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1 Introduction

There are several definitions for outliers. One of the more widely accepted
interpretations on outliers comes from Barnett and Lewis [1] , which de-
fines outlier as “an observation (or subset of observations) which appears
to be inconsistent with the remainder of that set of data”. However, the
identification of outliers in data sets is far from clear given that suspicious
observations may arise from low probability values from the same distribu-
tion or perfectly valid extreme values (tails) for example.

One alternative to minimize the effect of outliers is the use of robust
statistics, which would solve the dilemma of removing/modifying observa-
tions that appear to be suspicious. When robust statistics are not practical
for the problem in question, it is important to investigate and record the
causes of the possible outliers, removing only the data points clearly identi-
fied as outliers.

Situations where the outliers causes are only partially identified require
sound judgment and a realistic assessment of the practical implications of
retaining outliers. Given that their causes are not clearly determined, they
should still be used in the data analysis. Depending on the time and com-
puting power constrains, it is often possible to make an informal assessment
of the impact of the outliers by carrying out the analysis with and without
the suspicious outliers.

This document shows different techniques to identify suspicious observa-
tions that would require further analysis and also tests to determine if some
observations are outliers. Nevertheless, it would be dangerous to blindly
accept the result of a test or technique without the judgment of an expert
given the underlying assumptions of the methods that may be violated by
the real data.

2 Z-scores

Z-scores are based on the property of the normal distribution that if X ∼
N(µ, σ2), then Z = X−µ

σ ∼ N(0, 1). Z-scores are a very popular method for
labeling outliers and has been implemented in different flavors and packages
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as we will see along this document. Z-scores are defined as:

Zscore(i) =
xi − x
s

, where s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (1)

A common rule considers observations with |Zscores| greater than 3 as
outliers, though the criteria may change depending on the data set and the
criterion of the decision maker. However, this criterion also has its problems
since the maximum absolute value of Z-scores is (n − 1)/

√
n (Shiffler [24])

and it can be possible that none of the outliers Z-scores would be greater
than the threshold, specially in small data sets.

3 Modified Z-scores

The problem with the previous Z-score is that the x and s can be greatly
affected by outliers, and one alternative is to replace them with robust es-
timators. Thus, we can replace x by the sample median (x̃), and s by the
MAD (Median of Absolute Deviations about the median):

MAD = median{|xi − x̃|} (2)

Now, the Modified Z-scores are defined as:

Mi =
0.6745(xi − x̃)

MAD
(3)

where the constant 0.6745 is needed because E(MAD) = 0.6745σ for large
n.

Observations will be labeled outliers when |Mi| > D. Iglewicz and
Hoaglin [13] suggest using D = 3.5 relying on a simulation study that calcu-
lated the values of D identifying the tabulated proportion of random normal
observations as potential outliers.

The suspicious data could be studied further to explore possible expla-
nations for denoting these values as real outliers or not.

This test was implemented in R (see below) with the name of MAD-
scores.

4 Boxplot

The main elements for a boxplot are the median, the lower quantile (Q1)
and the upper quantile (Q3). The boxplot contains a central line, usually
the median, and extends from Q1 to Q3. Cutoff points, known as fences, lie
k(Q3−Q1) above the upper quartile and below the lower quartile with k =
1.5 frequently. Observations beyond the fences are considered as potential
outliers.
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Tukey [25] defines the lower fourth as Q1 = xf , the fth ordered obser-
vation, where f is computed as:

f =
((n+ 1)/2) + 1

2
(4)

If f involves a fraction, Q1 is the average of xf and xf+1. To get Q3,
we count f observations from the top, i.e., Q3 = xn+1−f .

Some other boxplots use cutoff points other than the fences. These
cutoffs take the form Q1 − k(Q3 − Q1) and Q3 + k(Q3 − Q1). Depending
on the value of k, a different number of potential outliers can be selected.
Frigge, Hoaglin and Iglewicz [9] estimated the probability of labeling at least
one observation as an outlier in a random normal sample for different values
of k, arriving to the conclusion that a value of k ∼ 2 would give a probability
of 5−10% that one or more observations are considered outliers in a boxplot.

5 Adjusted Boxplot

The boxplot discussed before has the limitation that the more skewed the
data, the more observations may be detected as outliers. Vanderviere and
Hubert [26] introduced an adjusted boxplot taking into account the med-
couple (MC), a robust measure of skewness for a skewed distribution.

Given a set of ordered observations, Brys et al. [4] define the MC as:

MC = median
xi≤x̃≤xj
xi 6=xj

h(xi, xj) (5)

where the function h is given by:

h(xi, xj) =
(xj − x̃)− (x̃− xi)

xj − xi
(6)

For the special case xi = xj = x̃ the function h is defined differently. Let
m1 < . . . < mq denote the indices of the observations which are tied to the
median x̃, i.e., xml = x̃ for all l = 1, . . . , q. Then:

h(xmi , xmj ) =


−1 if i+ j − 1 < q
0 if i+ j − 1 = q
+1 if i+ j − 1 > q

(7)

According to Brys et al. [3], the interval of the adjusted boxplot is:

[L,U ] = (8)

= [Q1− 1.5e−3.5MC(Q3−Q1), Q3 + 1.5e4MC(Q3−Q1)] if MC ≥ 0

= [Q1− 1.5e−4MC(Q3−Q1), Q3 + 1.5e3.5MC(Q3−Q1)] if MC ≤ 0
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where L is the lower fence and U is the upper fence of the interval. The
observations which fall outside the interval are considered outliers.

The value of the MC ranges between −1 and 1. If MC = 0, the data
is symmetric and the adjusted boxplot becomes the traditional boxplot for
k = 1.5. If MC > 0 the data has a right skewed distribution, whereas if
MC < 0, the data has a left skewed distribution.

6 Generalized ESD Procedure

A similar procedure to the Grubbs test below is the Generalized Extreme
Studentized Deviate (ESD) to test for up to a prespecified number r outliers.
The process is as follows:

1. Compute R1 from:

Ri = maxi

{ |xi − x|
s

}
(9)

Then find and remove the observation that maximizes |xi − x|

2. Compute R2 in the same way but with the reduced sample of n − 1
observations

3. Continue with the process until R1, R2, . . . , Rr have been computed

4. Using the critical values λi at the chosen confidence level α find l, the
maximum i such that Ri > λi
The extreme observations removed at the first l steps are declared as
outliers.

For a two-sided outlier problem, the value of λi is defined as:

λi =
t(p,n−i−1)(n− i)√

(n− i− 1 + t2(p,n−i−1))(n− i+ 1)
; i = 1, . . . , r (10)

p = 1− α/2

n− i+ 1

where t(p,d) is the pth percentile of a t distribution with d degrees of freedom.
For the one-sided outlier problem we substitute α/2 by α in the value of p.

Rosner [22] provides the tabulated values for several α, n ≤ 500 and
r ≤ 10, and concludes that this approximation is very accurate when n > 25.

It is recommended to use this test with a higher number of outliers than
expected and when testing for outliers among data coming from a normal
distribution.
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7 Sample Kurtosis

The sample kurtosis:

b2 =
n
∑n

i=1(xi − x)4

(
∑n

i=1(xi − x)2)2
(11)

is used to test for outliers and measure departures from normality.

Initially, b2 is compared with the critical value for the appropriate n and
α. If b2 exceeds the critical value, then the observation xj that maximizes
|xi − x| is declared an outlier. This outlier is removed and the procedure
repeated. If b2 does not exceed the critical value, then the process stops.

Tables with critical values for n > 50 can be found in Pearson and
Hartley [18] and for 7 ≤ n ≤ 50 in Iglewicz and Hoaglin [13].

Though this is a reasonable procedure to use in practice, it is susceptible
to masking when neighboring outliers are present.

8 The Shapiro–Wilk W Test

The Shapiro–Wilk results to test for normality can also be used to test for
outliers. Given an ordered sample, the procedure involves:

1. Calculate:

b =
h∑
i=1

an+1−i(xn+1−i − xi) (12)

where h = n/2 for n even and (n− 1)/2 for n odd, and the constants
an+1−i can be obtained from different sources.

2. Calculate D =
∑n

i=1(xi − x)2

3. Compute W = b2/D

4. No outliers are present if W > C, where the critical value C is avail-
able in a number of sources. Otherwise, consider the most deviant
observation from x as the outlier. Remove this observation and repeat
the process on the reduced sample.

Tables for the critical values and the an+1−i can be found in Shapiro [23]
or Barnett and Lewis [1].

In general, it seems that the generalized ESD test performs better in
identifying outliers than the Shapiro-Wilk W test.
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9 B1 Statistic for Extreme Deviation

Dixon [6] summarizes several criteria for discovery of one or more outliers of
two types entering into samples of observations from a normal population
with mean µ and variance σ2, N(µ, σ2):

1. One or more observations from N(µ+ λσ, σ2)
This is an error in the mean value that is generally referred as “location
error”.

2. One or more observations from N(µ, λ2σ2)
This is the occurrence of an error from a population with the same
mean but a greater variance than the remainder of the sample and is
referred as “scalar error“.

The B1 statistic works on n ordered observations x1 < x2 < . . . < xn
when σ is known or estimated independently. The statistic has the form:

B1 =
xn − x
σ

or B1 =
x− x1
σ

(13)

and checks if the highest or lowest value in the sample is an outlier.
Grubbs [10] includes in his paper the table of percentile points for B1 and

Bn derived by Pearson and Chandra [17] when σ2 is the sample variance,
and that can be used to test for the rejection-acceptance of the lowest or
highest values as outliers. The table provides the values for 3 ≤ n ≤ 25 and
{1%, 2.5%, 5%, 10%} confidence levels.

If we consider thatB2
1 , B

2
n ∼ X 2(1), the p-value is given as 1−cdfX 2(1)(B

2
1 , B

2
n).

Then, the criteria would be that any extreme deviation with p-value < α,
being α the significant level, is an outlier.

10 Dixon Tests for Outlier

Tests of the Dixon type work with ratios of ranges of parts of an ordered
sample that do nor require the knowledge of σ. The different flavors of
statistics are [6]:

1. for single outlier x1 or xn respectively:

r10 =
x2 − x1
xn − x1

or r10 =
xn − xn−1
xn − x1

(14)

2. For single outlier x1 avoiding xn, or xn avoiding x1 respectively:

r11 =
x2 − x1
xn−1 − x1

or r11 =
xn − xn−1
xn − x2

(15)
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3. For single outlier x1 avoiding xn and xn−1, or xn avoiding x1 and x2
respectively:

r12 =
x2 − x1
xn−2 − x1

or r12 =
xn − xn−1
xn − x3

(16)

4. For outlier x1 avoiding x2, or xn avoiding xn−1 respectively:

r20 =
x3 − x1
xn − x1

or r20 =
xn − xn−2
xn − x1

(17)

5. For outlier x1 avoiding x2 and xn, or xn avoiding xn−1 and x1 respec-
tively:

r21 =
x3 − x1
xn−1 − x1

or r21 =
xn − xn−2
xn − x2

(18)

6. For outlier x1 avoiding x2, xn and xn−1, or xn avoiding xn−1, x1 and
x2 respectively:

r22 =
x3 − x1
xn−2 − x1

or r22 =
xn − xn−2
xn − x3

(19)

r11, r12, r20, r21, r22 were designed for use in situations where additional
outliers may occur and we wish to minimize the effect of these outliers on the
investigation of the particular value being tested. According to Walfish [27],
situations like these arise because of masking, i.e., when several observations
are close together but the group of observations is still outlying from the
rest of the data; and it is a common phenomenon specially for bimodal data.

Dixon [7] publishes several tables of critical values (λij) for the different
statistics rij for n ≤ 30 with the criteria for declaring the appropriate x.
being an outlier if rij > λij .

11 Grubbs Test for One or Two Outliers

According to [16], Grubbs test detects one outlier at a time assuming a
normal distribution. This outlier is expunged from the dataset and the test
is iterated until no outliers are detected. However, multiple iterations change
the probabilities of detection, and the test should not be used for sample
sizes of six or less since it frequently tags most of the points as outliers.

There are several statistics for the Grubbs test considering an ordered
data sample:
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1. Test if the minimum or maximum values are outliers

G =
x− x1
s

or G =
xn − x
s

(20)

where s is the sample standard deviation. This tests looks similar to
the B1 statistic in Section 9 but with the difference that the form of
the limiting distribution is different.

This test is also called the Modified Thompson Tau or the maximum
normed residual test in other references.

For the two-sided test, the hypothesis of no outliers is rejected if:

G >
n− 1√
n

√√√√ t2( α
2n
,n−2)

n− 2 + t2( α
2n
,n−2)

(21)

with t( α
2n
,n−2) denoting the α

2n percentile of a t-distribution with (n−2)
degrees of freedom. For one-side tests, we use the α

n percentile.

In the above formulas for the critical regions, the convention used is
that tα is the upper critical value from the t-distribution and t1−α is
the lower critical value from the t-distribution.

2. Test for two opposite outliers

G =
xn − x1

s
(22)

This statistic is referred in Dixon [6] as C1, and tests simultaneously
whether the smallest and largest observations are outlying. David,
Hartley and Pearson [5] determine the limiting distribution and Grubbs
[11] specifies that the hypothesis of no outliers is rejected if:

G >

√√√√√2(n− 1)t2( α
n(n−1)

,n−2)

n− 2 + t2( α
n(n−1)

,n−2)
(23)

and if xn is about as far above the sample mean as x1 is below. If,
however, xn and x1 are displaced from the mean by different amounts,
some further test would have to be made to decide whether to reject
as outlying only the lowest value or only the highest value or both the
lowest and the highest values.

Nevertheless, Ellison, Barwick and Farrant [8] indicate that the tests
are often carried out in turn on the same data set if the single-outlier
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test is not significant, to ensure that the single-outlier test is not com-
promised by a second outlier (as would be detected by the two opposite
outlier test). In practice, with a single outlier already identified, one
would not normally apply the test for two opposite outliers until the
initial single-outlier had been investigated or eliminated.

In spite of this practice, it is important to be aware that using all two
(or three) Grubbs tests simultaneously will increase the false-positive
rate.

3. Test if the two largest or the two smallest values are outliers

S2
n−1,n
S2

=

∑n−2
i=1 (xi − xn−1,n)2∑n

i=1(xi − x)2
or

S2
1,2

S2
=

∑n
i=3(xi − x1,2)2∑n
i=1(xi − x)2

(24)

xn−1,n =
1

n− 2

n−2∑
i=1

xi and x1,2 =
1

n− 2

n∑
i=3

xi

Grubbs [10] proposes this statistic for testing if the two largest or
smallest values are outliers. He also provides a table of percentage
points for 4 ≤ n ≤ 149 and α = {0.1%, 0.5%, 1%, 2.5%, 5%, 10%} in
[12] , where the observations would be outliers if the statistic is lower
than the tabulated percentage for the chosen confidence level.

12 Score Calculations

The different scores are calculated as follows:

1. Normal Scores

Zscore(i) =
xi − x
s

(25)

where s is the sample standard deviation, Zscore ∼ N(0, n−1n ) accord-
ing to Pope [19], and n−1

n → 1 for larger n.

2. t-student Scores

tscore(i) =
Zscore(i)

√
n− 2√

n− 1− Z2
score(i)

(26)

where tscore ∼ tn−2 according to Grubbs [10].
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3. chi-squared Score

X 2
score(i) =

(xi − x)2

s2
(27)

where X 2
score ∼ X 2(1).

4. IQR Score

IQRscore(i) =
xi1{xi<Q1} + xi1{xi>Q3} −Q11{xi<Q1} −Q31{xi>Q3}

Q3−Q1
(28)

where Q1 is the 25% quantile and Q3 is the 75% quantile.

5. MAD Score

MADscore(i) =
xi − x̃
˜|x− x̃|

(29)

where x̃ is the median of the data sample. Please notice that this
implementation is not corrected by the expected value of the median
of absolute deviations about the median as described before.

13 Exponential Smoothing

Exponential smoothing can be used to make a forecast for the time instant
t + 1 based on the last incoming data point pt, the last forecast value p̂t,
and the smoothing factor 0 < η < 1. The model equation reads:

p̂1 = p1 (30)

p̂t+1 = ηpt + (1− η)p̂t

Values of η close to one have less of a smoothing effect and give greater
weight to recent changes in the data, while values closer to zero have a
greater smoothing effect and are less responsive to recent changes. There
is no formally correct procedure for choosing η, but it could be possible to
determine it by minimizing the sum of (pt − p̂t)2.

Kundzewicz et al. [15] implemented a procedure of judging if the newly
incoming data point fits the temporal structure that already exists in the
data, containing three steps:

• calculate the forecast for the time instant at which the newly observa-
tion is taken

• assessment of the variance of the forecast error
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• checking if the newly incoming data point does not substantially differ
from the forecast value

A data point is considered to be an outlier if:

|pt − p̂t
st
|> k (31)

where st is the standard deviation of the forecast error et = p̂t− pt, and k is
the number of standard deviations on the forecast error. By manipulating
the values of η and k, we can influence the number of data points falling
outside the acceptance limits.

The calculation of st could also be performed by exponential smoothing
from pt− p̂t. This approach could be indicated for the case of non-stationary
data.

14 Moving Window Filtering Algorithm

Gutierrez and Gregori [20] propose a similar algorithm to Brownlees and
Gallo [2] for outlier detection in which a neighborhood of observations, called
a filtering window, is necessary to judge the reliability of a single observation.
Such a data window can grow and shrink according to data quality and the
volatility of the series. The idea behind the algorithm is to assess the validity
of a new observation on the basis of its relative distance from a neighborhood
of the closest valid past observations.

Let us consider {pi}Ti=1 be a time series. The procedure to identify
outliers is:

|pi − pi(k)| < αsi(k) + γ =

{
True observation i is kept,
False observation i is substituted

(32)

where pi(k) and si(k) represent the moving average and the moving standard
deviation of the previous k values respectively. The parameter α specifies
the number of standard deviations acting as a threshold to consider an
observation as an outlier, while the role of the parameter γ is to avoid zero
variances produced by sequences of k equal values and should be a multiple
of the minimum variation allowed for the specific series.

If the observation does not pass the test, it can be removed or substituted
by some other value, e.g., the previous observation. For each of the series,
the algorithm has to determine the optimal window width k, the parameter
γ and the threshold that might be considered to identify an observation as
an outlier.

If the observation is removed, the data cleaning algorithm can be run
several times for a grid of different values of parameters {k, α, γ}, and the
quality of the cleaning can be done by visual inspection of the series graphs.

11



If the observation is substituted by the previous observation, Gutierrez and
Gregori [20] introduce a penalization statistic D in order to assess the real
effectiveness of the filtering algorithm:

D =
1

T

T∑
i=1

d2i (33)

where

di =

{
fi − (pi + si(k)) if fi > pi + si(k)
(pi − si(k))− fi if fi < pi − si(k)

and fi is the filtered series after substitution. For each of the series the
parameter combination {k, α, γ} that minimizes D needs to be found by,
e.g., computing all possible parameter permutations and choosing the one
with the lowest D. The best combination does not need to be unique for all
series.

In order to reduce the computational intensity of finding the optimal
parameter combinations for all series, Gutierrez and Gregori [20] applied
hierarchical clustering to identify the most representative series in different
groups according to their market behavior.

15 Tests for Non-Normal Distributions

Outlier identification procedures for normal data are relatively easy to use
and quite powerful. However, many univariate data sets do not resemble a
normal distribution. In these cases, the normal outlier identification tech-
niques can falsely identify extreme observations as outliers. Removing the
most extreme observations will tend to distord the data toward symmetry
and a closer resemblance to the normal distribution.

Barnett and Lewis [1] (available for purchase) discuss outliers from dif-
ferent non-normal distributions. Here, we only present the results for log-
normal and exponential distributions available in Iglewicz and Hoaglin [13].

15.1 Exponential Distribution

The exponential distribution plays a key role for survival and extreme value
data because it often approximates such data reasonably well and relatively
simple transformations relate the exponential distribution to a number of
other distributions. Therefore, techniques for identifying outliers in expo-
nential data can be used after performing an appropriate transformation.

The Cochran procedure for detecting an upper outlier from an exponen-
tially distributed ordered data sample uses the critical region:

xn∑n
i=1 xi

> K (34)
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where the critical value K for different confidence levels can be obtained in
Barnett and Lewis [1].

Kimber [14] adapted the Generalized ESD procedure to develop a test for
up to r upper outliers from the exponential distribution. Starting from an
ordered sample, the approach first chooses r and then tests the hypothesis
that the r largest observations are outliers. If it is rejected, then it checks if
the r− 1 largest number of observations are outliers or not, and so on until
the largest observation is checked.

Specifically, the test statistic Sj is defined as:

Sj =
xn+1−j∑n+1−j
i=1 xi

j = 1, . . . , r (35)

Then, for j = r, r − 1, . . . , 1 we ask whether Sj > sj , where sj is the
appropriate critical value from Kimber [14] available for k ≤ 4 and n ≤ 140.
The largest value of j, say r∗, for which Sr∗ > sr∗ declares the upper r∗ as
outliers.

For combinations of r, α and n not available in the tables, the following
equation is useful for calculating approximate critical values:(

n

j

)
[(1− sj)/(1 + jsj − sj)]n−j = α/r (36)

and solving for sj yields

sj =
1− U

1 + (j − 1)U
where U =

[
α/r(
n
j

) ] 1
n−j

(37)

Kimber [14] also provides a similar procedure to check for the r lower
outliers, where

S∗j =
xj+1∑j+1
i=1 xi

j = 1, . . . , r (38)

with values for s∗j provided for n ≤ 200 and r ≤ 4.
Barnett and Lewis [1] provide more tests to check for lowest outliers.

15.2 Log-Normal Distribution

If X is a random variable from a log-normal distribution then the logarithms
of the observations follow a normal distribution, i.e., Y = ln(X) has a normal
distribution. The inverse also applies, and a more general form of the log-
normal distributions also includes a location parameter θ to handle data
that are displaced to the right of zero: X = θ + eY .

A first approach then is to apply the ln to the original data, which it
is assumed to follow a log-normal distribution, and then apply the tests
intended for normal distributions.

13



However, this transformation may not always be satisfactory if the trans-
formed data does not show too much symmetry around the mean or does
not resembles a normal distribution. In this case it can be useful to seek a
different transformation for the data.

15.3 Transformations to Normality

One objective is to transform the data to improve the symmetry and thus
get the transformed data closer to normality.

Let’s consider an ordered sample, the depth of the median is defined as
d1 = (n+1)/2, the depth of the fourth moment as d2 = (ď1)/2, the depth of
the eights as d3 = (ď2)/2, and so on. Here, ďj indicates the greatest integer
≤ d1.

For j ≥ 2, the jth values are the pair of ordered observations with depth
dj from each end, i.e., xL = xdj and xU = xn+1−dj . The difference between
(xL + xU )/2 and x̃ measures skewness.

The family of power transformations y = xp−1
p , p 6= 0 approaches the

function y = ln(x) as p → 0, and a simpler and equivalent form of this
family can be expressed as:

y =

{
xp if p 6= 0
ln(x) if p = 0

(39)

A guide for choosing p is to compute p for each pair of letter values from
the equation:

xL + xU
2

− x̃ = (1− p)
[(xU − x̃)2 + (x̃− xL)2

4x̃

]
(40)

The exponent to chose will be a round value close to the median of
the computed estimates of p. This method works well if the p are close
to each other; otherwise it provides only a rough guide to the appropriate
transformation.
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