
Microsoft Word: Visual Basic for Applications

See also:
 Access Techniques for VBA code techniques, some is specific to Access, some is general

This document presumes you know something about VBA. It is not a primer.

Contents

About Macros .. 2
Organizing Macros ..2
Export and Import Code2
Get to Know the Object Model2

Miscellaneous Subjects................................... 2
Moving Around in a Word Document2
Working with Documents3
Working With Path...4
Working With Text...4
Portrait and Landscape ..5
Document Properties...6
Page Numbering..7

Dialog Boxes.. 7
Message Box Object...7

Present Information.. 8
Prompt User for Choices ... 8

Dialog Object..9
Prompt User for File(s) or Directory with

Dialog Object.. 10
FileDialog Object ..10

Prompt User to Select Folder with FileDialog 11

Documenting Your Shortcut Keys 12
About Keyboard Shortcut Keys..........................12
Run This Code..12
DOM Background ..13

Field Codes in VBA 14
Index Object..16
Table of Contents..16
RD Field Code ..16
Field Codes and Page Numbers17

Page Headers and Footers 17

Assembling Multi-file Documents................ 19
Approach...19
Code Samples ..20

Prompt User for Directory of New File.....................20
Insert Chapter Files...20
Update Main Table of Contents21
Update Main Table of Figures21
Save New Document...21
Update Chapter Tables of Contents21
Update Indices..21
Delete Macros in New Document21
Subroutines ..21
Variations ..22

Shapes ..23
About Shapes...23

Anchoring a Shape ..23
Positioning a Shape...23
Formatting a Shape ..23
Other Important Shape Properties24
Remarks ...24

Converting Visio Picture into Inline Shape24
Key Properties..24

RelativeVerticalPosition Property.............................24
RelativeHorizontalPosition Property25
Top Property...25
Left Property...25

Shrink Inline Shapes ..26

Watermarks..28
Background Printed Watermark28
Watermark as Text Box30
Code Created by Insert Print Watermark

Background Wizard.......................................30

Iterative Document Editing..........................31
Reformat Text in Square Brackets31
Insert RD Field Codes32

Passwords and Protection.............................35

Interacting with an Access Database.............36

Automation..36

Revision: 8/2/2007 Page 1 of 37
Copyright 2002–2006 by Susan J. Dorey

Microsoft Word: Visual Basic for Applications

About Macros

Organizing Macros

Macros (in newer versions of Word) are stored in modules. They may reside in any kind of Word file,
document or template. All the macros in a file comprise a Project.

By default new recorded macros are created in the NewMacros project of normal.dot.

It can be helpful to organize macros into modules. Perhaps you put all macros used together in the same
module. Perhaps you put utility macros, like those that transpose two adjacent characters, in the same
module. But if you have 100 macros, it is better if they are distributed across 5 or so modules.

You can create a module in the VBA editor with menu Insert, Module.

You can rename a module: First select the module, then use menu View, Properties Window. to open the
same-named window. Properties are listed in tabular format with the names in the left column and the
values in the right column. Select the value for the Name property and retype it. Click elsewhere for it to
take effect.

You can move a macro from one module to another: In the Code window select the text of the macro,
cut it, open the Code window of the new module, position the cursor, and paste the text.

You can delete a module: select it then use menu File, Remove.

Export and Import Code

A module’s code can be exported as a .bas text file. Such a file can be imported into a different project.
This can be a convenient method for copying code from one Word file to another.

Get to Know the Object Model

Because VBA is an object-oriented language, you will be most effective if you understand the Word object
model and how to manipulate it. Basically the model has objects. Objects are grouped into collections
which are an object unto themselves. Objects may have child objects and/or parent objects. Objects also
have methods and properties. When you are trying to figure out how to do something, you must identify
the relevant object and property or method. Sometimes you start with the property or method and work
backward to the object. Look in the help file for a diagram.

Miscellaneous Subjects

Moving Around in a Word Document

To go to the first character:
Selection.HomeKey Unit:=wdStory

To go to the first character and select the first paragraph:

Revision: 8/2/2007 Page 2 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Selection.HomeKey Unit:=wdStory
Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend

To release selection by moving cursor to the right:

Selection.MoveRight Unit:=wdCharacter, Count:=1

To move down 8 paragraphs:

Selection.MoveDown Unit:=wdParagraph, Count:=8

To move to the start of the current line:

Selection.HomeKey Unit:=wdLine

To move to the end of the current line:

Selection.EndKey Unit:=wdLine

To move to the end of the document:

Selection.EndKey Unit:=wdStory

Move cursor:

Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend

Working with Documents

Documents collection consists of all open documents.

Open a named document:

Documents.Open FileName, ConfirmConversions, ReadOnly, AddToRecentFiles, PasswordDocument,
PasswordTemplate, Revert, WritePasswordDocument, WritePasswordTemplate, Format, Encoding,
Visible, OpenConflictDocument, OpenAndRepair, DocumentDirection, NoEncodingDialog

Example: Documents.Open FileName:="C:\MyFiles\MyDoc.doc", ReadOnly:=True
Documents.Open “c:\data\this.doc”

Close the active document:

ActiveDocument.Close SaveChanges, OriginalFormat, RouteDocument
Example: ActiveDocument.Close wdSaveChanges

Save the active document:

expression.Save(NoPrompt, OriginalFormat)
Example: ActiveDocument.Save True

Create new empty document:

expression.Add(Template, NewTemplate, DocumentType, Visible)
Example: Documents.Add

Make a document the active one:

Documents(1).Activate
Documents("Report.doc").Activate

Run-time errors for files and directories:
 53 - file not found
 55 - file already open

Revision: 8/2/2007 Page 3 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

 57 - device I/O error
 75 - path/file access error
 76 - path not found

Working With Path

There are several functions which can be used to work with a path:
 CurDir returns or sets the current path-directory. NOT ALWAYS R`ELIABLE
 ChDrive changes the current default drive.
 ChDir changes the current default directory.
 MkDir creates a directory.
 RmDir deletes an empty directory.
 Kill deletes one or more files in a drive or directory. If argument is a directory, all the files in that

directory are deleted. Wildcards may be used in filename argument.
 ChangeFileOpenDirectory sets the directory in which Word searches for files. The specified

directory’s contents are listed the next time the File Open dialog box is opened.

Function CurDir returns or sets the current path-directory. If there is no argument, it returns the current
directory. If there is an argument, it sets the current directory to the value of the argument.
Syntax:
CurDir[(drive)]

Example:
' Assume current path on C drive is "C:\WINDOWS\SYSTEM" (on Microsoft Windows).
' Assume current path on D drive is "D:\EXCEL".
' Assume C is the current drive.
Dim MyPath
MyPath = CurDir ' Returns "C:\WINDOWS\SYSTEM".
MyPath = CurDir("C") ' Returns "C:\WINDOWS\SYSTEM".
MyPath = CurDir("D") ' Returns "D:\EXCEL".

ChDrive "D" ' Make "D" the current drive.
ChDir "D:\TMP" ' Make "TMP” the current directory on D drive.
ChDir ".." ' Moves up one directory in Microsoft Windows.
ChDir "MYDIR" ' Make "MYDIR" the current directory on current drive.
MkDir "MYDIR" ' Create directory "MYDIR" on current drive.
MkDir "D:\MYDIR" ' Create directory "MYDIR" on D drive.
RmDir "MYDIR" ' Delete directory "MYDIR" on current drive.
Kill "*.TXT" ' Delete all files ending in .TXT in current directory.
Kill "c:\DATA\THIS.DOC" ' Delete named file in named path.
ChangeFileOpenDirectory "c:\Data\this.doc"

Working With Text

Refer to all text in the current document:
ActiveDocument.Content

InsertAfter method of Selection or Range object.

Revision: 8/2/2007 Page 4 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Portrait and Landscape

Macros are useful for changing the orientation of document text. In addition the margins and styles of
the page headers and footers must be changed accordingly.

Sub MakeSectionLandscape()
' First, set orientation and margins
' Second, correct headers and footers: link to previous, styles, page numbering
Dim cntSections, thisSection, nextSection
cntSections = ActiveDocument.Sections.Count
thisSection = Selection.Information(wdActiveEndSectionNumber)
Landscape
'x = MsgBox("Count of sections = " + CStr(cntSections), vbOKOnly)
'y = MsgBox("Number of this section = " + CStr(thisSection), vbOKOnly)
If thisSection < cntSections Then
 nextSection = thisSection + 1
ActiveDocument.Sections(nextSection).Headers(wdHeaderFooterPrimary).LinkToPrevi
ous = False
ActiveDocument.Sections(nextSection).Footers(wdHeaderFooterPrimary).LinkToPrevi
ous = False
End If
With ActiveDocument.Sections(thisSection).Headers(wdHeaderFooterPrimary) '
this section
 .LinkToPrevious = False
 .Range.Style = "HeaderLandscape"
End With
With ActiveDocument.Sections(thisSection).Footers(wdHeaderFooterPrimary)
 .LinkToPrevious = False
 .PageNumbers.RestartNumberingAtSection = False
 .Range.Style = "FooterLandscape"
End With
End Sub

Sub MakeSectionPortrait()
' First, set orientation and margins
' Second, correct headers and footers: link to previous, styles, page numbering
Dim cntSections, thisSection, nextSection
cntSections = ActiveDocument.Sections.Count
thisSection = Selection.Information(wdActiveEndSectionNumber)
Portrait
'x = MsgBox("Count of sections = " + CStr(cntSections), vbOKOnly)
'y = MsgBox("Number of this section = " + CStr(thisSection), vbOKOnly)
If thisSection < cntSections Then
 nextSection = thisSection + 1
ActiveDocument.Sections(nextSection).Headers(wdHeaderFooterPrimary).LinkToPrevi
ous = False
ActiveDocument.Sections(nextSection).Footers(wdHeaderFooterPrimary).LinkToPrevi
ous = False
End If
With ActiveDocument.Sections(thisSection).Headers(wdHeaderFooterPrimary) '
this section
 .LinkToPrevious = False
 .Range.Style = "Header"
End With
With ActiveDocument.Sections(thisSection).Footers(wdHeaderFooterPrimary)
 .LinkToPrevious = False
 .PageNumbers.RestartNumberingAtSection = False
 .Range.Style = "Footer"
End With
End Sub

Revision: 8/2/2007 Page 5 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Sub Portrait()
' sets page layout to Portrait
'
 With Selection.PageSetup
 .Orientation = wdOrientPortrait
 .TopMargin = InchesToPoints(1.1)
 .BottomMargin = InchesToPoints(1.1)
 .LeftMargin = InchesToPoints(1.25)
 .RightMargin = InchesToPoints(1.25)
 .HeaderDistance = InchesToPoints(0.4)
 .FooterDistance = InchesToPoints(0.3)
 End With
End Sub

Sub Landscape()
With Selection.PageSetup
 .Orientation = wdOrientLandscape
 .TopMargin = InchesToPoints(1.1)
 .BottomMargin = InchesToPoints(1.1)
 .LeftMargin = InchesToPoints(0.5)
 .RightMargin = InchesToPoints(0.5)
 .HeaderDistance = InchesToPoints(0.4)
 .FooterDistance = InchesToPoints(0.3)
 End With
End Sub

Sub MakeHeaderLandscape()
 If ActiveWindow.View.SplitSpecial <> wdPaneNone Then
 ActiveWindow.Panes(2).Close
 End If
 If ActiveWindow.ActivePane.View.Type = wdNormalView Or ActiveWindow. _
 ActivePane.View.Type = wdOutlineView Then
 ActiveWindow.ActivePane.View.Type = wdPrintView
 End If
 ActiveWindow.ActivePane.View.SeekView = wdSeekCurrentPageHeader
 Selection.WholeStory
 Selection.Style = ActiveDocument.Styles("HeaderLandscape")
 Selection.EscapeKey
 Selection.MoveDown Unit:=wdLine, Count:=1
 Selection.WholeStory
 Selection.Style = ActiveDocument.Styles("FooterLandscape")
 Selection.EscapeKey
 ActiveWindow.ActivePane.View.SeekView = wdSeekMainDocument
End Sub

Document Properties

A Document object can have one or more DocumentProperty objects. There are two kinds of document
properties: built-in and custom. Each kind has its own collection of DocumentProperty objects. The
basic elements of a document property are its name and value; the DocumentProperty object has
corresponding properties of the same name.

You can return a collection of document properties. You can return a specific document property. And
you can add, change, and delete members of the collection.

Revision: 8/2/2007 Page 6 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

 Use the BuiltInDocumentProperties property to return the collection of built-in document
properties.

 Use the CustomDocumentProperties property to return the collection of custom document

properties.

 Use a constant to refer to a specific document property:
Dim intWords As Integer
intWords = ActiveDocument.BuiltInDocumentProperties(wdPropertyWords)

 Use a literal to refer to a specific document property. But be careful because if the document

property does not exist, an error will occur.
x = ActiveDocument.CustomDocumentProperties("VersionNum").Value
x = Documents("Sales.doc").CustomDocumentProperties("VersionNum").Value

 Use the Add method to add a property to a collection.
Documents("Sales.doc").CustomDocumentProperties.Add _
 Name:="YourName", LinkToContent:=False, Value:=thename, _
 Type:=msoPropertyTypeString

Page Numbering

Page numbering is usually done with field codes: Page, SectionPages, and NumPages. The field codes
have optional switches for the style of the number (e.g., roman or arabic).

PageNumbers collection. Use PageNumbers(index), where index is the index number, to return a single
PageNumber object. In most cases, a header or footer contains only one page number, which is index
number 1.

PageNumbers(1).Alignment = wdAlignPageNumberCenter

PageNumbers properties: | Application Property | ChapterPageSeparator Property | Count Property |
Creator Property | DoubleQuote Property | HeadingLevelForChapter Property | IncludeChapterNumber
Property | NumberStyle Property | Parent Property | RestartNumberingAtSection Property |
ShowFirstPageNumber Property | StartingNumber Property. Note that formatting properties apply to all
objects in the collection.

PageNumbers methods: | Add Method | Item Method

PageNumbers parent Objects: | HeaderFooter

Dialog Boxes

Message Box Object

The basic syntax is
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The button constants are:
The first group of values describes the number and type of buttons displayed in the dialog box; the second
group describes the icon style; the third group determines which button is the default; and the fourth

Revision: 8/2/2007 Page 7 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

group determines the modality of the message box. Buttons can be combined—no more than one button
from each group—by adding their numbers You can add numbers:
 vbYesNo + vbCritical

vbOKOnly Display OK button only.
vbOKCancel Display OK and Cancel buttons.
vbAbortRetryIgnore Display Abort, Retry, and Ignore buttons.
vbYesNoCancel Display Yes, No, and Cancel buttons.
vbYesNo Display Yes and No buttons.
vbRetryCancel Display Retry and Cancel buttons.

vbCritical Display Critical Message icon.
vbQuestion Display Warning Query icon.
vbExclamation Display Warning Message icon.
vbInformation Display Information Message icon.

vbDefaultButton1 First button is default.
vbDefaultButton2 Second button is default.
vbDefaultButton3 Third button is default.
vbDefaultButton4 Fourth button is default.

vbApplicationModal Application modal; the user must respond to the message box

before continuing work in the current application.
vbSystemModal System modal; all applications are suspended until the user

responds to the message box.
vbMsgBoxHelpButton Adds Help button to the message box
VbMsgBoxSetForeground Specifies the message box window as the foreground window
vbMsgBoxRight Text is right aligned

MsgBox can return an integer corresponding to the button selected:

vbOK OK
vbCancel Cancel
vbAbort Abort
vbRetry Retry
vbIgnore Ignore
vbYes Yes
vbNo No

Present Information
Dim msgTitle as String, msgText as String
msgTitle = "the process title"
msgText = "Count of sections = " + CStr(cntSections)
MsgBox msgText, vbOKOnly, msgTitle

Prompt User for Choices
You can use MsgBox to prompt the user for simple choices by directing the user to press a button that
corresponds with a certain condition.

Revision: 8/2/2007 Page 8 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

msgTitle = "Aggregate Document Files for NPI Business Requirements"
msgText = "Where are the the document files located? " + vbCrLf
msgText = msgText + "Select [Yes] for " & HomeDirectory + vbCrLf
msgText = msgText + "Select [No] for " & WorkDirectory
c = MsgBox(msgText, vbYesNoCancel, msgTitle)
On Error Resume Next
Select Case c
Case vbYes
 ChangeFileOpenDirectory (HomeDirectory)
Case vbNo
 ChangeFileOpenDirectory (WorkDirectory)
Case Else
 Exit Sub
End Select
If Err.Number = 4172 Then
 msgText = "That directory does not exist. Stopping."
 MsgBox msgText, vbOKOnly, msgTitle
 Exit Sub
End If

On Error GoTo ErrorHandler

Dialog Object

The object model has a Dialogs collection that represents all the built-in dialog boxes in Word. The
collection has two parents: Application and Global.

Use Dialogs(index), where index is a wdWordDialog constant that identifies the dialog box, to return a
single Dialog object. Dialog boxes you are likely to use include:
 wdDialogEditFind
 wdDialogFileFind
 wdDialogFileOpen
 wdDialogFilePrint
 wdDialogFileSaveAs

The Dialog object has methods:
 Display: Displays the specified built-in Word dialog box until either the user closes it or the

specified amount of time has passed.
 Execute: Applies the current settings of a Microsoft Word dialog box.
 Show: Displays and carries out actions initiated in the specified built-in Word dialog box.
 Update: Updates the values shown in a built-in Microsoft Word dialog box.

The Show method of the Dialog object displays and executes any action taken in a built-in Word dialog
box. The return value (Long) indicates which button was clicked to close the dialog box:

Return value Description

-2 The Close button.

-1 The OK button.

0 (zero) The Cancel button.

> 0 (zero) A command button: 1 is the first button, 2 is the second button, and so on.

Revision: 8/2/2007 Page 9 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Open a particular dialog box:
Dialogs(wdDialogFileOpen).Show

This example displays the built-in Find dialog box, with "Hello" in the Find What box.

Dim dlgFind As Dialog
Set dlgFind = Dialogs(wdDialogEditFind)
With dlgFind
 .Find = "Hello"
 .Show
End With

This example displays the built-in Open dialog box showing all file types.

With Dialogs(wdDialogFileOpen)
 .Name = "*.*"
 .Show
End With

This example prints the active document, using the settings from the Print dialog box.

Dialogs(wdDialogFilePrint).Execute

Prompt User for File(s) or Directory with Dialog Object
Dim pn, r, t, m
r = MsgBox("Select directory from the following window, then [Open].",
vbOKCancel, t)
If r = vbCancel Then End
With Dialogs(wdDialogFileFind)
 .Display
 .Update
 pn = .SearchPath
End With
m = "Confirm directory: " + pn
r = MsgBox(m, vbOKCancel, t)
If r = vbCancel Then End

FileDialog Object

New with Office 2003 is the FileDialog object. It provides file dialog box functionality similar to the
functionality of the standard Open and Save dialog boxes found in Microsoft Office applications.

The object can to used in four ways, determined by a single parameter, DialogType:

Constant Action

msoFileDialogOpen lets users select one or more files that you can then open in the host
application using the Execute method

msoFileDialogSaveAs lets users select a single file that you can then save the current file as
using the Execute method

msoFileDialogFilePicker lets users select one or more files; the file paths that the user selects are
captured in the FileDialogSelectedItems collection

msoFileDialogFolderPicker lets users select a path; the path that the user selects is captured in the
FileDialogSelectedItems collection

Revision: 8/2/2007 Page 10 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

It has two methods:
 Execute: carries out a user's action right after the Show method is invoked.
 Show: Displays a file dialog box and returns a Long indicating whether the user pressed the action

button (-1) or the cancel button (0). When you call the Show method, no more code will execute
until the user dismisses the file dialog box. In the case of Open and SaveAs dialog boxes, use the
Execute method right after the Show method to carry out the user's action.

Has properties:
 AllowMultiSelect: if the user is allowed to select multiple files from a file dialog box. Has no effect

on Folder Picker dialog boxes or SaveAs dialog boxes because users should never be able to select
multiple files in these types of file dialog boxes.

 InitialFileName: Set or returns a String representing the path and/or file name that is initially
displayed in a file dialog box.

 Title: Sets or returns the title of a file dialog box displayed using the FileDialog object.

Display the Open dialog box and limit the user to select only one item:

Dim dlgOpen As FileDialog
Set dlgOpen = Application.FileDialog(FileDialogType:=msoFileDialogOpen)
With dlgOpen
 .AllowMultiSelect = False
 .Show
End With

The FileDialog object has two sub objects.
 FileDialogSelectedItems
 FileDialogFilter

FileDialogFilter object represents a file filter in a file dialog box displayed through the FileDialog object.
Each file filter determines which files are displayed in the file dialog box. It has a collection
FileDialogFilters.

Access the collection:
Application.FileDialog(msoFileDialogOpen).Filters

Clear the default filters:
Application.FileDialog(msoFileDialogFilePicker).Filters.Clear

Add a filter that includes all files:
Application.FileDialog(msoFileDialogFilePicker).Filters.Add "All files", "*.*"

Add a filter that includes GIF and JPEG images and make it the first item in the list:
Application.FileDialog(msoFileDialogFilePicker).Filters.Add "Images", "*.gif;
*.jpg; *.jpeg", 1

Prompt User to Select Folder with FileDialog
Sub GetDir()
Dim strDir As String
With Application.FileDialog(msoFileDialogFolderPicker)
 .InitialFileName = "C:\"
 .Show
 strDir = .SelectedItems(1)

Revision: 8/2/2007 Page 11 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

End With
MsgBox "You selected " & strDir
End Sub

Documenting Your Shortcut Keys

This can be done with VBA.

About Keyboard Shortcut Keys

Shortcut keys—combinations of keys—can be assigned to menu items, toolbar items, macros, Word
commands, styles, fonts, and common symbols. Menu and toolbar items have Alt shortcut keys which are
identified by underlining. For example, the File menu is presented in the menu bar as File where the
underlining indicates that [Alt+F] is the shortcut key.

There are two ways of creating custom shortcut keys:

 For menu and toolbar items, open the Customize dialog box, select the desired menu or toolbar
item, then click [Modify Selection] to open a context menu. In the Name text box, type the
ampersand character (&) to the left of the letter you want to use for an Alt shortcut key.

 For all objects, open the Customize Keyboard dialog box, select the desired object as an item in a
category, enter the desired shortcut key combination, and save it. If you assign an Alt shortcut key
that is already in use (as visible on the menu or a toolbar), your new assignment has precedence
(until you delete it). So use caution.

Run This Code

1. Open an empty Word document.
2. Run the code:

CustomizationContext = NormalTemplate
For Each aKey In KeyBindings
 Selection.InsertAfter aKey.Command & vbTab _
 & aKey.KeyString & vbCr
 Selection.Collapse Direction:=wdCollapseEnd
Next aKey

3. Select all text in the Word document and convert text to a table separating text into columns with
tabs.

4. Reformat the table to suit yourself.

Or run:

Sub DocumentKeys()
Documents.Add DocumentType:=wdNewBlankDocument
CustomizationContext = NormalTemplate
For Each aKey In KeyBindings
 Selection.InsertAfter aKey.Command & vbTab _
 & aKey.KeyString & vbCr
 Selection.Collapse Direction:=wdCollapseEnd
Next aKey
MsgBox "Count of custom shortcut keys = " & KeyBindings.Count
Selection.WholeStory
Selection.ConvertToTable Separator:=wdSeparateByTabs, NumColumns:=2, _
 AutoFitBehavior:=wdAutoFitContent

Revision: 8/2/2007 Page 12 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

With Selection.Tables(1)
 .AllowPageBreaks = False
 .AllowAutoFit = True
 .Style = "Table Grid"
 .ApplyStyleHeadingRows = True
 .ApplyStyleLastRow = True
 .ApplyStyleFirstColumn = True
 .ApplyStyleLastColumn = True
End With
Selection.MoveRight Unit:=wdCharacter, Count:=1
End Sub

You can differentiate between types of commands easily. They are typically either style names, Word
command names, or macro names. The latter have names like Normal.General.Keep; Normal is the name
of the template file, General is the name of the module, and Keep is the name of the macro.

DOM Background

The relevant DOM collection is KeyBindings. This is a collection of KeyBinding objects that represent
the custom key assignments in the current context. (Custom key assignments are made in the Customize
Keyboard dialog box.) The collection excludes Alt keys assigned to menu and toolbar items. The
collection is returned by property KeyBindings, a property of the Application and Global objects.

Property Context: Returns an object that represents the storage location of the specified key binding.
Note that built-in key assignments (for example, CTRL+I for Italic) return the Application object as the
context. Any key bindings you add will return a Document or Template object, depending on the
customization context in effect when the KeyBinding object was added.

Methods:
Item: returns a single item; expression.Item(Index)
Key: Returns a KeyBinding object that represents the specified custom key combination. If the key
combination doesn't exist, this method returns Nothing.

MsgBox KeyBindings(1).Command

Property CustomizationContext: Returns or sets a Template or Document object that represents the
template or document in which changes to menu bars, toolbars, and key bindings are stored. Corresponds
to the value of the Save in box on the Commands tab in the Customize dialog box. Applies to the
Application object and to the Global object.

Examples:
CustomizationContext = NormalTemplate
CustomizationContext = ActiveDocument.AttachedTemplate

Object KeyBinding: Represents a custom key assignment in the current context.
Application Property
Command Property: the command assigned to the key combination
CommandParameter Property: the command parameter
Context Property: the storage location (example: normal.dot)
Creator Property
KeyCategory Property: WdKeyCategory constants:

wdKeyCategoryAutoText

Revision: 8/2/2007 Page 13 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

wdKeyCategoryCommand
wdKeyCategoryDisable
wdKeyCategoryFont
wdKeyCategoryMacro
wdKeyCategoryNil
wdKeyCategoryPrefix
wdKeyCategoryStyle
wdKeyCategorySymbol

KeyCode Property: unique number for first key in the combination
KeyCode2 Property: unique number for second key in the combination
KeyString Property: the key combination string for the specified keys (for example, CTRL+SHIFT+A)
Parent Property
Protected Property

Field Codes in VBA

The Fields collection belongs to three objects: Document, Range, and Selection.

There is a Fields collection and a Field object. The Fields collection is a child of Range and Selection.
The Field object has properties:

 Code property returns a Range object that contains all the text enclosed by the { } including leading
and trailing spaces.

 Result property returns a Range object that represents the field’s result.

 Type property returns an expression that is a value of the WdfieldType constant. Sample values:
wdFieldNumPages, wdFieldPage, wdFieldSaveDate, wdFieldSectionPages, wdFieldSequence,
wdFieldIndex, wdFieldIndexEntry, wdFieldTOC.

 Kind property identifies the field as a constant value:
wdFieldKindCold has no result
wdFieldKindHot result is automatically updated
wdFieldKindNone invalid
wdFieldKindWarm result auto updated when source changes or can be manually updated

Field methods:
 Select
 Copy
 Cut: removes the field and puts it on the Clipboard.
 Delete
 Add
 Update: updates the field’s result.

A Range object’s Text property returns the text in the range. Can be useful for extracting the text in a
field’s result.

The Add method: Adds a Field object to the Fields collection. Returns the Field object at the specified
range.

expression.Add(Range, Type, Text, PreserveFormatting)

Revision: 8/2/2007 Page 14 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

expression Required. An expression that returns a Fields object.
Range Required Range object. The range where you want to add the field. If the range isn't
collapsed, the field replaces the range.
Type Optional Variant. Can be any WdFieldType constant. The default value is wdFieldEmpty.
Text Optional Variant. Additional text needed for the field. For example, if you want to specify a
switch for the field, you would add it here.
PreserveFormatting Optional Variant. True to have the formatting that's applied to the field
preserved during updates.

Selection.Collapse Direction:=wdCollapseEnd
ActiveDocument.Fields.Add Range:=Selection.Range, _
 Type:=wdFieldListNum, Text:="\s 3"

To remove all XE field codes:
Dim fld As Field
For each fld in ActiveDocument.Fields
 If fld.Type = wdFieldIndexEntry Then fld.Delete
Next

If you iterate through field codes at the Document level, you only access those in the Main Text story. To
iterate through all field codes in the document, you have to iterate through the StoryRanges at the top
level, then for each StoryRange you can iterate through its Fields collection.

You can access fields in page headers/footers with the HeadersFooters collection.

How to access a particular field code? How to learn if a document has a particular field code?
 Access the nth field code: ActiveDocument.Fields(n)
 x = ActiveDocument.StoryRanges(wdPrimaryFooterStory).Fields.Count

Field methods:
 Unlink: replaces the field with its most recent result (converts it to plain text)

When a document has a table of contents created by the TOC field code, an iteration of the Fields
collection will return one field for the TOC itself (13) and two fields for each TOC entry (37
FieldPageRef and 88 Hyperlink).

Dim sty as Range
Dim fc As Field
For Each sty in MyDoc.StoryRanges

If sty.Fields.Count <> 0 Then
For Each fc In sty.Fields
 MsgBox “
 Select Case fc.Type
 Case wdFieldSaveDate
 fc.Unlink
 Case wdFieldDate
 fc.Delete
 Case wdFieldPrintDate
 fc.Delete
 End Select
Next fc

Revision: 8/2/2007 Page 15 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

End If
Next sty

Index Object

The Index object is a member of the collection Indexes. It has properties:
 Type: constant wdIndexType has values wdIndexRunin, wdIndexIndent.

Methods:
 Update: updates the values.

Table of Contents

The object is TableOfContents. It belongs to the collection TablesOfContents, which belongs to the
object Document.

Methods:
 UpdatePageNumbers: updates only the page numbers.
 Update: updates the entries (“update entire table”).

ActiveDocument.TablesOfContents(1).Update

The following code updates the page numbers in TOCs other than the first one. This is useful in a multi-
chapter document with a master TOC and individual chapter TOCs.

Dim t as TableOfContents
For Each t in ActiveDocument.TablesOfContents
 If not t is ActiveDocument.TablesOfContents(1) Then
 t.UpdatePageNumbers
 End If
Next

or

Dim t as TableOfContents
For Each t in ActiveDocument.TablesOfContents
 If t is ActiveDocument.TablesOfContents(1) Then
 t.Update
 Else
 t.UpdatePageNumbers
 End If
Next

RD Field Code

URL strings always encode space characters to prevent the possibility of being misunderstood. URL
encoding of a character consists of a "%" symbol, followed by the two-digit hexadecimal representation
(case-insensitive) of the ISO-Latin code point for the character. As hex 20 is the representation of a space,
“%20” is used in lieu of the space character in URL-encoded strings.

Revision: 8/2/2007 Page 16 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

When you copy a filename from a website into an RD field, it will be encoded. And while you can create
an RD field with spaces in the filename, the filename becomes encoded after the document with the RD
field is saved. For instance,
“RD “Using%20SharePoint.doc” \f”

The encoded value may be useful when the file in question resides on a web server, but not on a file server.

Use a simple function like the following example to replace “%20” with a space.

Private Function URLDecode(URLtoDecode As String) As String
 URLDecode = Replace(URLtoDecode, "%20", " ")
End Function

Field Codes and Page Numbers

If you needed to change a switch in a field code, you would have to edit the Result property. If you
needed to change the numbering style, you might do some string manipulation

NUMPAGES * roman
NUMPAGES * arabic

Replace(Field.Code, “arabic”, “roman”)

Or you could replace one field with another. In the following example, the cursor is immediately to the
left of a Page field:
Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend
Selection.Fields.Add Range:=Selection.Range, Type:=wdFieldEmpty, Text:= _
 "PAGE * roman ", PreserveFormatting:=True

Why would you need to do this when the HeaderFooter.PageNumbers property is supposed to return a
PageNumbers collection that represents all the page number fields included in the specified header or
footer? Because when I changed the PageNumbers.NumberStyle property, the NumPages field did not
change, only the Page field.

How would you find the page number field codes?

Page Headers and Footers

HeadersFooters is the main collection, has HeaderFooter objects. A collection belongs to each section,
e.g., ActiveDocument.Sections(n).

Each section can have several HeaderFooter objects represented by the following WdHeaderFooterIndex
constants: wdHeaderFooterEvenPages, wdHeaderFooterFirstPage, and wdHeaderFooterPrimary (returns
an odd-numbered header/footer when there are different odd and even ones).

Headers property returns a HeadersFooters collection that represents the headers for the specified section
With ActiveDocument.Sections(1).Headers(wdHeaderFooterFirstPage)
 .Range.InsertAfter("First Page Text")
 .Range.Paragraphs.Alignment = wdAlignParagraphRight
End With

Revision: 8/2/2007 Page 17 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Footers property returns a HeadersFooters collection that represents the footers for the specified section

With ActiveDocument.Sections(1)
 .Headers(wdHeaderFooterPrimary).Range.Text = "Header text"
 .Footers(wdHeaderFooterPrimary).Range.Text = "Footer text"
End With

The Exist property indicates if the specified type of header/footer exists.
If secTemp.Headers(wdHeaderFooterFirstPage).Exists = True Then . . .

The InsertAfter method inserts the specified text at the end of a Range object or Selection object. After
this method is applied, the range or selection expands to include the new text. If you use this method
with a range or selection that refers to an entire paragraph, the text is inserted after the ending paragraph
mark (the text will appear at the beginning of the next paragraph). To insert text at the end of a
paragraph, determine the ending point and subtract 1 from this location (the paragraph mark is one
character), as shown in the following example.
Set doc = ActiveDocument
Set rngRange = _
 doc.Range(doc.Paragraphs(1).Start, _
 doc.Paragraphs(1).End - 1)
rngRange.InsertAfter _
 " This is now the last sentence in paragraph one."

HeaderFooter objects can have a Range sub-object but not a Selection sub-object. The Range object is
established with the Range property:
ActiveDocument.Section(1).Headers(wdHeaderFooterPrimary).Range

Text can be inserted at the end of a header with the InsertAfter property on a Range object.
ActiveDocument.Section(1).Headers(wdHeaderFooterPrimary).Range.InsertAfter
“Draft”
ActiveDocument.Section(1).Headers(wdHeaderFooterPrimary).Range.InsertAfter
vbCrLf + “Draft”

To select the inserted paragraph, use the Paragraphs collection:
ActiveDocument.Section(1).Headers(wdHeaderFooterPrimary).Range.Paragraphs(Last)

To apply a style to a Range object:
Selection.Range.Style = "Bolded"
ActiveDocument.Section(1).Headers(wdHeaderFooterPrimary).Range.Paragraphs.Last.
Style = "Watermark"
Selection.Style = ActiveDocument.Styles("Watermark")

To do something to every header, do it for each header in each section (but perhaps not to headers linked
to previous ones, see below):
Sub PutWatermarkTextInAllHeaders()
' inserts text at end of each header
WorkDirectory = "C:\Data\NPI Requirements\"
ChangeFileOpenDirectory (WorkDirectory)
Documents.Open FileName:="All Business Requirements.doc"
Dim sec As Section
Dim cnt As Integer
Dim s As Integer
cnt = ActiveDocument.Sections.Count
'For Each sec In ActiveDocument.Sections 1 skip first page
For s = 2 To cnt
 Set sec = ActiveDocument.Sections(s)
 sec.Headers(wdHeaderFooterPrimary).Range.InsertAfter vbCrLf + "Draft"

Revision: 8/2/2007 Page 18 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

 sec.Headers(wdHeaderFooterPrimary).Range.Paragraphs.Last.Style =
ActiveDocument.Styles("Watermark")
Next
End Sub

Property LinkToPrevious returns True/False reflecting if current HeaderFooter object is linked to the
previous one. Can be used to change the setting. If you put a two-column table inside a continuous
section break, you do not want to change that section’s header. Continuous sections are linked to the
previous heading. The following code works when only continuous sections are linked to the previous
heading. (On the other hand there’s no point in changing a header that is linked to a previous one.)
If sec.Headers(wdHeaderFooterPrimary).LinkToPrevious = False Then ' ignore
section break continuous
 sec.Headers(wdHeaderFooterPrimary).Range.InsertAfter vbCrLf + "Draft"
 sec.Headers(wdHeaderFooterPrimary).Range.Paragraphs.Last.Style =
ActiveDocument.Styles("Watermark")
 End If

Assembling Multi-file Documents

Large and/or complex documents can be written such that each chapter is its own file and the entire
document is assembled by concatenating the chapter files with VBA code and saved as a single file. The
key issues for this assembly are:
 maintaining page headers and footers
 maintaining page margins
 maintaining page numbers and styles
 handling a mix of page orientations (landscape and portrait)

Approach

The approach I use these days is as follows:
a. Use a master document that contains the front matter (title page, revision history, TOC, list of

figures) and the macro that concatenates the chapter files. The user opens this file and runs the
macro. The macro does the rest.

b. Prompt user for directory in which to save the finished document.
c. Move cursor to the end of the document.
d. Insert each file. Before all but the first file insert a section break next page.
e. When an inserted file has a landscape orientation, before inserting it change the orientation of the

open document and change the styles of the page header and footer text. After inserting the file and
the section break next page, reset the orientation to portrait and change the styles of the page header
and footer.

f. After the last file:
g. Update the table of contents.
h. For any chapter table of contents, update only its page numbers.
i. Save the file with a new name in the location from step b.
j. Remove all macros from the new file.
k. Leave document open on first page in print layout view.

Now you should check the new document for correctness. Check the table of contents for correct page
numbering. Check the page headers and footers to be sure that the title page has none, that they match
each page’s orientation, and that they reflect the correct chapter name. If you find problems, you must

Revision: 8/2/2007 Page 19 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

make a note of them, close this file, correct the chapter files, and start over. When all is well, change the
version number and revision date on the title page and save the document with a different name.

Some formatting details:
 The master document has portrait orientation.
 Each page is in its own section, i.e., there is a section break next page between each page, including

after the last page.
 The title page has no header and footer.
 The other front matter pages share the same header and footer. The last page—where the first

chapter file will be inserted—is not linked to the previous header and footer.
 Page numbering starts on the second page with “ii”. Page numbering on the last page is reset to start

with “1”.
 The chapter files have the same size of header and footer so they will look seamless when

concatenated.
 The chapter files have one header and footer. They do not have different header/footer for the first

page, nor do they have different ones for odd and even pages. If your chapters have several headers
and/or footers, you may have to tinker with the code here.

Code Samples

Prompt User for Directory of New File
Sub GetDir()
Dim strDir As String
With Application.FileDialog(msoFileDialogFolderPicker)
 .InitialFileName = "C:\"
 .Show
 strDir = .SelectedItems(1)
End With
MsgBox "You selected " & strDir
End Sub

Insert Chapter Files
The key method is InsertFile. Each file is inserted in order, preceded by a page break next section. Care
must be taken to know where the cursor is. After InsertFile the cursor is at the end of the contents of the
inserted file. Because this may change with different versions of Word, be sure to confirm this with a test.
If the cursor does not move you will need code to move the cursor: Selection.EndKey Unit:=wdStory.

‘ use strChapDir only if documents are in a different directory
Dim strChapDir As String
strChapDir = "\\www.your-url.com\whee\more\"

Selection.EndKey Unit:=wdStory ' go to end of doc
ActiveWindow.ActivePane.View.Type = wdPrintView

Selection.InsertFile FileName:=strChapDir & "Component Design.doc"
LinkFooterToPrevious
Selection.InsertBreak Type:=wdSectionBreakNextPage

When a chapter begins in landscape orientation, change the orientation in the new document to match.

Landscape ‘ a subroutine
Selection.InsertFile . . . ‘ landscape file

Revision: 8/2/2007 Page 20 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

When the previous chapter ended in landscape and the new one is portrait, change the orientation in the
new document to match.

Selection.InsertBreak Type:=wdSectionBreakNextPage
Portait
Selection.InsertFile . . . ‘ portrait file

Update Main Table of Contents
ActiveDocument.TablesOfContents(1).Update

Update Main Table of Figures
ActiveDocument.TablesOfFigures(1).Update

Save New Document
ActiveDocument.SaveAs FileName:=strDir & "All One File.doc", FileFormat:=_
wdFormatDocument, AddToRecentFiles:=True

Update Chapter Tables of Contents
Sub UpdateChapterTOCs()
Dim t As TableOfContents
For Each t In ActiveDocument.TablesOfContents
 If Not t Is ActiveDocument.TablesOfContents(1) Then
 t.UpdatePageNumbers
 End If
Next
End Sub

Update Indices
Sub UpdateIndexes()
Dim it As Index
For Each i In ActiveDocument.Indexes
 i.Update
Next
End Sub

Delete Macros in New Document
In this code, the macros reside in a module named BuildDocuments.

Sub DeleteModuleInAll()
Application.OrganizerDelete Source:=ActiveDocument.Name, _
 Name:="BuildDocuments", Object:=wdOrganizerObjectProjectItems
End Sub

Subroutines
Sub LinkFooterToPrevious()
With Selection.Sections(1).Footers(wdHeaderFooterPrimary).PageNumbers
 .NumberStyle = wdPageNumberStylearabic
 .RestartNumberingAtSection = False
End With
With Selection.Sections(1)
 .Footers(wdHeaderFooterPrimary).LinkToPrevious = True
End With
End Sub

Revision: 8/2/2007 Page 21 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Sub Portrait()
' First, set orientation and margins
' Second, change styles

With Selection.PageSetup
 .Orientation = wdOrientPortrait
 .TopMargin = InchesToPoints(1.1)
 .BottomMargin = InchesToPoints(0.9)
 .LeftMargin = InchesToPoints(1.25)
 .RightMargin = InchesToPoints(1.25)
 .HeaderDistance = InchesToPoints(0.5)
 .FooterDistance = InchesToPoints(0.4)
End With
ActiveWindow.ActivePane.View.SeekView = wdSeekCurrentPageHeader
Selection.WholeStory
Selection.Style = ActiveDocument.Styles("Header")
Selection.EscapeKey
Selection.MoveDown Unit:=wdLine, Count:=1
Selection.WholeStory
Selection.Style = ActiveDocument.Styles("Footer")
Selection.EscapeKey
ActiveWindow.ActivePane.View.SeekView = wdSeekMainDocument
End Sub

Sub Landscape()
With Selection.PageSetup
 .Orientation = wdOrientLandscape
 .TopMargin = InchesToPoints(1.1)
 .BottomMargin = InchesToPoints(0.9)
 .LeftMargin = InchesToPoints(0.5)
 .RightMargin = InchesToPoints(0.5)
 .HeaderDistance = InchesToPoints(0.5)
 .FooterDistance = InchesToPoints(0.4)
End With
ActiveWindow.ActivePane.View.SeekView = wdSeekCurrentPageHeader
Selection.WholeStory
Selection.Style = ActiveDocument.Styles("HeaderLandscape")
Selection.EscapeKey
Selection.MoveDown Unit:=wdLine, Count:=1
Selection.WholeStory
Selection.Style = ActiveDocument.Styles("FooterLandscape")
Selection.EscapeKey
ActiveWindow.ActivePane.View.SeekView = wdSeekMainDocument
End Sub

Variations
Sub SetVersionNumber()
msgText = "Which version of the document is this?"
Dim v As String
v = InputBox(msgText, msgTitle, cv)
ActiveDocument.CustomDocumentProperties.Add _
 Name:="VersionNum", LinkToContent:=False, Value:=v, _
 Type:=msoPropertyTypeString
End Sub

Sub DraftWatermark()
' insert draft watermark
msgText = "Do you want the DRAFT watermark to appear in the document?"
c = MsgBox(msgText, vbYesNo, msgTitle)
If c = vbYes Then SetDraftWatermark
End Sub

Revision: 8/2/2007 Page 22 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Shapes

The detail here is meant to support writing macros to manipulate shapes, hence the discussion of the
object model.

Represents an object in the drawing layer, such as an AutoShape, freeform, OLE object, ActiveX control,
or picture. The Shape object is a member of the Shapes collection, which includes all the shapes in the
main story of a document or in all the headers and footers of a document.

A shape is usually attached to an anchoring range. You can position the shape anywhere on the page that
contains the anchor.

There are three objects that represent shapes: the Shapes collection, which represents all the shapes on a
document; the ShapeRange collection, which represents a specified subset of the shapes on a document
(for example, a ShapeRange object could represent shapes one and four on the document, or it could
represent all the selected shapes on the document); the Shape object, which represents a single shape on a
document. If you want to work with several shapes at the same time or with shapes within the selection,
use a ShapeRange collection.

About Shapes

Anchoring a Shape
Every Shape object is anchored to a range of text. A shape is anchored to the beginning of the first
paragraph that contains the anchoring range. The shape will always remain on the same page as its anchor.

You can view the anchor itself by setting the ShowObjectAnchors property to True. The shape's Top and
Left properties determine its vertical and horizontal positions. The shape's RelativeHorizontalPosition and
RelativeVerticalPosition properties determine whether the position is measured from the anchoring
paragraph, the column that contains the anchoring paragraph, the margin, or the edge of the page.

If the LockAnchor property for the shape is set to True, you cannot drag the anchor from its position on
the page.

Positioning a Shape
The position of the shape can be described in English by its vertical and horizontal position relative to a
line, paragraph, margin, or page. Four properties can be used:
 RelativeVerticalPosition identifies what object controls the vertical position
 Top specifies the vertical position
 RelativeHorizontalPosition identifies what object controls the horizontal position
 Left specifies the horizontal position

You use a combination of these properties. For example, to center a shape vertically relative to the page:
Top = wdShapeCenter, RelativeVerticalPosition = wdRelativeVerticalPositionPage

Formatting a Shape
Use the Fill property to return the FillFormat object, which contains all the properties and methods for
formatting the fill of a closed shape. The Shadow property returns the ShadowFormat object, which you
use to format a shadow. Use the Line property to return the LineFormat object, which contains properties

Revision: 8/2/2007 Page 23 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

and methods for formatting lines and arrows. The TextEffect property returns the TextEffectFormat
object, which you use to format WordArt. The Callout property returns the CalloutFormat object, which
you use to format line callouts. The WrapFormat property returns the WrapFormat object, which you use
to define how text wraps around shapes. The ThreeD property returns the ThreeDFormat object, which
you use to create 3-D shapes. You can use the PickUp and Apply methods to transfer formatting from one
shape to another.

Use the SetShapesDefaultProperties method for a Shape object to set the formatting for the default shape
for the document. New shapes inherit many of their attributes from the default shape.

Other Important Shape Properties
Use the Type property to specify the type of shape: freeform, AutoShape, OLE object, callout, or linked
picture, for instance. Use the AutoShapeType property to specify the type of AutoShape: oval, rectangle,
or balloon, for instance.

Use the Width and Height properties to specify the size of the shape.

The TextFrame property returns the TextFrame object, which contains all the properties and methods for
attaching text to shapes and linking the text between text frames.

Remarks
Shape objects are anchored to a range of text but are free-floating and can be positioned anywhere on the
page. InlineShape objects are treated like characters and are positioned as characters within a line of text.
You can use the ConvertToInlineShape method and the ConvertToShape method to convert shapes from
one type to the other. You can convert only pictures, OLE objects, and ActiveX controls to inline shapes.

WordArt objects may not be anchored.

Converting Visio Picture into Inline Shape

Sub ConvertVisioPicture()
' When Visio drawing is pasted as Picture, it becomes a shape with
an anchor and
' is essentially free-floating.
' This macro converts it to an Inline Shape which is treated like
text characters
' and positioned within a line of text.

If Selection.ShapeRange.Type = msoPicture Then
 Selection.ShapeRange.ConvertToInlineShape
End If
End Sub

Key Properties

RelativeVerticalPosition Property
Specifies to what the vertical position of a frame, a shape, or a group of rows is relative. Read/write

Can be one of the following WdRelativeVerticalPosition constants.

wdRelativeVerticalPositionLine Relative to line.

Revision: 8/2/2007 Page 24 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

wdRelativeVerticalPositionMargin Relative to margin.
wdRelativeVerticalPositionPage Relative to page.
wdRelativeVerticalPositionParagraph Relative to paragraph.

RelativeHorizontalPosition Property
Specifies to what the horizontal position of a frame, a shape, or a group of rows is relative. Read/write

Can be one of the following WdRelativeHorizontalPosition constants.

wdRelativeHorizontalPositionCharacter Relative to character.
wdRelativeHorizontalPositionColumn Relative to column.
wdRelativeHorizontalPositionMargin Relative to margin.
wdRelativeHorizontalPositionPage Relative to page.

Top Property
Returns or sets the vertical position of the specified shape or shape range in points. Can also be any valid
constant, especially WdShapePosition (see Left Property for values). Read/write Single.

expression.Top
expression Required. An expression that returns one of the above objects.
Remarks
The position of a shape is measured from the upper-left corner of the shape's bounding box to the shape's
anchor. The RelativeVerticalPosition property controls whether the shape's anchor is positioned alongside
the line, the paragraph, the margin, or the edge of the page.

For a ShapeRange object that contains more than one shape, the Top property sets the vertical position of
each shape.
Example
As it applies to Shape object.

This example sets the vertical position of the first shape in the active document to 1 inch from the top of
the page.
With ActiveDocument.Shapes(1)
 .RelativeVerticalPosition = wdRelativeVerticalPositionPage
 .Top = InchesToPoints(1)
End With

This example sets the vertical position of the first and second shapes in the active document to 1 inch
from the top of the page.
With ActiveDocument.Shapes.Range(Array(1, 2))
 .RelativeVerticalPosition = wdRelativeVerticalPositionPage
 .Top = InchesToPoints(1)
End With

This example was created automatically by wizard:
Selection.ShapeRange.Top = wdShapeCenter

Left Property
Returns or sets a Single that represents the horizontal position, measured in points, of the specified shape
or shape range. Can also be any valid constant. Read/write.

WdShapePosition can be one of these WdShapePosition constants.
wdShapeBottom At the bottom.

Revision: 8/2/2007 Page 25 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

wdShapeCenter In the center.
wdShapeInside Inside the selected range.
wdShapeLeft On the left.
wdShapeOutside Outside the selected range.
wdShapeRight On the right.
wdShapeTop At the top.

expression.Left

expression Required. An expression that returns one of the above objects.

Remarks
The position of a shape is measured from the upper-left corner of the shape's bounding box to the shape's
anchor. The RelativeHorizontalPosition property controls whether the anchor is positioned alongside a
character, column, margin, or the edge of the page.
For a ShapeRange object that contains more than one shape, the Left property sets the horizontal position
of each shape.
Example
As it applies to the Shape object.
This example sets the horizontal position of the first shape in the active document to 1 inch from the left
edge of the page.
With ActiveDocument.Shapes(1)
 .RelativeHorizontalPosition = _
 wdRelativeHorizontalPositionPage
 .Left = InchesToPoints(1)
End With

This example sets the horizontal position of the first and second shapes in the active document to 1 inch
from the left edge of the column.
With ActiveDocument.Shapes.Range(Array(1, 2))
 .RelativeHorizontalPosition = _
 wdRelativeHorizontalPositionColumn
 .Left = InchesToPoints(1)
End With

Shrink Inline Shapes

In my work I frequently insert Visio drawings into Word documents. I insert the drawings as Picture
(Enhanced Metafile), because it conserves file size while being able to print on different printers. I style
the drawings by inserting a border with an inside margin. When the drawing is wider than the text
boundaries, I resize it to fit within the text boundaries (text and diagrams are left justified).

I prefer to use macros to do this. I have a macro which adds the border with inside margin (to put some
space between it and the diagram), but have been adjusting the size manually. Now I want to do this
automatically. I’ll create a new macro for the shrinking and call it from the border macro.

Approach:
1. Make sure the requirements are met. If any are not, display an error message and stop.

a. Only one pane open. This is so the code can assume the first pane, reasonable for my use.
b. Only one column of text. For ease of programming, but reasonable for my use.
c. Cursor is immediately to the right of an inline shape. The program has to know where to find

the drawing and be sure it is an inline shape.
d. Drawing is wider than column width. Otherwise no shrinking would be necessary.

Revision: 8/2/2007 Page 26 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

2. Set width of inline shape = text column width.
3. Collapse selection to the insertion point.

Doing this manually uses the following UI features:
 “Paste Special” dialog box to insert the drawing. On the Edit menu.
 “Format Picture” dialog box to change the size settings and insert inside margins. On the Format

menu.
 “Borders and Shading” dialog box to insert the border. On the Format menu.

Relevant VBA objects:
 TextColumns collection. A child object of the Page Setup object.
 TextColumns(x).Width property returns/sets the width of the actual line of text in points.
 InlineShapes collection. A child object of the Selection, Document, and Range objects.
 InlineShapes(x).LockAspectRatio method returns/sets value to true/false. True is needed here. While

Word may set this by default, it is wise not to count on it. I want the aspect ratio of my drawings to
remain unchanged.

 InlineShapes(x).Reset method removes changes made to the inline shape. In the context of an
inserted Visio drawing, a drawing wider than the column is automatically resized to fit. When I add
a border with inside margins, it no longer fits. So it is best to reset the shape to 100% of its natural
size before making my own changes.

 InlineShapes(x).Width property returns/sets the width of the shape in points.
 InlineShapes(x).ScaleWidth property returns/sets the scale of the width as a percentage of its original

size.
 InlineShapes(x).ScaleHeight property returns/sets the scale of the height as a percentage of its

original size.
 InchesToPoints() function converts inches to points.
 Selection.Type property returns the type of the selection. Value wdSelectionInlineShape is needed

here.
 Panes collection. A child object of the ActiveWindow object.
 Panes.Count property returns the number of panes open.

Surprises:
 I first tried to shrink the shape by decrementing the ScaleWidth, as this is what I do with Word’s UI.

But the code .ScaleWidth = .ScaleWidth - 1 actually incremented the value.
 When I ran the macro to set the border and inside margin before resizing, the ScaleWidth changed

differently from the ScaleHeight, thus distorting the aspect ratio.
 I found it necessary to run InlineShapes(x).Reset before comparing the shape width with the text

column width.
 Before setting the border and inside margins but after doing the reset and setting the shape width,

the ScaleHeight was 100% while the ScaleWidth was less. If I did this manually, doing the reset
after inserting the drawing changed the ScaleHeight and ScaleWidth to 100%. Then changing the
picture width caused the ScaleHeight and ScaleWidth to change equally. The solution in the macro
is to set ScaleHeight = ScaleWidth after changing the width.

 I notice that Reset is on both the Size and Picture tabs of the “Format Picture” dialog box. They
differ in their effect on the size of the drawing: Reset on the Picture tab does not change the size,
only the cropping and image controls.

Design:

Revision: 8/2/2007 Page 27 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

 Because this code is run before that for the border and inside margin, the actual width of the shape
needs to be the column width less the combined left and right margins.

Code:
Sub ShrinkPictureToPageWidth()
Dim title, msg As String
Dim x, y, z As Long
title = "Shrink Picture to Page Width"
z = ActiveDocument.ActiveWindow.Panes.Count
If z > 1 Then
 msg = "Cannot shrink picture while more than 1 pane is open. Pane count = "
& z
 MsgBox msg, vbOKOnly, title
 Exit Sub
End If
Selection.Collapse (wdCollapseEnd)
z = Selection.PageSetup.TextColumns.Count
If z > 1 Then
 msg = "Cannot shrink picture when there is more than one column. Column
count = " & z
 MsgBox msg, vbOKOnly, title
 Exit Sub
End If
Selection.MoveLeft Unit:=wdCharacter, Count:=1, Extend:=wdExtend
If Selection.Type <> wdSelectionInlineShape Then
 msg = "Object is not an inline shape, cannot continue."
 MsgBox msg, vbOKOnly, title
 Exit Sub
End If

x = Selection.PageSetup.TextColumns(1).Width
With Selection.InlineShapes(1)
 .LockAspectRatio = msoTrue
 .Reset
 y = .Width - InchesToPoints(0.4)
 If y <= x Then
 Selection.Collapse (wdCollapseEnd)
 Exit Sub
 End If
 .Width = x - InchesToPoints(0.4)
 .ScaleHeight = .ScaleWidth
End With
Selection.Collapse (wdCollapseEnd)
End Sub

Watermarks

Background Printed Watermark

This is inserted manually with menu Format, Background, Printed Watermark. The watermark is a
WordArt Shape object. When I recorded a macro for this, it put the shape into the header of the first
section; this might be a problem with a multi-section document. Inserting it with code into
ActiveDocument.Shapes puts it on the last page only.

Apparently the only way to get something to appear on every page is to put it in a header/footer.

Revision: 8/2/2007 Page 28 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

When you add WordArt to a document, the height and width of the WordArt are automatically set based
on the size and amount of text you specify.

The key method is AddTextEffect of the Shape object. Adds a WordArt shape to a document. Returns a
Shape object that represents the WordArt and adds it to the Shapes collection. Once the shape is added,
you must select it in order to set its properties.

expression.AddTextEffect(PresetTextEffect, Text, FontName, FontSize, FontBold, FontItalic, Left, Top,
Anchor)

expression Required. An expression that returns a Shapes object.
PresetTextEffect Required MsoPresetTextEffect constant. A preset text effect. The values of the
MsoPresetTextEffect constants correspond to the formats listed in the WordArt Gallery dialog box
(numbered from left to right and from top to bottom).
Text Required String. The text in the WordArt.
FontName Required String. The name of the font used in the WordArt.
FontSize Required Single. The size, in points, of the font used in the WordArt.
FontBold Required. MsoTrue to bold the WordArt font.
FontItalic Required . MsoTrue to italicize the WordArt font.
Left Required Single. The position, measured in points, of the left edge of the WordArt shape relative to
the anchor.
Top Required Single. The position, measured in points, of the top edge of the WordArt shape relative to
the anchor.
Anchor Optional Variant. A Range object that represents the text to which the WordArt is bound. If
Anchor is specified, the anchor is positioned at the beginning of the first paragraph in the anchoring range.
If this argument is omitted, the anchoring range is selected automatically and the WordArt is positioned
relative to the top and left edges of the page.

Example:
Sub NewTextEffect()
 ActiveDocument.Shapes.AddTextEffect _
 PresetTextEffect:=msoTextEffect11, _
 Text:="This is a test", FontName:="Arial Black", _
 FontSize:=36, FontBold:=msoTrue, _
 FontItalic:=msoFalse, Left:=1, Top:=1, _
 Anchor:=ActiveDocument.Paragraphs(1).Range
End Sub

Sub SetDraftWatermark()
' DOES NOT WORK AS DESIRED
' ONLY PUTS WATERMARK ON FIRST PAGE
Dim wm As Shape
Set wm = ActiveDocument.Shapes.AddTextEffect(powerpluswatermarkobject1, _
 "DRAFT", "Arial Black", 40, False, False, 0, 0)
wm.Name = "Watermark"
wm.Rotation = 315
wm.LockAspectRatio = True
wm.Height = InchesToPoints(0.77)
wm.Width = InchesToPoints(2.04)
wm.RelativeHorizontalPosition = wdRelativeVerticalPositionMargin
wm.RelativeVerticalPosition = wdRelativeVerticalPositionMargin
wm.Left = wdShapeCenter
wm.Top = wdShapeCenter
wm.TextEffect.NormalizedHeight = False

Revision: 8/2/2007 Page 29 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

wm.Line.Visible = False
wm.Fill.Visible = True
wm.Fill.ForeColor.RGB = RGB(196, 120, 120)
wm.Fill.Transparency = 0.5
wm.WrapFormat.AllowOverlap = True
wm.WrapFormat.Side = wdWrapNone
wm.WrapFormat.Type = 3
End Sub

Watermark as Text Box

This approach works. There are two versions, the first is a subroutine, the second is standalone.

Sub PutWatermarkTextInAllHeaders()
' inserts text at end of each header
' acts on current document, should be called
Dim sec As Section
Dim cnt As Integer
Dim s As Integer
cnt = ActiveDocument.Sections.Count
' For Each sec In ActiveDocument.Sections
' skip first section which is title page
For s = 2 To cnt
 Set sec = ActiveDocument.Sections(s)
 If sec.Headers(wdHeaderFooterPrimary).LinkToPrevious = False Then '
ignore section break continuous
 sec.Headers(wdHeaderFooterPrimary).Range.InsertAfter vbCrLf + "DRAFT"
 sec.Headers(wdHeaderFooterPrimary).Range.Paragraphs.Last.Style =
ActiveDocument.Styles("Watermark")
 End If
Next
End Sub

Sub PutWatermarkTextInNamedDocument()
' inserts text at end of each header
WorkDirectory = "C:\Data\NPI Requirements\"
ChangeFileOpenDirectory (WorkDirectory)
Documents.Open FileName:="All Business Requirements.doc"
Dim sec As Section
Dim cnt As Integer
Dim s As Integer
cnt = ActiveDocument.Sections.Count
'For Each sec In ActiveDocument.Sections
For s = 2 To cnt
 Set sec = ActiveDocument.Sections(s)
 If sec.Headers(wdHeaderFooterPrimary).LinkToPrevious = False Then '
ignore section break continuous
 sec.Headers(wdHeaderFooterPrimary).Range.InsertAfter vbCrLf + "DRAFT"
 sec.Headers(wdHeaderFooterPrimary).Range.Paragraphs.Last.Style =
ActiveDocument.Styles("Watermark")
 End If
Next

Code Created by Insert Print Watermark Background Wizard

This watermark was defined with text in a given font, size, and color and positioned diagonally.
Apparently it can be positioned differently.

Revision: 8/2/2007 Page 30 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Sub SetDraftWatermark()
'
' SetDraftWatermark Macro
' Macro recorded 3/22/2006 by Susan J. Dorey
'
 ActiveDocument.Sections(1).Range.Select
 ActiveWindow.ActivePane.View.SeekView = wdSeekCurrentPageHeader
 Selection.HeaderFooter.Shapes.AddTextEffect(PowerPlusWaterMarkObject1, _
 "DRAFT", "Arial Black", 40, False, False, 0, 0).Select
 Selection.ShapeRange.Name = "PowerPlusWaterMarkObject1"
 Selection.ShapeRange.TextEffect.NormalizedHeight = False
 Selection.ShapeRange.Line.Visible = False
 Selection.ShapeRange.Fill.Visible = True
 Selection.ShapeRange.Fill.Solid
 Selection.ShapeRange.Fill.ForeColor.RGB = RGB(196, 120, 120)
 Selection.ShapeRange.Fill.Transparency = 0.5
 Selection.ShapeRange.Rotation = 315
 Selection.ShapeRange.LockAspectRatio = True
 Selection.ShapeRange.Height = InchesToPoints(0.77)
 Selection.ShapeRange.Width = InchesToPoints(2.04)
 Selection.ShapeRange.WrapFormat.AllowOverlap = True
 Selection.ShapeRange.WrapFormat.Side = wdWrapNone
 Selection.ShapeRange.WrapFormat.Type = 3
 Selection.ShapeRange.RelativeHorizontalPosition = _
 wdRelativeVerticalPositionMargin
 Selection.ShapeRange.RelativeVerticalPosition = _
 wdRelativeVerticalPositionMargin
 Selection.ShapeRange.Left = wdShapeCenter
 Selection.ShapeRange.Top = wdShapeCenter
 ActiveWindow.ActivePane.View.SeekView = wdSeekMainDocument
End Sub

Iterative Document Editing

Here are some samples of iterative document editing.

Reformat Text in Square Brackets

The following macro illustrates several points:
 how to make the same kind of change throughout a document
 use of FindText

In this example, the text enclosed by square brackets is set to italics. I use square brackets to insert my
editor/author comments in a document that is in development. Sometimes I highlight this text.

Sub SetNotesToItalics()
'
' Loops through active document, finds instances of paired [], then sets text
inbetween to italics. This is necessary because Word in all its wisdom removes
the italics in an inconsistent and unpredictable manner; reinstating it each
time I edit a document is a time-consuming nuisance.

Dim x As Integer
x = 0
Do While x = 0
 With Selection.Find
 .ClearFormatting
 .Execute FindText:="["

Revision: 8/2/2007 Page 31 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

 End With
 If Selection.Find.Found = False Then
 x = 1
 Exit Do
 End If
 Selection.MoveRight Unit:=wdCharacter, Count:=1
 ' next code extends selection through next occurrence of "]",
 ' then decreases selection by one character to unselect the] character
 With Selection
 .Extend Character:="]"
 .MoveLeft Unit:=wdCharacter, Count:=1, Extend:=wdExtend
 If .Font.Italic = False Then
 .Font.Italic = True ' applies italics to selection
 End If
 Selection.MoveRight Unit:=wdCharacter, Count:=2 'unselect text
 End With
Loop
End Sub

Insert RD Field Codes

This code constitutes a single module.

Attribute VB_Name = "TOC"
Option Compare Text
Private cntAll As Integer
Private cntMod As Integer
Private title As String
Private thisDoc As Document
Private strDir As String

Sub PutTCInEachRDFile()

' Context: active document contains field codes to build TOC from referenced
documents, that is TOC and RD field codes.
' Referenced documents do not have high-level heading that identifies them,
instead the Title property and header do.
' So, an improved TOC is built based on both the heading styles in the
referenced documents and a TC field code
' at the beginning of each referenced document that uses the text of the Title
property; this is effected with
' the TITLE field code embedded within the TC field code.

' This macro (1) determines the path of the referenced documents and (2) reads
the RD field codes in active document.
' For each, it opens the file and inserts a TC field code if one is not already
present.

Dim oField As Field
Dim strCode As String
Dim strMsg As String
Dim oDoc As Document

cntAll = 0
cntMod = 0
title = "Put TC in Each RD File"
Set thisDoc = ActiveDocument
If DirectoryOK = False Then
 MsgBox "Macro cancelled because no directory selected.", vbOKOnly, title
 Exit Sub

Revision: 8/2/2007 Page 32 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

End If

'With ActiveDocument.ActiveWindow.View
' .ShowAll = False
' .ShowHiddenText = False
' .ShowFieldCodes = False
' .Type = wdPrintView
'End With

For Each oField In ActiveDocument.Fields
 If oField.Type = wdFieldRefDoc Then
 cntAll = cntAll + 1
' get filename, strip off RD text
 strCode = Trim$(oField.Code)
 strCode = Trim$(Mid$(strCode, InStr(strCode, " ")))
' strip off leading \f switch
 If LCase$(Left$(strCode, 2)) = "\f" Then
 strCode = Trim$(Mid$(strCode, 3))
 End If
' strip off trailing \f switch
 If LCase$(Right$(strCode, 2)) = "\f" Then
 strCode = Trim$(Left$(strCode, Len(strCode) - 2))
 End If
' strip off leading double prime
 If Asc(strCode) = 34 Then
 strCode = Trim$(Mid$(strCode, 2, Len(strCode) - 2))
 End If
' open file
 strCode = URLDecode(strCode)
 Set oDoc = Documents.Open(FileName:=strDir & "\" & strCode)
 oDoc.Activate
 'With oDoc.ActiveWindow.View
 ' .ShowAll = False
 ' .ShowHiddenText = False
 ' .ShowFieldCodes = False
 ' .Type = wdPrintView
 'End With
' run macro to insert TC field
 If AlreadyHasTC = False Then
 InsertTCTitle
 oDoc.Close wdSaveChanges
 cntMod = cntMod + 1
 Else
 oDoc.Close wdDoNotSaveChanges
 End If
 thisDoc.Activate
 End If
Next oField
strMsg = "Count of referenced documents: " & cntAll & vbCrLf & "Count of docs
with new TC field code: " & cntMod
MsgBox strMsg, vbOKOnly, title
End Sub

Function DirectoryOK()
' the original design had this function performing a ChDir, but its results
proved unreliable
If MsgBox("Are documents in directory: " & ActiveDocument.Path, vbYesNo, title)
= vbYes Then
 strDir = ActiveDocument.Path
 DirectoryOK = True
 Exit Function
End If

Revision: 8/2/2007 Page 33 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

DirectoryOK = GetDir()
End Function

Function GetDir()
With Application.FileDialog(msoFileDialogFolderPicker)
 .InitialFileName = ActiveDocument.Path
 If .Show = -1 Then
 strDir = .SelectedItems(1)
 MsgBox "You selected " & strDir
 GetDir = True
 Else 'The user pressed Cancel.
 GetDir = False
 End If
End With
End Function

Function AlreadyHasTC()
' is the first line a TC field? If created automatically it will comprise 2
field codes, TC and TITLE, types 9 and 15.
' first select first paragraph
Selection.HomeKey Unit:=wdStory
Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend
With Selection
 If .Fields.Count = 0 Then
 AlreadyHasTC = False
 ElseIf .Fields.Count > 0 And .Fields(1).Type = wdFieldTOCEntry Then
 AlreadyHasTC = True
 Else
 AlreadyHasTC = False
 End If
End With
Selection.MoveRight Unit:=wdCharacter, Count:=1 ' release selection
End Function

Private Function URLDecode(URLtoDecode As String) As String
 URLDecode = Replace(URLtoDecode, "%20", " ")
End Function

Sub InsertTCTitle()
' Macro inserts TC field code with value = TITLE field code.
' To be used with documents being included with RD field code into consolidated
TOC
' and having no Heading 1 styled paragraph.
' Creates TC formatted like: { TC "{ TITLE }" \l 1 }, then generates value of
TITLE field code.
'
Selection.HomeKey Unit:=wdStory
Selection.TypeParagraph
Selection.MoveUp Unit:=wdLine, Count:=1
Selection.Range.Style = ActiveDocument.Styles(wdStyleNormal)
Selection.Fields.Add Range:=Selection.Range, Type:=wdFieldEmpty,
PreserveFormatting:=False
Selection.TypeText Text:="TC """
Selection.Fields.Add Range:=Selection.Range, Type:=wdFieldEmpty,
PreserveFormatting:=False
Selection.TypeText Text:="TITLE"

Revision: 8/2/2007 Page 34 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Selection.MoveRight Unit:=wdCharacter, Count:=2
Selection.TypeText Text:=""" \l 1"
Selection.MoveLeft Unit:=wdCharacter, Count:=7
Selection.Fields.Update
Selection.MoveLeft Unit:=wdCharacter, Count:=1
Selection.Fields.Update
Selection.MoveLeft Unit:=wdCharacter, Count:=8
Selection.Fields.Update
Selection.HomeKey Unit:=wdLine
Selection.MoveDown Unit:=wdLine, Count:=1
End Sub

Passwords and Protection

There can be three passwords in a Word document:
a. password to open the document, set on Tools, Options, Save tab
b. password to modify the document, set on Tools, Options, Save tab
c. document protection password, set on Tools, Protect Document; this password can apply to tracked
changes, comments, or forms

VBA modules can have a password. It can lock the project for viewing and/or restrict viewing properties.
It is set from menu Tools, Project Properties, Protection tab.

So far I have not learned how to detect these with VBA.
Protection
The Document object has property ProtectionType which returns the protection type for the specified
document. Can be one of the following WdProtectionType constants: wdAllowOnlyComments,
wdAllowOnlyFormFields, wdAllowOnlyReading, wdAllowOnlyRevisions, or wdNoProtection.

The Document object has two methods related to protection:
 Protect: Applies protection. If the document is already protected, this method generates an error.
 Unprotect: Removes protection from the specified document. If the document isn't protected, this

method generates an error.

expression.Protect(Type, NoReset, Password, UseIRM, EnforceStyleLock)
where:
Type: is a WdProtectionType constants
NoReset: applies only to Type = wdAllowOnlyFormFields
Password: the password required to remove protection from the specified document;optional.
UseIRM: Specifies whether to use Information Rights Management (IRM) when protecting the
document from changes; optional.
EnforceStyleLock: Specifies whether formatting restrictions are enforced in a protected document;
optional.

expression.UnProtect(Password)
where
Password: The password string used to protect the document; optional. Passwords are case-sensitive. If
the document is protected with a password and the correct password isn't supplied, a dialog box prompts
the user for the password

If Doc.ProtectionType <> wdNoProtection Then Doc.Unprotect

Revision: 8/2/2007 Page 35 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

If ActiveDocument.ProtectionType := wdNoProtection Then
 ActiveDocument.Unprotect Password:="readonly"
End If
Read-Only
There are two document properties that involve read-only:
 ReadOnlyRecommended property
 ReadOnly property

The ReadOnly property only returns the value, it cannot be used to set the value.

The ReadOnlyRecommended property is read/write meaning it returns the current value and can change
the current value.

You can turn off Read-Only Recommended when saving a document:
ActiveDocument.SaveAs FileName:="C:\Temp\MyFile.doc",
 Password:="", WritePassword:="", ReadOnlyRecommended:=False

ActiveDocument.ReadOnlyRecommended = True

Interacting with an Access Database

If you are using data in an Access database to control processing of one or more Word documents, you
can use DAO and not Access directly. In this case
first set a reference to Microsoft DAO 3.6 Object Library.

Define an object corresponding to an Access database using DAO:
Private dbsThis As Database

Open database:
Set dbsThis = DBEngine.OpenDatabase("\\server\share\Data\Migrate.mdb")

Use a recordset to iterate through a table or query:
Private rstQ As Recordset
Set rstQ = dbsMigrate.OpenRecordset("WordFilesNotChecked")
With rstQ
Do Until .EOF
 txtFilename = ![FullName]
 Documents.Open FileName:=txtFilename, ReadOnly:=False,
AddToRecentFiles:=False
 . . .
 .Edit
 ![ControlDate] = Now()
 .Update
Loop
.Close
End With
Set rstQ = Nothing
Set dbsThis = Nothing

Automation

Automation is the running of one application from a second. Examples: (1) editing a Word document
with code in an Access database and (2) using data from an Access table to control processing of a Word
document.

Revision: 8/2/2007 Page 36 of 37
Copyright 2002–2007 by Susan Dorey Designs

Microsoft Word: Visual Basic for Applications

Per Microsoft: You can use another Office application's objects (or the objects exposed by any other
application or component that supports Automation) without setting a reference in the References dialog
box by using the CreateObject or GetObject function and declaring object variables as the generic Object
type. If you use this technique, the objects in your code will be late-bound, and as a result you will not be
able to use design-time tools such as automatic statement completion or the Object Browser, and your
code will not run as fast.

Early-Bound Declarations
Early binding allows you to declare an object variable as a programmatic identifier, or class name, rather
than as an Object or a Variant data type. The programmatic identifier of an application is stored in the
Windows registry as a subkey below the \HKEY_CLASSES_ROOT subtree. For example, the
programmatic identifier for Access is "Access.Application"; for Excel it is "Excel.Application."

When you are using early binding, you can initialize the object variable by using the CreateObject or
GetObject function or by using the New keyword if the application supports it. All Office 2000
applications can be initialized by using the New keyword. Because the Outlook 2000 programming
environment for Outlook items supports only scripting, you can't use early binding declarations of any
sort in its VBScript programming environment; however, you can use early binding in VBA code in a
local Outlook VBA project or COM add-in, or in Automation code that works with Outlook from
another host application.

Use early binding whenever possible. Early binding has the following advantages:
 Syntax checking during compilation rather than at run time.
 Support for statement-building tools in the Visual Basic Editor.
 Support for built-in constants. If you use late binding, you must define these constants in your code

by looking up the values in the application's documentation.
 Better performance—significantly faster with early binding than with late binding.

Revision: 8/2/2007 Page 37 of 37
Copyright 2002–2007 by Susan Dorey Designs

	About Macros
	Organizing Macros
	Export and Import Code
	Get to Know the Object Model
	Miscellaneous Subjects
	Moving Around in a Word Document
	Working with Documents
	Working With Path
	Working With Text
	Portrait and Landscape
	Document Properties
	Page Numbering

	Dialog Boxes
	Message Box Object
	Present Information
	Prompt User for Choices

	Dialog Object
	Prompt User for File(s) or Directory with Dialog Object

	FileDialog Object
	Prompt User to Select Folder with FileDialog

	Documenting Your Shortcut Keys
	About Keyboard Shortcut Keys
	Run This Code
	DOM Background

	Field Codes in VBA
	Index Object
	Table of Contents
	RD Field Code
	Field Codes and Page Numbers

	Page Headers and Footers
	Assembling Multi-file Documents
	Approach
	Code Samples
	Prompt User for Directory of New File
	Insert Chapter Files
	Update Main Table of Contents
	Update Main Table of Figures
	Save New Document
	Update Chapter Tables of Contents
	Update Indices
	Delete Macros in New Document
	Subroutines
	Variations

	Shapes
	About Shapes
	Anchoring a Shape
	Positioning a Shape
	Formatting a Shape
	Other Important Shape Properties
	Remarks

	Converting Visio Picture into Inline Shape
	Key Properties
	RelativeVerticalPosition Property
	RelativeHorizontalPosition Property
	Top Property
	Remarks
	Example

	Left Property
	Remarks
	Example

	Shrink Inline Shapes

	Watermarks
	Background Printed Watermark
	Watermark as Text Box
	Code Created by Insert Print Watermark Background Wizard

	Iterative Document Editing
	Reformat Text in Square Brackets
	Insert RD Field Codes

	Passwords and Protection
	Protection
	Read-Only

	Interacting with an Access Database
	Automation
	Early-Bound Declarations

