
(
Solving multiple-root polynomials

Feng Cheng Chang, IEEE Life Member
Abstract — A given polynomial is transformed herein into a rational function. All the roots and multiplicities of the polynomial are then easily obtained from the poles and residues of this rational function, instead of solving for them directly using the original, high-degree multiple-root polynomial. The derived program, using only basic MATLAB built-in routines and existing double precision, gives the expected results for test polynomials of very high degree and multiplicity, even as high as p(x) = (x + 98.7654321+123.456789i)123.

Keywords—Numerical analysis; mathematical programming; polynomial solutions; roots and multiplicities; residues and poles; rational function; partial fraction expansion; greatest common divisor; Euclidean GCD algorithm.

I. INTRODUCTION
 A polynomial, possibly with several multiple roots, is transformed into a rational function. All the roots and multiplicities of the polynomial are then obtained simply by finding the poles and residues of this rational function, instead of directly solving on the original, high-degree multiple-root polynomial. The approach requires computation of the greatest common divisor (GCD). The simple and efficient algorithm by Chang [1] is employed. It requires only simple arithmetic operations without the use of any advanced mathematics.

 A code in MATLAB is provided, along with a typical numerical example. This routine, using only existing double precision, gives the expected results for test polynomials of very high degree and multiplicities.
II. FORMULATION

 Let a polynomial p(x) of degree N, with N+1 coefficients
[image: image1.wmf],0,1,,

i

biN

=

L

, be given. The K roots zk with multiplicities mk ,
[image: image2.wmf]1,2,,

kK

=

L

, are to be sought, such that

[image: image3.wmf]0

1

()()

k

K

N

m

Ni

ik

i

k

pxbxxz

-

=

=

==-

å

Õ

We are now to find the rational function r(x) or a pair of related polynomials u(x) and v(x) derived from the original polynomial p(x), such that

[image: image4.wmf]1

()

()

()

K

k

k

k

vxm

rx

uxxz

=

==

-

å

Then, zk and mk are simply the poles and residues of the rational function r(x). In other words, the K desired roots zk of p(x) are obtained by solving the K-degree simple-root polynomial u(x) = 0, instead of directly solving the original N-degree multiple-root polynomial p(x) = 0, where

[image: image5.wmf]1

()()

K

k

k

uxxz

=

=-

Õ

The corresponding multiplicities mk are simply the partial fraction expansion coefficients of the rational function
[image: image6.wmf]()()()

rxvxux

=

:

[image: image7.wmf]()()

()

()()

k

kk

k

k

xz

vxvz

mxz

uxuz

=

=-=

¢

It is noted that the transformation between the original polynomial p(x) and the derived rational function r(x) exists:

[image: image8.wmf]11

ln()ln()()

k

KK

m

k

k

kk

k

ddm

pxxzrx

dxdxxz

==

=-==

-

Õå

and inversely,

[image: image9.wmf]1

1

 exp()exp()()

k

K

K

xx

m

k

k

k

k

k

m

dxrxdxxzpx

xz

-¥-¥

=

=

==-=

-

å

Õ

òò

It follows from the first relation,

[image: image10.wmf]()()

()

()()

vxpx

rx

uxpx

¢

==

Then

[image: image11.wmf]()()

(), ()

()()

pxpx

uxvx

gxgx

¢

==

where

[image: image12.wmf]1

1

()gcd((),())()

k

K

m

k

k

gxpxpxxz

-

=

¢

==-

Õ

is the greatest common divisor of p(x) and p((x). A pair of polynomials u(x) and v(x) for the rational function r(x) are thus obtained once the polynomial greatest common divisor g(x) is generated.

 Of crucial concern in carrying out the process so far is the polynomial GCD computation. The algorithm “monic polynomial subtraction” developed by Chang [1] is applied here. It is adapted and modified from the longhand division in the classical Euclidean algorithm. All required computations involve only elementary arithmetic operations without the use of any advanced mathematics.

III. COMPUTER ROUTINES

 The complete program source code listing using only the basic MATLAB built-in routines is herein presented. The input p to the program is a coefficient vector of the given polynomial p(x), and the output Z is a list of computed root-multiplicity pair’s zk - mk. The built-in function roots.m is used here merely for finding the simple-roots polynomial u(x). The polynomial coefficients can be either real or complex numbers.

 A short program is also provided for creating a test polynomial coefficient vector from several powered factors.

To solve a polynomial with multiple roots:

function Z = polyroots(p)

% *** Solve multiple-root polymonials ***

%

 ntol = 1.e-3; ztol = 1.e-8;

 mz = length(p)-max(find(p));

 p0 = p(min(find(p)):max(find(p)));

 if length(p0) < 2, Z = [0,mz]; return, end;

 s = abs(p0(end)/p0(1));

 if s < 1, p0 = p0(end:-1:1); end;

 q0 = polyder(p0);

 g1 = p0/p0(1); G{1} = g1;

 g2 = q0(1:max(find(q0)))/q0(1); G{2} = g2;

for k = 3:2*length(p0),

 l12 = length(g1)-length(g2); l21 = -l12;

 g12 = [g2,zeros(1,l12)]-[g1,zeros(1,l21)];

 g12 = g12(min(find(abs(g12)>ztol)) ...

 :max(find(abs(g12)>ztol)));

 ren = norm(g12,inf)/norm(g2,inf);

 if ren < ntol, break; end;

 if l12 >= 0, g1 = g2; end;

 g2 = g12/g12(1); G{k} = g2;

end; % celldisp(G);

 g0 = g1;

 u0 = deconv(p0,g0);

 v0 = deconv(q0,g0);

 w0 = polyder(u0);

 z0 = roots(u0);

 m0 = polyval(v0,z0)./polyval(w0,z0);

 if s < 1, z0 = z0.^-1; end;

 Z = [z0,round(abs(m0))];

 if mz > 0, Z = [Z; 0,mz]; end;

To create a test polynomial from several factors:

function p = polyget(A)

% *** Create poly coef vector from factors ***

%

 p = 1;

 for i = 1:length(A(:,1)),

 q = 1;

 for j = 1:A(i,1),

 q = conv(q,A(i,max(find(A(i,:))):-1:2));

 end;

 p = conv(p,q);

 end;

IV. TYPICAL EXAMPLE

 Solve the given test polynomial of degree 32 expanded from several powered factors:

[image: image13.wmf]4332232

3222

()(1)()(10)

(51115)(43)

pxxxxxx

xxxxxx

=--+-

×+++-+

i. e.,

[image: image14.wmf]323130292827

8765

()52676140

 + 65791875555580013500

pxxxxxxx

xxxx

=-+-++

+-+-

LL

To run in MATLAB:

 >> A = [3 -1 0 0 0 1; ...

 2 0 0 -1 1 0; ...

 2 –10 1 0 1 0; ...

 1 15 11 5 1 0; ...

 2 3 -4 1 0 0; ...

 1 0 1 0 0 0];

 >> p = polyget(A),

 p =

 1 -5 2 -6

 76 140 -802 954

 -4251 13663 -18740 28472

 -53504 45776 5212 -77580

 185243 -220631 104794 52458

 -193356 248612 -146266 9202

 65791 -87555 55800 -13500

 0 0 0 0

 0

 >> Z = polyroots(p),

 Z =

 3.0000 2

 -3.0000 1

 -1.0000 + 2.0000i 3

 -1.0000 - 2.0000i 3

 2.0000 2

 -1.0000 3

 -0.0000 + 1.0000i 3

 -0.0000 - 1.0000i 3

 1.0000 7

 0.0000 5

 >>

V. CONCLUSION

 A short and compact program routine, using only existing double precision, has been presented for the solution of a polynomial with multiple roots. It reveals that the higher are the root multiplicities of the given polynomial, the more efficient this approach becomes. This is contrary to the usual experience that the most difficult part of solving for the roots of a polynomial is calculating those that have high multiplicities [2]. For general root-finding routines, the MATLAB software package MULTROOT introduced by Zeng [2] is highly recommended. However, his routine embodies an algorithm that makes use of advanced mathematics.

 In comparison against test polynomials, both the routines give spectacularly concordant results for test polynomials of very high degree, such as,
[image: image15.wmf]500

()(1)

pxx

=+

. And the routine presented retains its root-finding power much, much further, all the way up to p(x) = (x + 98.7654321+123.456789i)123 !

 However, we are almost sure to find failure with any numerical algorithm, especially if the multiple roots are closely clustered together. For example, the presented routine as well as Zeng's will fail to achieve the expected results even when the test polynomial is as simple as

[image: image16.wmf]724

()(1..99)(1.1.01)(.991.)(1.011.)

pxxixixixi

=--------

where all the four multiple roots are clustered around (1+i).

VI. ACKNOWLEDGEMENT

 The author wishes to thank Dr. Jan Grzesik of Allwave Corporation, Torrance, California, for his useful discussions and comments on the preparation of the manuscript.

References
[1] F. C. Chang, “Factoring a polynomial with multiple-roots,” International Journal of Computational and Mathematical Sciences, vol. 2, no. 4, Fall 2008, pp. 173-176.
[2] Z. Zeng, “Computing multiple roots of inexact polynomials,” Mathematics of Computation, vol. 74, 2005, pp.869-903.

Additional EXAMPLES

 Find the roots and multiplicities from the following test polynomials expanded:

[image: image17.wmf]30252015105

876543210

987

654

1. ()(1)(2)(3)(4)(5)(6)

2. ()(23456789)

3. ()(1.1234)(2.5678)(3.9123)

 (4.4567)(5.8912)(6.3456)

pzzzzzzz

pzzzzzzzzz

pzzzz

zzz

=-+-+-+

=++++++++

=-+-

×+-+

32

987

3025

179

 (7.7891)(8.2345)(9.6789)

4. ()(12)(34)(56)

5. ()(2.01233.4321)(4.45675.8765)

 (6.89017.2109)(8.23451.65

43)

 (9.

zzz

pzzizizi

pzzizi

zizi

z

×-+-

=-++---

=---+

×+-++

×-

4

1324

5750

81000

100100

6524334256

70

67890.0987)

6. ()(5061)(987)

7. ()(1)

8. ()(1)

9. ()(1)

10. ()(1)(1)(1)(1)(1)(1)

11 ()(123459876)

12. ()(

i

pzzz

pzz

pzz

pzz

pzzzzzzz

pzz

pz

-

=+-

=+

=-

=-

=------

=-

=

1234

987

7

1234567891)

13. ()(123456789)

14. ()((1.000.99))((1.001.01))

 ((0.991.00))((1.011.00))

15. ()((1.000.99))((1.001.01))

 (

z

pzz

pzzizi

zizi

pzzizi

z

+

=-

=-+-+

×-+-+

=-+-+

×-

24

(0.991.00))((1.011.00))

izi

+-+

That is

 >> % Ex. 1

 >> r = [+1*ones(1,30), -2*ones(1,25), ...

 >> +3*ones(1,20), -4*ones(1,15), ...

 >> +5*ones(1,10), -6*ones(1, 5)];

 >> p = poly(r);

 >> Z = polyroots(p),

 Z =

 -6.0000 5

 5.0000 10

 -3.9999 15

 -2.0000 25

 2.9999 20

 1.0000 30

 >> % Ex. 2

 >> p = polyget([10 9 8 7 6 5 4 3 2 1]);

 >> Z = polyroots(p),

 Z =

 -1.2887 + 0.4476i 10

 -1.2887 - 0.4476i 10

 -0.7243 + 1.1369i 10

 -0.7243 - 1.1369i 10

 0.1363 + 1.3049i 10

 0.1363 - 1.3049i 10

 0.8767 + 0.8813i 10

 0.8767 - 0.8813i 10

 >> % Ex. 3

 >> A = [9 -1.1234 1; 8 +2.5678 1; ...

 >> 7 -3.9123 1; 6 +4.4567 1; ...

 >> 5 -5.8912 1; 4 +6.3456 1; ...

 >> 3 -7.7891 1; 2 +8.2345 1; ...

 >> 1 -9.6789 1];

 >> p = polyget(A);

 >> Z = polyroots(p),

 Z =

 9.6789 1

 -8.2345 2

 7.7891 3

 -6.3456 4

 5.8912 5

 -4.4567 6

 3.9123 7

 -2.5678 8

 1.1234 9

 >> % Ex. 4

 >> A = [9 –1+2i 1; 8 3-4i 1; 7 –5-6i 1];

 >> p = polyget(A);

 >> Z = polyroots(p),

 Z =

 5.0000 + 6.0000i 7

 -3.0000 + 4.0000i 8

 1.0000 – 2.0000i 9

 >> % Ex. 5

 >> r = [(+2.0123+3.4321i)*ones(1,30), ...

 >> (+4.4567-5.8765i)*ones(1,25), ...

 >> (-6.8901+7.2109i)*ones(1,17), ...

 >> (-8.2345-1.6543i)*ones(1,9), ...

 >> (+9.6789+0.0987i)*ones(1,4)];

 >> p = poly(r);

 >> Z = polyroots(p),

 Z =

 -6.8901 + 7.2109i 17

 -8.2345 - 1.6543i 9

 9.6789 + 0.0987i 4

 4.4567 - 5.8765i 25

 2.0123 + 3.4321i 30

 >> % Ex. 6

 >> p = polyget([24 -987 +1; 13 +1 +506]);

>> Z = polyroots(p),

 Z =

 987.00000 24

 -0.00197 13

 >> % Ex. 7

 >> p = polyget([750 +1 0 0 0 0 +1]);

 >> Z = polyroots(p),

 Z =

 -1.0000 + 0.0000i 750

 -0.3090 + 0.9510i 750

 -0.3090 - 0.9510i 750

 0.8090 + 0.5877i 750

 0.8090 - 0.5877i 750

>> % Ex. 8

>> p = polyget([1000 -1 0 0 0 0 0 0 0 +1]);

>> Z = polyroots(p),

 Z =

 -1.0000 + 0.0000i 1000

 -0.7071 + 0.7071i 1000

 -0.7071 - 0.7071i 1000

 0.0000 + 1.0000i 1000

 0.0000 - 1.0000i 1000

 1.0000 + 0.0000i 1000

 0.7071 + 0.7071i 1000

 0.7071 - 0.7071i 1000

>> % Ex. 9

>> p = polyget([100 -1 zeros(1,99) +1]);

>> Z = polyroots(p),

 Z =

 1.0000 + 0.0000i 100

 0.9980 + 0.0627i 100

 0.9980 - 0.0627i 100

 0.9921 + 0.1253i 100

 (92 lines skipped)

 -0.0627 + 0.9980i 100

 -0.0627 - 0.9980i 100

 0.0000 + 1.0000i 100

 0.0000 – 1.0000i 100

>> % Ex. 10

>> A = [1 -1 0 0 0 0 0 1; ...

>> 2 -1 0 0 0 0 1 0; ...

>> 3 -1 0 0 0 1 0 0; ...

>> 4 -1 0 0 1 0 0 0; ...

>> 5 -1 0 1 0 0 0 0; ...

>> 6 -1 1 0 0 0 0 0];

>> p = polyget(A),

 p =

 1 -6 10 6 -29 10 13

 22 -17 -46 38 -34 40 50

 -34 -34 -49 46 -25 50 71

 -2 -116 -62 97 -68 96 36

 0 -36 -96 68 -97 62 116

 2 -71 -50 25 -46 49 34

 34 -50 -40 34 -38 46 17

 -22 -13 -10 29 -6 -10 6

 -1

>> Z = polyroots(p),

 Z =

 1.0000 + 0.0000i 21

 -1.0000 + 0.0000i 9

 -0.8090 + 0.5878i 2

 -0.8090 - 0.5878i 2

 -0.5000 + 0.8660i 5

 -0.5000 - 0.8660i 5

 0.5000 + 0.8660i 1

 0.5000 - 0.8660i 1

 0.3090 + 0.9511i 2

 0.3090 - 0.9511i 2

 0.0000 + 1.0000i 3

 0.0000 - 1.0000i 3

>> % Ex. 11

>> p = polyget([70 -9876 +12345]);

>> Z = polyroots(p),

 Z =

0.8 70

>> % Ex. 12

>> p = polyget([1234 +1 +123456789]);

>> Z = polyroots(p),

 Z =

 -8.10000007371e-009 1234

>> % Ex. 13

>> p = poly([+123456789*ones(1,987)]);

>> Z = polyroots(p),

 Z =

 123456789 987

>> % Ex. 14

 >> A = [1 -1.00-0.99i 1; ...

 >> 1 -1.00-1.01i 1; ...

 >> 1 -0.99-1.00i 1; ...

 >> 1 -1.01-1.00i 1];

 >> p = polyget(A);

 >> Z = polyroots(p), % Chang’s (Fail)

 Z =

 1.0000 + 1.0000i 4

 >> Zz = multroot(p), % Zeng’s (Success)

 Zz =

 1.0000 + 1.0100i 1

 1.0100 + 1.0000i 1

 0.9900 + 1.0000i 1

 1.0000 + 0.9900i 1

>> % Ex. 15

 >> A = [1 -1.00-0.99i 1; ...

 >> 7 -1.00-1.01i 1; ...

 >> 2 -0.99-1.00i 1; ...

 >> 4 -1.01-1.00i 1];

 >> p = polyget(A);

 >> Z = polyroots(p), % Chang’s (Fail)

 Z =

 1.0014 + 1.0043i 14

 >> Zz = multroot(p), % Zeng’s (Fail)

 Zz =

 1.2195 + 1.0771i 1

 1.1616 + 1.1704i 1

 1.2244 + 0.9696i 1

 1.0662 + 1.2232i 1

 1.1800 + 0.8771i 1

 0.9609 + 1.2238i 1

 1.1035 + 0.8184i 1

 0.8716 + 1.1781i 1

 1.0152 + 0.7988i 1

 0.9308 + 0.8152i 1

 0.8150 + 1.1022i 1

 0.8610 + 0.8613i 1

 0.8138 + 0.9304i 1

 0.7965 + 1.0145i 1

[image: image18.emf]0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Find closely clustered multiple roots

Real

Imaginary

Exact

Zeng s

Chang s

(7)

(1)

(2)

(4)

(14)

p(x) = (x -(1.00+0.99i)) (x -(1.00+1.01i))

7

(x -(0.99+1.00i))

2

(x -(1.01+1.00i))

4

Extract from F. C. Chang’s “Solving multiple-root polynomials,”

IEEE Antennas & Propagation Magazine, vol. 51, no. 6, Dec 2009,

 pp. 151-155.

12/28/2010
 Original manuscript drafted May 4, 2009. Revised December 28, 2010. The author is with Allwave Corporation, 3860 Del Amo Blvd, # 404, Torrance, California 90503, USA. E-mail: fcchang007@yahoo.com.

_1325508919.unknown

_1327169330.unknown

_1329318693.unknown

_1331352019.unknown

_1327227426.unknown

_1328699562.unknown

_1325560418.unknown

_1327168169.unknown

_1325685334.unknown

_1325509111.unknown

_1302971688.unknown

_1320067171.unknown

_1302974272.unknown

_1290159911.unknown

_1291789009.unknown

_1290159691.unknown

_1278186343.unknown

