A common method is to fit a parabola to three points: the peak of
xc01 and its two neighbors [9, 10]. The peak of this parabola can then be found,
indicating a subsample estimate of the delay. If the peak of the cross correlation is at
xc01(k), the interpolated peak is at a delay of

t̂d = k +
xc01(k − 1)− xc01(k + 1)

2(xc01(k − 1)− 2xc01(k) + xc01(k + 1))
. (3)

Zhang [10] also presented the case for fitting a Gaussian curve to the three points
surrounding the cross correlation peak, using

x̂c01(t) = ae−b(t−c)
2

(4)
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which has a peak at a delay of

t̂d = k +
ln(xc01(k − 1))− ln(xc01(k + 1))

2(ln(xc01(k − 1))− 2ln(xc01(k)) + ln(xc01(k + 1)))
(5)

and is equivalent to fitting a parabola to the logarithm of the data.
A final method is to fit a cosine to the three points [11,12]:

x̂c01(t) = acos(ωt+ φ). (6)

The interpolated peak may be calculated using

ω = acos

(
xc01(k − 1) + xc01(k + 1)

2xc01(k)

)
(7)

φ = atan

(
xc01(k − 1)− xc01(k + 1)

2xc01(k)sin(ω)

)
(8)

t̂d = k − φ

ω
. (9)

Two Point Interpolation Method

Psarakis and Evangelidis [13] present a method of finding the subpixel peak of the
cross-correlation of two images. This method can be used to determine the subsample
delay between two signals with minimal modification. This method first normalizes the
signals and removes the mean:

x∗0 =
x0 − x̄0
‖x0 − x̄0‖2

(10)

x∗1 =
x1 − x̄1
‖x1 − x̄1‖2

(11)

where x̄ denotes the mean and ‖.‖2 denotes the Euclidean norm. The peak of the cross
correlation (xc∗01) of x∗0 and x∗1 is then found, as with the three-point method. This
point and the larger of its two neighboring values are assumed to bracket the subsample
peak on the interval between delays k − 1 and k.

If one assumes that the signals are interpolated linearly between samples, a
nonlinear equation for the cross correlation between peaks can be found, which has a
maximum given by the analytical equation

t̂d = k +
xc∗01(k − 1)− rxc∗01(k)

(r − 1)(xc∗01(k − 1) + xc∗01(k))
(12)

where r is autocorrelation of x∗0 at a delay of one sample:

r =

Np∑
k=1

x∗0(k)x∗0(k + 1). (13)

Phase Method

It is also possible to estimate the delay between the signals by taking advantage of the
fact that a delay in the time domain is equivalent to a phase shift in the Fourier domain
that is proportional to frequency [14]. As this linear phase shift can ’wrap’ around 2π
radians for large delays, which can make determining the slope difficult, this is
implemented by first finding the integer peak of the cross correlation and shifting x1 by
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this amount (i.e. aligning x1 and x0 to the nearest sample) and then using the phase to
identify the subsample portion of the delay.

After aligning the signals to the nearest sample, the empirical transfer function
estimate (ETFE) is calculated:

ETFE(ω) =
X1(ω)

X0(ω)
(14)

where ω is the angular frequency. One may then fit a line to the phase, φ, of the
complex ETFE as a function of angular frequency, ω, and the delay estimate may be
found from the slope:

t̂d = k − dφ

dω
(15)

where k is the integer shift.
In order to improve noise-rejection properties of the estimate, one may weight the

least squares estimate of the slope by the magnitude of the signal at each frequency (i.e.
|X1(ω)| or |X0(ω)|).

Improved Gaussian Method

One problem with the Gaussian method occurs if either of the points neighboring the
cross correlation peak (i.e. xc01(k − 1) or xc01(k + 1)) are negative. This will lead to
calculating the logarithm of a negative number, causing a spurious complex result.
While it is unlikely for this to occur with Zhang’s test signals, it is possible for signals
with large noise levels, or for signals with significant power above half the Nyquist
frequency. Thus, we suggest a modified version of this method, which keeps the
advantages of Zhang’s method, but is more robust to the situation of negative cross
correlations. This is achieved by adding a bias to the cross correlation before
interpolation if there are any negative values, to ensure all values are positive. The bias
is

β = −min(xc01(k − 1), xc01(k + 1)) + α (16)

where α is a parameter with a real, positive value. The estimate for the delay is then

t̂d = k +
ln(xc01(k − 1) + β)− ln(xc01(k + 1) + β)

2(ln(xc01(k − 1) + β)− 2ln(xc01(k) + β) + ln(xc01(k + 1) + β))
. (17)

It can be shown that when β=0, this algorithm is equivalent to Zhang’s, and as β
approaches infinity, the algorithm approaches the parabolic method. The optimal value
for α depends on the specific signal under study, but it is not difficult to pick a value
that outperforms Zhang’s original method in a wide range of situations, as shown in the
Results section.

Iterative Method

The three-point peak interpolation methods discussed in the previous sections rely on
the fact that the cross correlation function can be approximated by a parabola, cosine
or Gaussian curve. However, there will generally be some error in this approximation,
especially when the delay is not near the integer and half-integer values [10]. In some
situations, such as a very high signal to noise ratio, the error due to this
misapproximation may be greater than the uncertainty due to the noise. In these cases,
it may be advisable to attempt a more accurate subsample interpolation.

According to the Nyquist-Shannon Sampling Theorem [15], if a periodic signal is
band-limited to a frequency of less than the Nyquist frequency, then the discrete Fourier
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transform of the signal contains enough information to interpolate the signals exactly.
This also allows us to exactly calculate the cross-correlation function between integer
samples. If we have the Fourier coefficients for the cross correlation, XC (calculated
using equation 2), the continuous cross correlation function is

xc(t) = XC(0) +

N/2−2∑
n=1

2XC(n)e
2πi
Np

tn
. (18)

Notice that, if Np is even, we must discard the component at the Nyquist frequency
(which we earlier assumed to be zero).

The peak of this continuous equation for xc(t) is then found to estimate the delay:

t̂d = argmax(xc(t)). (19)

Unfortunately, no closed form solution exists, so numerical methods must be used to
find the maximum. Brent’s method with parabolic interpolation [16] works well,
generally converging to a tolerance of less than 1× 10−5 samples in less than nine
iterations. Although this method of improving the delay estimation seems
straight-forward, the authors are not aware of its existence in the literature, perhaps
due to the requirement of a high signal-to-noise ratio for it to be worthwhile.

Other Methods

Other methods were considered for this analysis, but were not included in this paper.
These include methods that solve the multiple-emitter problem (such as the MUSIC
algorithm and its offshoots [17]), methods specific to image processing (e.g. [19]) and
methods that track a moving signal (such as Derryberry and Dunham’s subpixel search
algorithm [18] or the adaptive least squares methods [20,21]). However, as these
methods are specifically designed to address certain problems that do not appear in this
analysis, they can not be expected to be competitive with the methods presented here.

Performance Comparison Method

Zhang performed an accuracy comparison of parabolic and Gaussian delay estimation
methods for a range of sample sizes and signal to noise ratios [10]. However, he only
considered the case of a filter, G(s) (equivalent to G0(s) = G1(s) in Fig. 1), that
resulted in an autocorrelation function of xc(t) = xc(0)0.95t which is approximately
equivalent to a first-order Butterworth filter with cutoff frequency of 0.0163 times the
Nyquist frequency. In this section we expand the comparison to include signals with
different frequency content, as well as compare the new methods presented above.
Additionally, computational benchmarks are presented to compare the computational
cost of the various methods.

The first test examines the effect of signal to noise ratio (SNR) as well as the
frequency content in the signal. An exactly white base signal was generated with a
sample length of 256. This signal was then filtered by a second-order lowpass digital
Butterworth filter with cutoff frequency fc (filtering was computed by convolution of
the signal with the filter’s impulse response, performed in the frequency domain). This
form of filter was selected, as it represents common physical systems, such as
spring-mass-damper or capacitor-inductor-resistor systems, but the results are not
particularly sensitive to the filter form or order. A delayed signal was then calculated by
applying a linear phase shift to the filtered signal in the Fourier domain. Uncorrelated
Gaussian white noise was then added to each signal. The delay between the filtered
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base signal and the delayed version was estimated using each of the methods discussed
above. This was performed for 20 linearly spaced delays between -0.50 and 0.45 samples.
At each point, 1000 repeats were performed with different randomly generated inputs
and noise signals. The root mean squared error (RMSE) across the range of delays and
for the 1000 repetitions was calculated. This was then repeated for all combinations of
100 linearly spaced signal to noise ratios between -5 and 25 dB and 100 filter cutoff
frequencies that were logarithmically spaced between 0.01 and 0.99 of the Nyquist
frequency, fn. The uncertainty in each mean over the repetitions was calculated for 95%
confidence.

The delay was estimated using algorithms for parabolic interpolation, Gaussian
interpolation, the modified Gaussian interpolation, cosine interpolation, the two-point
method, the linear phase method, and iterative interpolation. The tuning parameter, α
for the modified Gaussian method was set to 1.0 (this value was selected somewhat
arbitrarily, as a small positive value that ensured no negative logarithms). The iterative
method was performed for 20 iterations or a tolerance of 1× 10−5 samples, whichever
occurred first.

Results

The results of the test are shown in Figures 2 through 8. Fig. 2 shows the root mean
squared error, Ebest, for the best method for each combination of filter cutoff frequency
and SNR, averaged over the 1000 repetitions and 20 delay values. Figures 3 through 8
show the results for each method under discussion, as the ratio of the method’s RMS
error to the Ziv-Zakai lower bound, Ezzb. This bound is a theoretical lower bound for
the RMS error, taking into account the frequency content of the signal and noise, and
was calculated using Weiss and Weinstein’s method [22,23]. Also shown are confidence
interval contours. The black line demarcates the area where the method is better than
all others, with 95% confidence. The grey line marks where the method is as good as
the best method, within the same confidence interval.
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Figure 2. Effect of filter cutoff frequency and signal to noise ratio on delay
estimation accuracy. RMS delay estimation error of the best method tested is shown
by shading (on a logarithmic scale). The black lines show the area of the graph where
the labeled method has a better mean error than any other, with 95% confidence.
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Figure 3. RMS delay estimation error for a parabolic interpolation,
relative to the Ziv-Zakai lower bound. The grey lines show the area (toward the
centre of the plot) where this method may be as good as the best, with 95% confidence.
(There is no area of this figure where the parabolic interpolation method was
significantly better than all others.)
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Figure 4. RMS delay estimation error for a Gaussian interpolation,
relative to the Ziv-Zakai lower bound. The grey lines show the area where this
method may be as good as the best, with 95% confidence. (There is no area of this
figure where the Gaussian interpolation method was significantly better than all others.)
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Figure 5. RMS error for the modified Gaussian interpolation, relative to
the Ziv-Zakai lower bound. The grey lines show the area where this method may be
as good as the best, with 95% confidence. (There is no area of this figure where the
modified Gaussian interpolation method was significantly better than all others.)
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Figure 6. RMS error for the cosine interpolation, relative to the Ziv-Zakai
lower bound. The black line shows the small area of the graph where this method has
a better mean error than any other, with 95% confidence. The grey lines show the area
where this method may be as good as the best, with 95% confidence.
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Figure 7. RMS error for the phase-based estimation method, relative to
the Ziv-Zakai lower bound. The black lines show the areas of the graph where this
method has a better mean error than any other, with 95% confidence. The grey lines
show the areas where this method may be as good as the best, with 95% confidence.
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Figure 8. RMS error for the iterative estimation method, relative to the
Ziv-Zakai lower bound. The black lines show the area of the graph where this
method has a better mean error than any other, with 95% confidence. The grey lines
show the area where this method may be as good as the best, with 95% confidence.
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These results largely agree with Zhang’s [10] for the Gaussian method and the cases
he considered, although the additional results for higher cutoff frequencies show the
strength of the other methods. The linear phase method is the best method for
intermediate signal to noise ratios and low cutoff frequencies. The iterative method is
an improvement over other methods for high SNR and high cutoff frequencies, although
it is more sensitive to noise at lower cutoff frequencies. There are also small areas where
the cosine and 2-point interpolation methods prevail. Also notice the large band in the
middle of the plots where there is no significant difference between any of the
three-point interpolation methods.

These results can be partially explained by the nature of the assumptions involved in
each method. For high SNR and high frequency content the delay is less corrupted by
noise, so the error in the subsample interpolation function becomes significant, which is
most accurate for the iterative method. For signals with low frequency content, the
peak of the cross-correlation function is wider and less pronounced. If the peak is
considerably wider than two samples, the two- and three-point methods become
imprecise as they are attempting to locate the peak from a small area of a relatively flat
hill and are more easily corrupted by small errors. In contrast, the phase method is not
restricted to this small subset of points, so it tends to excel in this situation.

Fig. 9 shows a comparison of the original Gaussian method and the modified version.
The modified version is significantly better for cutoff frequencies above 0.6 time the
Nyquist frequency and signal to noise ratios greater than 1, while outside of this area,
there is no significant difference. The original method is not significantly better in any
part of this plot.
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Figure 9. Comparison of delay estimation errors for Zhang’s Gaussian
interpolation method and the modified method. The black line shows the
contour where the modified version’s RMS error is better than the original method with
95% confidence. Outside of this area, the two methods are indistinguishable with the
same confidence. There is no area on this plot where the original method is significantly
better.

The computational time to perform the above test was also recorded. The code used
is available as a supplement to this paper. It should be noted that, other than using the
FFT to calculate the cross correlation functions, these algorithms have not been
optimized and represent a naive implementation that should be able to be achieved by
any researcher without difficulty. The program was run on Matlab 2013a on a single
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core of Intel Core i7 4770 CPU at a clock speed of 3.40 GHz with 24 GB RAM. Table 1
shows the mean CPU time required to estimate one delay value for each method. The
cosine interpolation method is fastest by a small but statistically significant margin. It
is interesting to note that even though the modified Gaussian method includes the
additional step of adding a bias, it is faster than the original method, presumably
because the original method requires the logarithm to be calculated using a complex
algorithm, rather than scalar. The phase-based method takes slightly longer than the
cosine method, but may be worthwhile due to its better accuracy in many cases.

Perhaps the most surprising result is the iterative method. In this test, the algorithm
took an average of 8.63 iterations to reach a tolerance of 1× 10−5 samples (with a
standard deviation of 1.14 iterations), but the time required is only 4.5 times that of the
fastest method. The improved accuracy (especially with a high filter cutoff frequency)
may therefore not be as computationally expensive as one would have believed. It may
also be prudent for users to examine the performance of an algorithm with only two or
three iterations, as a compromise between accuracy and computation time.

Table 1. Mean calculation time for one delay estimation from two
256-point signals.

Method Mean Time (µs)

Parabola 125.581 +/- 0.001
Gaussian 120.547 +/- 0.001
Modified Gaussian 118.632 +/- 0.001
Cosine 118.476 +/- 0.001
Two Point 198.847 +/- 0.001
Phase 125.145 +/- 0.001
Iterative 529.862 +/- 0.006

Conclusion

This paper has presented a comparison of subsample delay estimation algorithms,
evaluated with a signal of varying frequency content and noise levels. It is apparent that
the best choice of delay estimation algorithm is quite problem specific; for medium noise
levels and low cutoff frequencies, the phase-based method was best; for low noise levels
and high cutoff frequencies, the iterative method was most appropriate; while for areas
in between, three-point peak interpolation schemes performed best. It should be noted,
however, that there are large overlaps where it was not possible to differentiate between
methods.

When computational speed is the prevailing factor, the three-point interpolation
methods were best, with the cosine algorithm being fastest. While the phase and
iterative methods were slower, it was somewhat surprising how little extra
computational time these algorithms cost, especially when their superior accuracy in
some situations is considered.

Two improved algorithms were also presented. A modified Gaussian interpolation
method was introduced, which, for the same or less calculation time, guarantees no
errors due to negative cross correlations (which can occur with large noise levels or a
signal with significant power above half the Nyquist frequency). An iterative method of
finding the peak of the cross correlation function was also presented, using Brent’s
method of optimization to find the peak of the continuous cross correlation function.
Although this method did require significantly more computational time, it was also
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significantly more accurate for situations with a SNR greater than approximately 5 dB
and the cutoff frequency greater than approximately half the Nyquist frequency.
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