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Abstract

In this project, we seek to minimize the gap-to-capacity
(given by Shannon’s theoretical limit) of a rate 1/3 code.
This is done via a convolutional encoder/decoder for vary-
ing memory elements as well for both soft and hard decod-
ing scheme. We show that the gap-to-capacity can be mini-
mized with respect to the suboptimal un-coded code word or
a (3,1) repetition code. Although better schemes are avail-
able such as LDPC and turbo codes, we have chosen the
convolutional code for its simplicity and generality. That is,
a generic framework can be readily developed for which
multiple convolutional schemes can be implemented with
minimal changes to the overall structure (see Appendix A
for MATLAB code). In this paper, we present the basic con-
cepts associated with convolution codes, specific encoding
and decoding schemes used in this project, and results com-
paring the gap-to-capacity of the algorithm implemented
with respect to Shannon’s optimal code.

1. Introduction

Given the code rate contraint of R = 1/3 for a binary-
input additive white gaussian noise (AWGN) channel, this
paper presents several convolutional encoder and decoders
of varying element sizes in effort to minimize the gap to ca-
pacity of a code with respect to the Shannon limit of any
R = 1/3 system. This can be seen in Figure 1, where
we have also plotted the bit-error rate of an un-coded word.
We begin by recalling the model for a binary-input AWGN
channel, which is given below as

rp=a;+mny (D

where a; € {—1, 1} is the [-th transmitted symbol, and 7;
is the I-th measured or received symbol corrupted by i.i.d
zero mean Gaussian noise n; with variance No/2. Although
it is a simple approximation, the AWGN channel presented
in Equation (1) has been a powerful instrument in modeling
real-life disturbances caused from ambient heat in the trans-
miiter/receiver hardware and propagation medium. For ex-
ample, many satellite channels and line-of-sight terrestrial
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Figure 1. A simulated BER (log scale) versus Ey/N, (in dB)
curve highlighting both the gap to capacity with respect to Shan-
non Limit curve of a 1/3 system as well as the coding gain with
regards to an un-coded code

channels can be accurately modeled as an AWGN channel.
In this work, we propose to use a 1/n, more specifically,
a 1/3 convolution encoder/decoder, to mitigate the distur-
bance resulting from such a channel. However, before do-
ing so, let us revisit some of classical coding techniques pre-
sented in this class, and motivate our reasoning for choosing
a convolutional code.

In classical coding theory, Hamming codes, Reed-Muller
codes, and Reed-Solomon codes have been popular choices
in implementing efficient and reliable coding schemes.
However, in this present work, these codes in a stand-
alone fashion can not be directly applied to the problem
at hand. For example, there exist no Hamming codes that
can produce a binary rate 1/3 code. Similarly, noting that
our code length is unconstrained with binary input/output,
Reed-Muller codes and Reed-Solomon codes are not well
suited. In other words, we seek a coding algorithm that
can perform with limited-power. However, if one were to
concatenate coding algorithms together (e.g., a (7,4) Ham-
ming Code with a (12,7) Reed-Solomon code), one could
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Figure 2. The general form a 1/n convolution encoder.

add flexibility given the constraints of the problem. To this
end, we propose to use only a 1/3 convolution code (al-
though one could use a 1/2 convolution code paired with a
(3,2) Reed-Solomon code). Lastly, we note that recent work
of LDPC code, turbo code, and repeat-accumulate code will
offer a better performance gain than the algorithm presented
here, but given the limited time of the project, the 1/3 con-
volution code was chosen.

The remainder of this paper is organized as follows: In
the next section, we begin with a review of convolution
codes detailing the 1/3 convolution encoder/decoder for a
given constraint length. Numerical implementation details
are given in Section 3. In Section 4, we present the Bit-Error
Rate (BER) rates of our convolution code, with respect to
Shannon’s limit and the un-coded word, for varying mem-
ory element sizes. Finally, we conclude with Section 5

2. Optimal 1/3 Convolution Codes

Binary linear convolution codes, like that of binary lin-
ear block codes are useful in the power-limited regime.
The general form of a 1/n convolution encoder is given
in Figure 2. Here, we see that the encoder is a LTI filter
with banks g;(D) that are both rational and causal. More-
over, the message m = [my,ma,...,my] of length L is
passed in bit-by-bit producing n code words cj. From
this, we can then form the encoded message as ¢y =
[el,c2, ..., et ed, oy 8, chy ...y €] Moreover, if one forms
the “Delay Transform” of an impulse response g; (D), the n-
th code word can then be formed as ¢} (D) = m(D)g;(D).
Together, all possible solutions of an message code forms
what is known as a convolution code. Although the formu-
lation of a convolution code assumes a message to be theo-
retically infinite (as well as the space of acceptable codes),
we define block codes of length L.

With this, an encoder can be viewed as a generator ma-
trix G(x) of a linear block code, and hence, multiple encod-
ing schemes can be designed to achieve a rate 1/3 system.
In addition, each encoding scheme can contain @ memory
elements, adding versatility to design of a particular convo-
lution code. To this end, we seek to implement an optimal
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Figure 3. The Optimal Rate 1/3 Convolution Encoder for K = 4.

convolution code of different i sizes. This is discussed next.

2.1. Encoding Scheme

Using the Table 11-4 presented in [2], we can choose
an optimal encoding scheme, dependent on the constraint
length K = 1 4+ p for a rate 1/3 convolution. For con-
venience, we recall three optimal filters with K = 4,6,8
given below.

’ K ‘ go g1 g2 ‘ dfree ‘
4 54 64 74 10
101100 110100 111100
6 47 53 75 13
100111 101011 111101
3 452 662 756 16
100101010 110110010 111101110

Table 1. Rate 1/3 convolution codes with minimum distance

Table 1 above shows the optimal filter design for each
code generator, where the response is given in octal and bi-
nary representation. With this, we can realize the actual
encoder via a circuit diagram. This is given in Figure 3 for
K = 4. Note, for the MATLAB implementation presented
in Appendix A, the use of the function conv.m is used to
do the encoding. After one encodes the message m into a
code word c, it is then passed through the channel model
given by Equation (1). We then need to be able to recover
or decode the code word corrupted by noise.

2.2. Decoding Scheme

We assume now that the code word has been passed
through the channel, and now we must decode the (pos-
sibly) corrupted message. One popular technique is the
Viterbi algorithm, in which one can map the possible so-
lutions to what is known as a trellis map. For the sake of




brevity, we refer the reader for information about how to
construct a trellis map [2]. However, we note that through
this map, the decoder is able to choose the maximum like-
lihood (ML) estimate by labeling the nodes with a value
denoting the partial branch metric. Then, we seek to find a
path with total minimum cost. That is, the decoding scheme
can re-expressed as

L+4p

min dy(r, ¢) = Z dy(r, ) 2

ceC
=0

It is important to note that we have yet to define the met-
ric dy(.,.) in Equation (2). Depending on the chosen met-
ric, one can produce a sub-optimal decoder by choosing the
metric to be the Hamming distance. In contrast, if one
chooses the L, norm, specifically the L, norm, one can
achieve an optimal soft-decoder. Lastly, we also refer the
reader to advancement of other chosen metrics that have
arisen in prediction theory and have found uses in fields
such as computer vision [ ]

2.2.1 Sub-optimal Decoder: Hard Decoding

As previously noted, the chosen partial branch metric,
dx(.,.), is crucial for the decoder. In particular, let us
denote 7, = [sgn(r}), sgn(r}), ..., sgn(rl)], where sgn(.)
outputs the sign of value. With our newly formed estimate
71, we can then define the partial branch metric using the
Hamming distance. This is given as

di(ri,e) = [{il#t # ¢l i=0,1,.., k}| (3)

Given that we first formed the estimate 7 by making “hard”
decisions of the received vector r, we denote this procedure
as hard decoding.

2.2.2 Optimal Decoder: Soft Decoding

One major drawback of making “hard” decisions in form-
ing the estimate 7, as seen in Section 2.2.1, is a loss of in-
formation of the received vector. Instead, if we deal with
the received vector r directly, we can then begin to form a
measure of similarity via the L, norm. That is, if define the
partial branch metric to be

k
du(rie) = (D rt—ciP)» 4)
=1

where p is chosen to be p = 2 or the Euclidean distance,
then onen arrives at the optimal soft decoding scheme using
the square of the Euclidean distance.

3. Implementation

We have used MATLAB to perform the convolution en-
coder/decoder algorithm presented in this report. More im-
portantly, we should note that because of the exponential in-
crease in complexity with regards to the number of memory
elements . used and unoptimized MATLAB code, a major
drawback is the computational speed. However, from pre-
vious experiences that involves a search based type of algo-
rithm, one could invoke a “kd-tree” to perform fast searches.

We also note the generality of the framework and refer
the reader to the documented version of the MATLAB code
used to implement the convolutional encoder/decoder. This
can be found at the end of this report. In particular, the code
is written for K = 4; however, one can easily change it
to incorporate encoders (e.g., i = 6 or K = 8). These
changes will be denoted by a red box.

4. Experiments

We test the robustness of the rate 1/3 convolution code
for memory element sizes of 1 = 3,5,7. Specifically,
we measure the coding efficiency of each respective con-
volution code over 10,000 trials and assume that our mes-
sage is of L = 100 bits. Moreover, this simulation is
done over several SNR levels. Although one would ide-
ally like to reach the theoretical coding gain given by Shan-
non’s limit, we deem the “success” of encoder/decoder if
it is able to achieve roughly 4 dB using a hard decoding
scheme. This base line can then be improved by substitut-
ing various branch metrics, such as the Ly norm. To this
end, we present simulation results of the algorithm for both
hard and soft decoding, and refer the reader to Appendix A
for information of how to switch between the two by trivial
changes to the MATLAB code.

We begin with K = 4 convolution code (see Figure 3).
In Figure 4a, we present the BER simulated over a series
trials along with the the Shannon’s theoretical limit and the
un-coded BPSK algorithm. Figure 4b, shows a zoomed in
plot of the value located on the simulated curve at BER =
10~*. The coding gain and gap to capacity at this BER level
are 2.242 dB and 6.951 dB, respectively. Using Table 1, we
see that the theoretical gain for a hard decoding scheme is
10 loglo(R*dQW") = 2.1285 dB, which falls near to what is
measured.

Similarly, Figure 4(c)-(d) and Figure 4(e)-(f) show the
convolution code results for X = 6 and K = 8. We again
find that the measured coding gain of each curves falls near
the expectations of its theoretical coding gains. That is, for
K = 6 we expect a gain of 3.358 dB, but measured a coding
gain of 2.93 dB. Likewise, for K = 8, we expect a gain of
4.23 dB, but measured a coding gain of 3.59 dB.

Finally, Figure 5 shows simulated results for the K = 8
convolution encoder using the soft decoding scheme dis-
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Figure 5. Soft Decoding Results for K = 4 and K = 6 Rate 1/3 Convolution Encoders. (a)-(b) Encoder (Soft Decoding) for K = 4. (c) -
(d) Encoder (Soft Decoding) for K = 6

cussed in this report. Interestingly, we only were able dpmin) = 7.27 dB. One particular problem that maybe at-
to measure a coding gain of 4.12 dB, which is far differ- tributed to such a disparity between the two values could be
ent from what is theoretically expected, i.e., 101og,y(R * the small message length of L = 100 or the short amount



of trials (T'rials = 10, 000) since each of these contribute
to the overall transmitted message bits. Nevertheless, we
do achieve a dB gain that is reasonable for objective of this
project.

5. Conclusion

In this report, we attempt to mitigate the gap to capac-
ity of Shannon’s theoretical limit for a rate 1/3 system. In
particular, given the generality and flexibility provided with
convolution codes, we present several varying convolution
encoders for several varying memory element sizes. Using
both soft and hard decoding, we then presented experimen-
tal results that for the most part fall within the expected the-
oretical gains.
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6. APPENDIX A: MATLAB CODE

Please See Figure 6 through Figure 10 for the detailed
MATLAB code. The red boxes highlight regions of code
that should be only altered in order to change the design of
the encoder (i.e., memory element size or a hard/soft decod-
ing scheme). Current implementation shown is for K = 4
with hard decoding.



1 % Main code for ECE6E0& project, Spring 2009, Georgia Tech
2 % Skeleton Uritten hy: Professor Barry

3 % Convolution Code hy: Romeil Sandhu

4

5 %Initialize 3immlation Parameters

- L =100; % message length

7- R=1/3; % code rate

8- dhs = -1:10; 5 ZNE per hit, in dB

9 - trials = 1es; 5 muber of trials to perforw
10 e

11

12 $Define Impulse response for the n generators for & 1/n code - here n=3
134 gitt=[101100]: 4
1o gizb=[110100]: 4

154 gidb = (111100 % Impluse Responses _ 3

16 4 n = lengthig): 4 Convolution Code [i/n) parsmeter
17  wemory els = 3;

18 | %--—-

Impulse Responzes _ 1
Impulse Responzes _ 2

20 %Initiamlize and compute Shannon Limit/Uncoded Efficiency
21 - errs = O%dbs;

22 - EBNO = 10.~(dbs/10);

1./8qet (2*RAERND) ;

logspace [-6,-2.1,81);

23 - sigs
24 - herd
25 - herl = logspace(-6,-0.99,81);

26 - b0 = 10%logl0((2.” (2*R* (1+1og2 | {ber0.*ber0)] . * (1-berd) . " (1-berD))))-1)/ (2*R)):
27 - bl 20 Logl0 (erfinv(1-2%herl));

28 - for trial = l:trials,

29

3= w = roundirandil, L)) ; % MESSage VeCtor

31

3z fommmmmmm ENCODER: 1/3 Convolution Encoder ------- 3

W= o = encode_1 3im,g,n);

34 5 5

35

36 sverify code rate!

= if trial==1,disp(['Measured B = ', nwedstr (length(m)/length(c))]) rend;
38 - noize = randn(l, lengthic));

39 - for i=1:lengthidbs),

40 - r=2% -1+ sigs(i] *noise;

41

42 %--- DECCDER: Convolution Decoder wia Trellis Map, NL estimate ---%
43 4--- flag = 1 ==» Hard Decoding

44 §--- flag = 0 ==» Joft Decoding

45 - [that, node] = deeode 1 30, n,memory els L, 1);

46 ki 5

47 - errsii) = errs{i) + swn|mhat~= mj;

48 - end

49

i0 5Plot Fimulated Result

5il|= her = erra/ (L*trial);

52 gemilogy dbs, ber,'o-', db0, ber0,':', dbi, berl,':'};

53 - hold off;

54 - xlabel{'SWR per bit, Eb /N O (dB]');

55 ylabel ['Bit-Errar Rate');

56 - axigi[-1 10 le-6 1])

g¢f= title(['ifter ',mmlstr(trial),' trials (',nmstr(L*trial),' msg bits)', ...

58 'owith Mew = ', numEsty fremory_els)]);

Figure 6. This is the main MATLAB script file that is used to simulate the binary AWGN Channel. To change different Rate 1/3 Convolution
Encoders with different memory elements or soft/hard decoding schemes, modify area inside red box



1 function [mwhat,nodese] = decode_1_ 3 (r,n.mem, kK, L1lsg)

a2 FFunction: This is the decoder for a generaliszed convolution sencoder.

3 £This f£ile is independent of the desired rate and mwemory =lements. It

£ Ffirst produces & trellis map where we hawve assigned node states (prewvious
5 Fand forward) as well as the cost functions associasated with received weoctor
(=] Fand acceptable codes words. Hote: COnly imwplemsnts for our binary case.
7

=] sr — codeword

=] sn — output [(1/n) convolution coder

pAn} Hrn — nunbyer of mwemory =lements

11 sk — numbyer of original message bhits

1z zflayg — SoftsHard Decoding ==> 051.

13

1% R R R SRS RS R R RRRPOEUDD CODES S s = 5 3 s s s S S S R S R S S S S R R SR R S 8 R 555y
15 1) Initiamli=ze next set of nodes, sSstates, Stages, =to.

1o

17 £z2) Traverse through nodes that have only bheesen wisited (i.e., no nesd ©o
15 3 check on nodes (2,3,494) of a 4 state Trellis Map at cime = 1 since we
1is 3 know that we should only wisit node 1 given that we hegin here.

z0

z1 53) Giwven o = 2z, we have two inputs = {0,1%). Input sach wvalus and update
zz 3 nodes accordingly

Z3 £

24 £4) Compute asacoeptable output for sach branch of the map, which is

zZ5 3 formsd from the funcrion circuitc logic. This changes

Z2e k3 with =sach encoder.

=27

3= %58) Compute distance hbetween received wector and acceptable wector Lor =each
3= 3 of the bhranch at the ith stage.

30

31 25) Update MNodes — a) MNMext State of the node [(Could hawve 2 Possikilitcies)
pe =4 3 k) Prewvious SItate of Node (Could hawve 2 Possikilities)
33 3 o JMNode has been wisited?

31 3 d) Total Cost assigned to MNode

35 3 =) Listc/Determine Surviwving Branch

38 £

37 %7) Form the decoded message by tcraversing backwards and finding the

35 % surwviwving Branches and Maximuwn Likelihood (ML) estimatce.

39 EE LT T TR RS e R (STER 1) 55 s s s s e e e e e s s e s s S v v e e s e s v s e e e e s e s s e sy
40 ZDhewvelop Trellis Map for decoder. Find # of sStages and # of sStates.

41 — stages = k-+Hmem:

4z — states = Z mem:

43 — block _st= 1:

34 HEo———

45

=11 EIf flag = 1 - Hard Decoding. We rmust first make "hard" decisions of the
a7 zinput received wvector.

48 — if(flag)

4o — ind_1 = r»0;

50 — ind O = r<=0;

51 — riind 1) = 1:

5z — riind 0y = —1;

53 — =erncl

54 HFo—————

55

56 2Initimlize State or Memory Input Elements

57 — for i = 1:mem; c_S.m{i} = 0; end

58 - o_S.st = 1:

59 - o_S.in = 0;

&0 F—————

61

== ZInitimlize Trellis Map, which state we =start with eto.

63 — for 1 = l:states

63 — node{1{1}.p{l1l} = MNal:

65 — node{1 {1} .p{Z} = MNal:

66 — node{1 {1 .£{1} = MNal:

67 — node{1 {1 . £{2} = MNal:

65 — node{1:{1l}.cost = —100000;

69 — node{1:{1}.vi=sit = 0O:

70— node{ 1} {1} .surv = MNal:

71l - end

vE - node{ 1} {1} .wisit = 1;

T7E - node{1: {1} .surv = 1:

73— node{l1: {1} .cost = 0:

=] Fo——m———

e

A EEE55355555555555555555555%55%5% (OTEP 2) 5555555555555 55 555555555555 55555%%55%%5%%
7g - for i = l:istageses

=l FUpdate bhlock status, and initiali=ze next set of nodes

S0 — ifii~=1) ;klock st = kblock sSt4n: =nd

81 — for 1 = l:states

g2 — node{i+13 {1} .p{1} = NaI:

83 — node{i+l1} {1} .piz2} = NaI:

54 — node{i+1> {1 .E£{1} = Nal:

85 — node{i+1X {1y .E{2) = Nal:

g5 — nods{i+l1 {1} .cost = —100000;

g7 — nods{i+1 {1} .wisit = 0:

88 — nods{i+1} {1} .surv = L=anl:

83 — =l

[0

Figure 7. This is the first half of the generalized decoder of convolution codes. We note that one can perform both soft and hard decoding
via a flag input



=1 £For each state or node, check if we need to do processing on.

sz - for 1 = l:states

o3 — if (node{il{l}.wvisit)

=S4 5If we do process this node, determine its current numerical
95 Fstatce

98 — c_S.st = 1:

=27 - wal = 1-1;

o5 — for 3 = mem—-1:—-1:0

99 - if i (wal — 2°3)>=0)

100 — c_S.mi{j+1lr = 1:

101 — wval = wval-Z73:

10z — else

103 — o_S.wmi{i+lr = 0O:

104 — end

105 — end

105

107 FETETTEIIIIITIIII335 (STEP 3-5) 3333533333353 333333333353 3333333
108 sState Input = 0O; (Binary, o=21

109 - c_%.in = o:

110

111 iDetermine acceptable output from circuit logic

11z — [o,n_S] = circuit_logicic_%,n,mem) :

113

114 %Zo0ft or Hard Decoding (e.g., Hard => use Hewmmning Distance)
115 — if (f£lag)

116 — dist = compute Hamm(o,r,block st,n)

117 — else

118 — dist = compute_Lp{o,r,block _st,n):

115 — end

izo

121 55555 EI555535 (STEP 6) 3555535555353 5555553355553 53553535%
122 %Update node's status (e.g., node's status, total cost, is it a
123 spossible survivor?)

1z4 — node{i}{c_S.st}.f{1} = n_S.st;

izs5 — node{ir{c_S.sSti.wvisit = 1:

1ze

127 — if (isnan (node{i+l}{n S.s5ti.p{1}]}

1zs — node{i+li{in_S.stl.pi{l} = c_=.st:

129 — nodef{i+l}{n_S.st}.visit = 1:

130 — nodef{i+li{n_S.st}.cost = node{i}{c_S.st}.cost+disc;

AZaL |= node{i+1}{n_S.st}.surv = o_S.St:

13z — =lse

133 — node{i+l}{in_S.scl.pi{2} = o_S.=st:

134 — node{i+ll{in_S.st}.visit 1:

135

138 #Two Possikble Surwviwvors: Determine surviving branch

137 — if(node{i+l}iin S.sSt}.cost<=node{i}{ic_5S.sSt}l.cost+dist)

138 — node{i+l}{n_S.st}.surv =node{i+liin S.sc:.p{l::

139 — else

140 — node{i+l}{n S.st}.surv = o_S.st:

141 — node{i+li{in_S.st}.cost = node{il{c_S.sSt}.cost+distc:
142 — end

143 — end

144

145 55555555555 5%55%55%5%5% (OSTEP 3-5) 555555555555 55555%55555555555%5%%%%
146 sState Input = 1; (Binary, o==2)

147 — if {i<=k)

145 %0nly process input 1 for first k stages

149 — o_S.in = 1:

150

151 iDetermine scceptsble output from circuit logic

15z — [o,n_S] = circuit_logic(c_S,n,mem) :

153

154 #*Update node's status (e.g., node's stcatus, total cost, is it a
155 F¥possikble Ssurviwvor?)

156 — if (£lag)

157 — dist = compute_Hemm(o,r,block _st,n):

158 — =lse

159 — dist = compute_Lpio,r,block_st,n) ;

160 — end:

161

152 ELLLLLRLLLRLLL555555% (STEP B) 5555355555555 5 555355555555 5%%%%
163 — node{il{c_3S.str . .L£{Z} = n_=.st:

164 — node{i}{c_S.st).visic = 1;

165 — if(isnaninode{i+li{in_3S.sci.pil})]

166 — node{i+l}{n_S.st}.pi{l} = o_3Z.st:

167 — node{i+l}{n_S.st}.wvisic = 1:

188 — node{i+li{in_S.st}.cost = node{il{c_S.sSt}.cost+distc:
169 — node{i+l}{n S.st}.surv = o©_S.sSt;

170 — else

171 — node{i+li{in_S.stl.pi{2} = c_5S.=st;

172 — node{i+l}{n_S.st}.wvisic =

173

174 Two Possikble Survivors: Determine surviving branch
175 — if (node{i+lr{in_S.st}.cost<=node{il}{c_S.st}.cosc+dist)
178 — node{i+liin_S.sSt}.sSurv =node{i+l}{in_S.stcl.pi{l}:
177 — =lse

178 — node{i+l}in S.st}.surv = c_3.s5t;

179 — node{i+llin_S.st}.cost = node{ilic_S.st}.cost+dist:
180 — =nd

151 — end

152 — end

183 — end

153 — ernd

155 — end

186 EEEHHLHHLHELLHH5555555F5555 (STEP 7)) 55 5555555555555 5555555555555 55%5%5%%%%
187 — mhat = find ML_path(node, k) :

188 — end

Figure 8. This is the second half of the generalized decoder of convolution codes. If one needs to modify the optimal K = 4 convolution
encoder, then modify circuit logic function



function o = encode_1 3 (m,q,n)

sFunction: Eneodes a Bate 1/3 Conwolution Code
im = mwessage to encode

%y = n generators corresponding to the n outputs

5First Perform Convolution of Input Message for Each Generator. This
Sproduces nooutputs... [Fili,7i2h, .. ., 7int]

1
Z
3
4
5 4n = 1/n Convolution Encoder -- # of generators
f
T
g
9- fori-=lin

10 - v{i} = mod{conv (w,gii}),2);

11 - end

12

13 $Initialize code word to all zeros

14 - © = zeros(l,n*length(g{l})):

16 thszewble code word from n outputs
17 - for i = Oin-1

13 - ciltiiniend) = wi{it+l};

19 - end

1 function [o,next_3tate] = cireuit logicjcur 3tate,n,m)

2z (Function: This defines the eirewit logic for a gpecific convolution

8 ] encoder,  For now, I hand code the n outputs, but this can be
4 ¥ eazily done sutomatically via the generator impulse responses.
5

f four_dtate - The current state of the filter

7 tn - nunber of output words [y(l),7(Z),...,7(n)]

g s - nunber of memory elements

9

10 tDefine output (n hit) in terms of states

11 - i1} = modtcur_StatE.ln + cur_State.m{Z} + cur_State.m(S},Z);

12 - yi2} = modtcur_StatE.ln + cur_State.m{l} + cur_State.m{S},Z);

13 - ¢l = modtcur_StatE.ln + cur_State.m{l} + cur_State.m{Z} + cur_State.m{S),2);

15 tInitialize Output Tord

16 - 0 = zeros{l,n*lengthiy{1}}};

17 - for i = 0:n-1; of{l+intend) = §{i+l}; end

18 - next State.st = 0;

19 - ofo==0) = -1;

20 sConvert hinary veo to state value, and Update State,
i1- for 1= 0Ommw-1

B2 = 1f{i+1==1); next_State.m{i+l} = cur_3tate.in;

23 - else; next dtate.m{i+l} = cur_3tate.m{i};

fi% = end

25 - next State.st = next_5tate.stt (271) Fnext State.m{i+l};
16 - end

27 - next_ftate.st = next Ftate.st+l;

18 - end

function dist = compute Lpjo,r,block st,n)
(Function: Computes the Lp norm... approximate.
%0 - lth branch vector of the trellis map
5C - total received vector

1

z

S

4

5 thlock_st - branch currently on

[ in - length of vector hlock
7

g

9 - rhat = r{block st:block sttn-1); %Find r branch vector
10 - dist = (swn(shs({o-rhat).”pi): ZCompute Lp distance
1 function dist = compute Hamw(o,r,block st,n)

2 YFunction: Computes the Harming Distance.

3 %0 - lth branch vector of the trellis map
4 3r - total received vector

5 $hlock st - branch currently on

[ in - length of wector block
7
§ - rhat = riblock stiblock st+n-1); 3Find r branch vector
9 - dist = sumio ~= rhat); 5Computes Hamming Distance

Figure 9. These are the associated helper files needed to compute the encoding of the convolution code, compute circuit logic for a specific
encoder, and compute the appropriate cost functionals for node paths
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Figure 10. This function traverses the trellis map backwards finding the optimal or “survival” path

function [mhat] = find ML pathinode, k
$Function: Computes the ML estimate by traversing the Trellis Map, looking

H for the survivors.

tnode - nodes corresponding to the trellis mwap, contains survivors and
H state transition

ik - length of message that we are seeking

tInitialize survivor and cost list,
p_survivor = zeros(l1, length(node]+1);
zost = geros(l, lengthinode) +1) ;

t(Initimlize branch output, 1 = top branch taken, 0 = lower branch
hranch = ones (1, lengthnode))

$Initialize Jurvivor Trackback

branch (end) =0;

p_survivor (end) =1

coat (end) = node{ length(node) }{1}.co5t;
p_survivor (end-1) = node{lengthinode)}{1}.surv;
cost {end-1) = node{ length(node)}{1}.cost;
$Traverse Backwards -- look for surviving hranches

for n=length(node)-1:-1:1
p_survivor(n) = node{n}{p survivor (n+l)}.surv;
costin) = node{n}{p survivor(n+l)}.cost;

5If we take the lower branch, assign a 0. Otherwise top branch is
fassigned a 0.
if (noded{n}{p_survivorint+l)}.f{1} == p_survivor (n+Z])
branchin) = 0;
end
end

5The code word iz only the first kth bits. The last lengthibranch)-k bhits
tare by defination, 0.
what = branch(lik)

ML estimate.

. It then returns the message that is the



