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This document describes nonlinear modeling of the engine throttle dynamics using data centric 
approaches available in System Identification Toolbox™ . Two approaches are described: 

1. Black box modeling: case where you cannot derive the exact mathematical representation of 
the system from physical considerations; the form of the model as well as the values of its 
coefficients is extracted from data. 

2.  Grey-box modeling: the equations of motion relating the input and output variables are 
known, but the values of various physical constants in the equations are unknown; the data 
is then used to find the values of those unknowns only. 



The emphasis is on the black box modeling approach. It will be shown that even though no a priori 
knowledge of model structure is required, it is often helpful to have some intuition about the nature 
of the system and to use this knowledge to fine-tune the configuration of model structures.  

The following example were created using R2010a release.  Some of the "Best Fit" value might be 
slightly different depending on the version of MATLAB® you are using. 

INTRODUCTION TO PROBLEM 

The throttle controls the air mass flow into the intake manifold of an engine. The throttle body 
contains a butterfly valve that opens when the driver presses down on the accelerator pedal. This 
lets more air enter the cylinders and causes the engine to produce more torque. 

A DC motor controls the opening angle of the butterfly valve. There is also a spring attached to the 
valve to return it to its default position (15 degrees open) when the DC motor is de-energized. The 
amount of rotation of the valve is limited to approximately 90 degrees. Therefore, if a large 
command input is applied to the motor, the valve hits the hard stops preventing it from rotating 
further.  

The task here is to create a mathematical representation of the dynamics of the DC motor, throttle 
valve combination. The model should describe the relationship between the input command to the 
driving motor (normalized voltage) and the resulting angle of the throttle valve (degrees). 

 

FIGURE 1: A THROTTLE VALVE 

 

DATA BASED MODELING APPROACH 

We set up an experiment to measure the input and output signals of this system.  The data was 
collected for several input profiles such as step signals of low and high amplitudes, pulse signals 
and multi-step signals. This resulted in a set of 12 input-output data sets all measured as a sampling 
frequency of 1kHz. Plots of the five chosen data sets used for modeling are shown below. 



     

          FIGURE 2: DATA SET 1                                                  FIGURE 3: DATA SET 2 

     

          FIGURE 4: DATA SET 3                                                     FIGURE 5: DATA SET 4  

 

      FIGURE 6: DATA SET 5 



For our analysis, we divided the data into estimation and validation sets. Thus, the data sets 1, 2 and 
3 were used for creation of models, while the data sets 4 and 5 were used for validating the 
performance of the model. The data sets were also down-sampled to a frequency of 100 Hz. 

PROCESS OF DATA BASED MODEL CREATION 

 A data-centric approach to modeling is summarized by the flowchart in Figure 7. More detailed 
descriptions can be found in product documentations and textbooks; for example, see: 

-  http://www.mathworks.com/access/helpdesk/help/toolbox/ident/gs/brav7fy.html 
- System Identification – Theory for the User, Lennart Ljung, Prentice Hall, 2nd ed., Section 1.4 

As illustrated by this figure, the process of obtaining models from data calls for a systematic 
approach. You begin by designing a good experiment, denoting input/output signals of interest and 
recording their values with sufficient accuracy. Optionally, you perform some post-acquisition 
processing, such as choosing data segments with no outliers, filtering and down-sampling. The 
“massaged” data is then used to create a variety of models usually starting with the simplest (linear, 
low order) and then gradually trying more complex forms (higher orders, nonlinear forms) if 

required. You revisit your previous actions iteratively until 
good results are obtained. A “good result” mainly means you 
find a model that can reproduce the measured outputs when 
the same input signals are used. Tests of model’s 
fidelity/performance are usually performed on a different data 
set than the one(s) used for estimation. 

Keeping models as simple as possible is important – it not only 
makes the model more reliable (less variability in estimated 
parameter values), but also lowers the implementation costs, 
were you to deploy this model on actual hardware.  

BLACK BOX MODELING APPROACH 

We first try out a black box approach to modeling wherein we 
start with little or no knowledge of the nature of the system. 
This approach boils down to trying various model structures 
available in products such as System Identification Toolbox™ 
and Neural Network Toolbox™, configuring their exact forms 
(step 3), estimating the values of their coefficients (parameters) 
using data (step 4) and then comparing/contrasting them. The 
task ends with choosing one of these models that appears to 
emulate the observed behavior (output data values) reasonably 
well without being too complex. This approach is, to a certain 
extent, a trial and error approach. Hence some patience and 

time is required to try out various forms and estimating their parameters. In the following we show 
how one can go about choosing and configuring various model structures using physical insights 
and desire for simplicity. But before we do that, it would be useful to familiarize ourselves with 
some of the nonlinear model structures that are commonly employed for such tasks.   

FIGURE 7: DATA BASED MODELING 
APPROACH 

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/gs/brav7fy.html�


UNDERSTANDING NONLINEAR MODEL STRUCTURES 

So that the whole modeling approach does not look like black magic, let us look a bit into their 
structures and where they come from. To begin with, you might be familiar with some forms of 
linear models. The underlying mathematical form of a linear model is a differential equation, or in 
discrete-time case, a difference equation. For example, the equation of motion of a mass-spring-
damper system is a second order differential equation: 

m d2y/dt2   + c dy/dt + k y(t)  = F(t)  ………… (1) 

where m is the mass, k the spring’s stiffness constant and c the damping coefficient.  y(t) is the 
displacement of the mass and F(t) is the input force. If you perform Laplace transform of Equation 
(1), you get the familiar transfer function form: 

G(s) = X(s)/F(s) = 1/(ms2+cs+k)  ………… (2) 

 Similarly, if you designate the displacement and velocity as state-variables, you can represent the 
equation of motion in state-space form as: 

dX/dt    = A X(t) + B F(t) 

x(t) = C X(t) 

where X(t) = [y(t); v(t)] is the vector of model states. The matrices A, B, and C are related to the 
constants m, c and k. 

If you discretize the differential equation above using backward Euler formula: dx/dt = (x(t)-x(t-
Ts))/Ts,  you get a difference equation that shows the relationship between the uniformly sampled 
values of input F(kTs) and output y(kTs), k = 0, 1, 2, …; Ts = sampling interval: 

y(kTs) + a1 y((k-1)Ts) + a2 y((k-2)Ts) = b0 F(kTs) 

Using Ts = 1 for notational simplicity and moving the delayed terms to RHS, we have the following 
difference equation: 

y(k) = - a1 y(k-1) - a2y(k-2) + b0 F(k), k = 0, 1, …   ………… (3) 

The above equation is quite instructive: it shows how the value of the output at any time k can be 
computed as a weighted sum of current value of input and past values of output. In an identification 
task, you have to determine the values of these weights – a1, a2 and b0 such that the model’s output 
y(k) is as close as possible to its measured values.  

NONLINEAR MODELS AS EXTENSION OF LINEAR ONES 

NONLINEAR ARX MODELS 

In the difference equation (3) above, the output y(k) is a weighted sum of variables y(k-1), y(k-2) 
and F(k). In Statistics and System Identification literature, these variables are called regressors. 
Thus,   the above equation is en example of a linear-in-regressors model: the output is a linear 
combination of three regressors. This formulation forms the basis of nonlinear ARX models that we 
will use to model the throttle dynamics. Nonlinear ARX models use a nonlinear combination of 



regressors to compute the output values. To see how this happens, inspect Equation (3) again. If 
you wanted to “extend” or “generalize” this equation to make it more flexible, you have two options: 

1. Use more complicated regressors: the regressors need not be simple time-delayed versions 
of the input/output variables. They can be more complicated forms such as |(F(k)|, y(k-
1)*y(k-5),  F(k-2)*y(k-3)2,  min(y(k-1), 90) etc. System Identification Toolbox allows you to 
create and use any arbitrary forms of regressors. Sometimes, you create regressors based 
on your knowledge of the physics of the system. We shall explore that in the following 
sections. 

2. In place of a simple weighted sum of regressors, use more complex, nonlinear mappings – 
y(k) = f(R(k)), there R(k) denotes the set of regressors, and f() is a nonlinear function. For 
example, f() could be a sum of 10 sigmoid functions each using  a different amplification, 
dilation and translation factors. This way, your nonlinear model becomes what is called a 
“sigmoid network”. Similarly you can have “wavelet networks”, “neural networks” and other 
forms. 

System Identification Toolbox and Neural Network Toolbox allow you to create a variety of 
nonlinear models using above generalizations. However, use of arbitrary regressors is supported 
only by System Identification Toolbox. Also, both products offer a slightly different list of nonlinear 
functions f() to use. For example, System Identification Toolbox lets you use wavelet networks, 
sigmoid networks and binary tree (among others), while Neural Network Toolbox lets you use 
sigmoid and tansig networks (among others). 

HAMMERSTEIN-WIENER MODELS 

System Identification Toolbox also offers a whole different class of nonlinear models known as 
models with I/O nonlinearities, or Hammerstein-Wiener models. As before the best way to 
understand them is to view them as extensions of linear models. We are all familiar with block 
diagram representation of systems. Thus if you represent the linear transfer function (Equation 
(2)) by a linear block, we have: 

 

 

 

The above block diagram may be represented by using, for example, a transfer function block in 
Simulink®. One way to extend this form to handle complex behavior is to add nonlinear elements at 
the input and/or output ports: 

 

 

 

where UNL refers to a nonlinear function at the input port and YNL refers to the nonlinear function at 
the output port. You need not have both UNL and YNL simultaneously present. This form allows 
convenient extension of linear models to a nonlinear form. For example if you have a linear system 

      G(s) 
F(t) y(t) 

G(s) 
F(t) y(t) 

YNL UNL 

FIGURE 8: BLOCK DIAGRAM OF A LINEAR MODEL 

FIGURE 9: HAMMERSTEIN-WIENER MODEL 



that you are modeling, but the sensors you are using it measure its behavior has nonlinearities at 
high gains (such as saturation), you can use a Wiener model that uses a linear block combined with 
a saturation block at its output port. The forms of these nonlinear functions are often guided by 
physical insight, although you can also use arbitrary forms to capture nonlinear effects whose 
nature might be unknown. The parameters of the composite form can be calculated in one shot 
using estimation routines in System Identification Toolbox. For more information, see: 

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/bq2ix15.html 

ESTIMATING MODELS USING SYSTEM IDENTIFICATION TOOL 

First, we try out some model structures available in System Identification Toolbox. For this, we 
launch the GUI called System Identification Tool (Figure 10).   

 

FIGURE 10: LAUNCHING THE GUI 

When the GUI comes up, we begin our identification task by importing input and output data sets 
(Figure 11). The import dialog asks for variable names of input and output data vectors that must 
be available in the MATLAB workspace before importing. This results in several icons appearing in 
the data board of the GUI, each representing a data set (Figure 12) 

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/bq2ix15.html�


 

FIGURE 11: DATA IMPORT DIALOG 

 

FIGURE 12: GUI WITH IMPORTED DATA SETS 



After importing designate one dataset as Working Data (data set on which estimation will be 
performed) and another one as Validation Data (data test to be used for checking the quality of 
model). It is instructive to initially use the same data set for estimation and validation. This way, 
you can quickly check how good a particular estimated model fits the estimation data. Once you 
find a model that performs reasonably well on estimation data, you can test it with other data sets.   

A System Identification session with all the data sets (as well as all the results generated using 
subsequent sections) has already been created.  The user can load the following session as the 
starting point:  throttle_estimation_session.sid. 

ESTIMATING LINEAR MODELS 

We begin by estimating linear models. It is recommended to try linear ones before nonlinear 
models. This exercise reveals the nature of the system, gives you an idea of order of the model 
(number of regressors etc) and the linear model can often be reused as a component of the 
nonlinear model. For linear model estimation we need a data set that does not excite the nonlinear 
behavior (the hard stop at 90 degrees) of the system significantly. The closest such data is data3. 
However, for zero inputs value, the output signal still shows a 15 degree offset; a linear model 
would not be able to capture this offset. So we first subtract this offset from the output data and 
then import it (subtraction of arbitrary offsets must be done in MATLAB Command Window before 
importing; you can’t do this in GUI). The data set with no offset is called data3lin (see Figure 13 
where its plot is compared against the original data). We set this data as Working Data and 
Validation Data. 

 

FIGURE 13: DATA FOR LINEAR MODEL ESTIMATION (GREEN) 

 

To choose linear model structure, use the “Linear parametric models “ option from the Estimation 
popup menu: 



 

FIGURE 14: OPENING LINEAR MODEL ESTIMATION DIALOG 

In the resulting dialog, choose various model structures such as ARX, OE and State space. Set the 
Focus to Simulation (since our goal is to maximize fit to measured throttle angle data). For each 
structure, try various orders starting with small numbers. For ARX and State-space structure, you 
also have the option of searching for best orders automatically. A quick exercise shows that model 
orders in the vicinity of 2 give good results. Thus a transfer function with 2 poles (OE model with 
orders [2 2 0], ARX model with na = 2, nb= 1 or 2, nk = 0 or 1) or a state-space model with 2 states 
work well. 

 

FIGURE 15: ORDER SELECTION FOR ARX MODELS; ORDER [2 1 1] REPRESENTED BY SECOND BAR FROM 
LEFT SEEM TO A GOOD COMPROMISE. 

 



The simulated response of each model can be compared against the measured output value by 
clicking on the Model output checkbox in the GUI. This creates a plot showing the simulated 
responses of all models superimposed over measured output values, along with the corresponding 
fit values in percent. The % fit indicates the agreement between the model response and the 
measured output: 100% means a perfect fit, and 0% indicates a poor fit (0% means that the model 
output has the same fit to the measured output as the mean of the measured output; the fit values 
can be negative if the model does worse than fitting a straight line to data!). 

 

FIGURE 16: RESPONSE OF VARIOUS LINEAR MODELS COMPARED TO ESTIMATION DATA 

If we replace the Validation data with some other data set (say, data2), we find that the linear 
model is unable to emulate the measured output. This is not surprising since data2 exhibits 
nonlinear behavior: 

 

FIGURE 17: VALIDATING MODELS AGAINST DATA2 

Note that in the linear region of the operation of the system, when the throttle angle is between 15 
and 90 degrees, the linear model is still able to capture the response. However, the linear models do 



not know how to describe the hard stop nonlinearity at 90 degrees or the non-zero offset (15 
degrees) when no input signal is present. Hence for those values, the models’ responses does not 
match the measured value. 

Note that even though we did not use the notion of regressors when creating the linear models, the 
regressors do exist. For example, the regressors used by the ARX model arx210 are y(t-1), y(t-2) 
and u(t), where y refers to the output signal (throttle angle) and u to the input (step command 
operating the DC motor that moves the valve). 

This concludes our preliminary exercise with linear model estimation. We will use the knowledge of 
the model orders from this exercise as well as the linear models themselves to create various 
nonlinear models. 

ESTIMATING NONLINEAR ARX MODELS 

Going from linear to nonlinear models, the simplest form we can try is one that describes the output 
as a linear combination of its regressors plus an offset. To begin with, the regressors can be same as 
those for the linear ARX model above (the model arx210). Hence the only aspect in which this 
model is different from the linear one is that it is able to capture the signal offsets. To do this, we 
launch the “Nonlinear Models” estimation dialog from the Estimate popup menu of the GUI: 

  

FIGURE 18: LAUNCHING INTERFACE FOR NONLINEAR MODELS ESTIMATION 

This dialog allows us to create Nonlinear ARX and Hammerstein-Wiener models. In its default 
configuration, the dialog allows creation of Nonlinear ARX models; you can change this using the 



Model type popup menu. The structure of Nonlinear ARX models is shown by a block diagram at the 
top; the model computes regressors using input and output data and then uses the regressors in a 
parallel set of linear and nonlinear functions to compute the response of the model. The tabs 
labeled “Regressors” and “Model Properties” beneath the diagram allow configuration of regressors 
(types, how many etc), and the nature of the linear and nonlinear functions (sigmoid function, 
wavelet function etc, the properties of chosen function etc), respectively.  

To achieve a form similar to the linear ARX model arx210, we do the following: 

1. Set the model orders in the regressor tab to [2 1 0], that is, set number of output regressors 
to 2, the number of input regressors to 1 and input delay to 0.  

2. Under the Model Properties tab, choose the nonlinearity to be “none”. This removes the 
nonlinear block from the model structure, so that the equation for output y(t) as a function 
of its regressors becomes: 

y(t) = α1 y(t-1)+ α2 y(t-2)+ β u(t) + d 

where y is the output (valve angle), u is the input (step command) and α1, α2, β, and d are 
the parameters to be estimated. d represents the output offset that the linear models could 
not account for. The model diagram in the GUI shows that the nonlinear function is not 
active. 

 

FIGURE 19: STRUCTURE OF A NONLINEAR ARX MODEL CONTAINING NO NONLINEAR FUNCTION 

To perform estimation that minimizes simulation error, click on the “Algorithm Options…” button 
on the Estimate tab and set the Focus to “simulation”.  



 

FIGURE 20: SETTING ESTIMATION ALGORITHM OPTIONS 

We now set data3 as Working Data as well as Validation Data, and perform estimation by pressing 
the Estimate button. The resulting model (“nlarx1”) behaves well on this data containing offsets. 
The linear model arx210, by contrast does not perform well when data contains offsets: 

 

FIGURE 21: COMPARING RESPONSES OF MODELS TO MEASURED RESPONSE IN DATA3; NOTE THAT THESE 
MODELS WERE ESITMATED USING DATA3 TOO 

However, if you drag the any other data set, such as data1 into the Validation Data box, you will 
quickly see that the fits are not good. Thus our simple nonlinear model that uses a linear 
combination of simple regressors (the regressors are simply time delayed I/O variables) plus offset 
is not powerful enough to capture the nonlinear effects: 



 

FIGURE 22: VALIDATING MODELS CREATED USING DATA3 AGAINST DATA SET # 1 (DATA1) 

Hence we need more complex forms. In the section “UNDERSTANDING NONLINEAR MODEL 
STRUCTURES” we saw how nonlinear ARX models can be considered as logical extensions of linear 
ones. What kind of extensions could we try? We will try two approaches: 

1. Adding more complex regressors motivated by physical insight. 
2. Trying various nonlinear functions in a trial-and-error approach.  

For creating our own custom regressor, we examine the physics governing this system. The overall 
system seems to be behaving like a second order system (at least in linear range). When the throttle 
angle becomes 90%, there is a hard stop which can be described by a very hard spring that resists 
the throttle angle to be greater than 90 degrees. In addition, the offset is 15 degrees, which is 
always there in absence of inputs. This can similarly be captured using a spring force that is 
activated only when the angle becomes less than 15 degrees. Thus the nonlinear resistive force, 
which comes into play only when the throttle angle is either less than 15 or greater than 90 degrees 
can be expressed as: Fnl(t) = K1*(max(y(t),90)-90) + K2*(min(y(t),15)-15), where y(t) is the valve 
angle at time t. For simplicity we can assume K1=K2, so that the nonlinear spring force becomes: 
K1*(max(y(t), 90) + min(y(t),15)-105). We can include the formula “max(y(t), 90) + min(y(t),15)-
105” as a regressor in the model and the job of the estimation method will be determine the value 
of K1, in addition to previous coefficients.  This can be achieved as follows: 

(a) Click on the Regressors tab under the Configure tab of the Nonlinear Models dialog. Then 
click on Edit Regressors button. This launches a dialog called Model Regressors that lets us 
view and edit the model’s regressors. 

(b) Expand the Custom Regressors tab in this dialog and click on the Create… button: 



 

FIGURE 23: MODEL REGRESSORS DIALOG. YOU CAN CREATE CUSTOM REGRESSORS FROM HERE 

 
(c) In the resulting custom regressor dialog, enter the expression “max(Valve Angle(t-

1),90)+min(Valve Angle(t-1),15)-105”.  Then press the “Add” button. This adds a custom 
regressor using the above formula to the model. A delay of 1 sample in the above formula 
results from discretization effects. Typically, the discrete lag would not be suggested clearly 
by physical considerations and you should try out a few different values. Note that the lag in 
output variables has to be at least 1 to maintain causality. 
 



 

FIGURE 24: DIALOG THAT CREATES CUSTOM REGRESSORS. 

 
(d) Close the Custom Regressors Dialog. Click OK on Model Regressors dialog to accept changes 

to regressor list and close it as well.  

The model is now configured to use a linear-in-regressors formula (no nonlinear functions yet) 
containing a custom-made regressor and output offset, described by the following formula: 

 y(t) = α1 y(t-1)+ α2 y(t-2)+ α3 (max(y(t-1), 90) + min(y(t-1),15)-105) + β u(t) + d  

The term in green is the new addition compared to previous model. The parameters of this model 
are α1, α2, α3, β, and d. In order to estimate this model, we will now use data that excites the 
nonlinear behavior more strongly. The time plots of data1 and data2 suggest that they may be good 
candidates. So for the subsequent estimations, we will use a combination of these two data sets. The 
other data sets (data3, data4, data5) will be used for final validation of the quality of the models.    

In order to use multiple data sets for estimation, we must first combine them. To do so, choose the 
Merge experiments … option from the Preprocess popup of the main GUI: 



                      

FIGURE 25: MERGING DATA EXPERIMENTS 

Drag and drop the data icons data1 and data2 into the Merge Experiments drop area, set the name 
to MultiExpData and then hit Insert. This causes a new data icon named “MultiExpData” to appear 
in the data board of the GUI. Designate this data as both estimation and validation data by dragging 
its icon onto the Working Data and Validation Data boxes.  

Click on Estimate button in the Nonlinear Models window. The resulting model “nlarx2” has good fit 
to both data sets contained in MultiExpData.  

 

FIGURE 26: FIT TO ESTIMATION DATA (EXP. 1)      FIGURE 27: FIT TO ESTIMATION DATA (EXP. 2) 



  Furthermore, it validates reasonably well with data4 and data5, as shown in figures 28 and 29. 

  

FIGURE 28: FIT TO VALIDATION DATA4    FIGURE 29: FIT TO VALIDATION DATA45 

 Note that in this document, we are only showing some typical results; it is entirely possible that you 
could get better results by tweaking the regressor formula or using different model orders . Also note 
that coming up with “best possible” results requires several trials and you might also have to play with 
estimation algorithm options, such as choice of search method, maximum number of iterations 
allowed, convergence tolerance etc. 

Examination of model output plots reveals that where there are hard stops (angle = 90 degrees), 
the model’s response shows oscillations which can be small or large. Close to points of transition to 
the nonlinear behavior (angle going from <90 to 90, or from >15 to 15 degrees), the fit is not very 
good. The model seems to be lacking sufficient flexibility to capture such fast transitional effects.  

Could the fits be improved further? So far, we have only tried linear combination of regressors.  So 
another logical generalization is to use nonlinear functions of regressors. System Identification 
Toolbox offers several choices for nonlinear functions such as binary tree (called “tree partition” in 
the product), wavelet network, sigmoid network and neural network. Most of these forms are a 
series expansion of some “unit function” such as a wavelet (exp(-|x|2)), sigmoid function (1/(exp(-
x)+1)) etc.  The approach we have to take is try them out in succession and use one that seems to 
give better results. Also, for each choice of nonoinear function, there are some configuration 
parameters that we can tweak, the most important one being the number of terms to be used in the 
series expansion. In the following, we only show the some of the results (including the best we got 
after some trial and error) to showcase our approach. 

(a) In the Nonlinear Models dialog, select the Configure tab and then click on the “Model 
Properties” tab.  Set the Nonlinearity to Wavelet Network.  

(b) Then click on the Regressors tab and click on the Edit Regressors… button to launch the 
Model Regressors dialog. If the regressors listed in the two tables in there are not already 
selected, select them all. This can be done quickly by choosing the “All” option from the 
topmost popup menu on this dialog. Finally, the dialog should look like this: 



 

FIGURE 30: REGRESSOR DIALOG WITH ALL REGRESSORS SELECTED 

(c) Click OK to accept changes in Regressor dialog. The model configuration is now complete. At 
this point, the model’s structure is: 

     y(t) = α1 y(t-1)+ α2 y(t-2)+ α3 r(t-1) + β u(t) + d + f(y(t-1), y(t-2), u(t), r(t-1), θ) 

where r(t) is custom regressor function = max(y(t), 90) + min(y(t),15)-105, and f() is a 
parameterized Wavelet Network (if you want to know what a wavelet network looks like, 
visit the product documentation, online at: 
http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ref/wavenet.html). The 
parameters of this model are: α1, α2, α3, β, d and those used by wavelet network – θ (θ is a 
vector of parameters, usually a long list). 

Note that the custom regressor is still active. Also, the model uses both a linear function 
(weighted sum of regressors plus offset) and a nonlinear function (wavelet network) as its 
components. We can remove the linear term as well as the custom regressor if required 
(shown later in the context of a sigmoid network) 

(d) Click on the Estimate tab, and select the "Algorithm Options".   Set the Interative_Wavenet 
option to "On". 

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ref/wavenet.html�


(e) Press the Estimate button on the Nonlinear Models dialog. This creates a new model 
(“nlarx3”).  

The model does not perform well as show in by fit to the first data set in MultiExpData: 

                    

FIGURE 31: FIT TO ESTIMATION DATA (EXP. 1); MODEL NLARX3 DOES NOT FIT WELL. 

It appears the wavelet network in unable to capture the underlying dynamics of the system. Next 
we try a Sigmoid Network: 

(a) Change the Nonlinearity to Sigmoid Network  
(b) Set the Number of units in nonlinear block to 5. 
(c) Press  the Estimate button.  

This adds a new model called “nlarx4” to the model board of the main GUI. This model seems to 
be performing better than all other models tried before on estimation data, but not so on some 
of the validation data (especially data4). In the following figures, the fits to estimation and 
validation data sets is shown. Overall,use of Sigmoid Network looks more promising. 

 



  

FIGURE 32: FIT TO ESTIMATION DATA (EXP. 1)   FIGURE 33: FIT TO ESTIMATION DATA (EXP. 2) 

  

FIGURE 34:  FIT TO DATA3     FIGURE 35: FIT TO DATA4 

 

FIGURE 36: FIT TO DATA5 

Next we explore if we can get even better results (nlarx4 did poorly on data4). After some trial and 
error, a model of order [3 3 0] and using no custom regressors with sigmoid network seems to 
work pretty well. This configuration can be achieved as follows: 



(a) In the “Nonlinear Models” window, under Regressors tab, set Delay for input channel (Step 
Command) to zero. Set number of terms for both inut and output channels to 3. 

(b) Cick on the “Edit Regressors…” button to launch the Model Regressors dialog. In the Model 
Regressors dialog, select the custom regressor we had added earlier, and delete it. We do 
this to investigate if using a nonlinear function with only the standard regressors (those 
that are simply the time-shifted I/O variables) is going to be sufficient. When we have a 
nonlinear function (sigmoid network) in the model, do we also need complex forms of 
regressors? Let us find out.   

(c) Press OK to accept changes to model regressors and close the Model Regressors dialog.  
(d) Set the Number of units in nonlinear block to 5. 
(e) Under Algorithm options, set Maximum_Iterations to 90 (estimation progress in the 

Estimation Trace area showed that the error reduces slowly and may therefore require a 
large number of iterations).   To do the large number of iterations, this run will take several 
minutes.  

(f) Then press Estimate button to estimate the parameters of the model.  This creates a model 
called “nlarx5”. Note that the equation of motion for this model is: 

y(t) = α1 y(t-1)+ α2 y(t-2) + β u(t) + d + g(y(t-1), y(t-2), u(t), θ) 

where g() is a Sigmoid Network function (see: 
http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ref/sigmoidnet.html). 
The parameters of this model are: α1, α2, α3, β, d and those used by sigmoid network – θ. 
Note that θ is not a single parameter; it represents a set of several ones used by the sigmoid 
network.  
 
The model nlarx5 fits all the data sets quite well, as shown in figures below. This is the best 
model we have achieved after trying various types of configurations. 
 

  

FIGURE 37: FIT TO ESTIMATION DATA (EXP. 1)        FIGURE 38: FIT TO ESTIMATION DATA (EXP. 2) 

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ref/sigmoidnet.html�


  

FIGURE 39: FIT TO DATA3     FIGURE 40: FIT TO DATA4 

 

FIGURE 41: FIT TO DATA5 

ESTIMATING HAMMERSTEIN-WIENER MODELS 

Next, we explore the Hammerstein-Wiener class of models. As described earlier, these models are 
series connections of nonlinear functions with linear dynamic models. 

The choice of nonlinear functions to use at the input and output port of the linear model can be 
made arbitrarily in the spirit of black box modeling, or can be guide by physical insight. We know 
intuitively that the system has a linear range. At angles less than 15 degrees and greater than 90 
degrees resistive forces kick in. The ones at 90 degrees are strong and can be considered almost as 
a complete hard stop. Such phenomena can be described by a saturation function. Thus adding a 
saturation function at the output of the model should capture at least the 15 and 90 degree steady-
state signal levels present in the output, if not the transient behavior. To implement such a 
configuration, we proceed as follows: 

(a) In the Nonlinear Models dialog, select the Configure tab. Then select Hammerstein-Wiener 
as the Model Type using the popup menu above the diagram. You will see two tabs titled- 
“I/O Nonlinearity” and “Linear Block”. 



(b) Select the Linear Block tab. Set the model orders as follows: B order: 3, F order: 3, Delay: 0; 
by some trail and error, this choice of orders seems to work better. 

(c) In the I/O Nonlinearity tab, set the Input Nonlinearity to None. Set the Output Nonlinearity 
to Saturation. At this point the dialog looks like this: 

 

FIGURE 42: CONFIGURATION FOR WIENER MODEL ESTIMATION 

 
(d) Click on the “Initial Value” button for setting the initial values of the saturation nonlinearity. 

This launches a dialog wherein you can specify initial guess values for the lower and upper 
limits of saturation. Set the lower and upper limits to 15 and 90 respectively (see Figure 
below) 
 

 

FIGURE 43: SPECIFYING SATURATION LIMITS 

NOTE: you must set linear block orders before setting the initial values of the nonlinearity, 
otherwise those values may be reset.  

(e) Open Algorithm Options dialog and set the “Initial_State” option to “Estimate”. This will 
cause the initial conditions to be estimated together with model parameters. Estimating 



initial conditions can sometimes have beneficial effect on accurate determination of model 
parameters. 

(f) Click on the Estimate button. 

This creates a new Hammerstein-Wiener model “nlhw1”, an icon for which appears in the model 
board. Mathematically, this is just a Wiener model since the model has only output nonlinearity. 
The block diagram of this model is: 

 

 

 

The comparison of the model’s response to estimation data is as follows:  

  

FIGURE 45: FIT TO ESTIMATION DATA (EXP. 1)              FIGURE 46: FIT TO ESTIMATION DATA (EXP. 2) 

Furthermore, it validates reasonably well with data3 and data4, but not to Data5 as shown in 
Figures 47-49. 

    

FIGURE 47: FIT TO DATA3             FIGURE 48: FIT TO DATA4 

𝐺(𝑧) =  
𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3
 F(t) y(t) saturation 

FIGURE 44: WIENER MODEL OF THROTTLE DYNAMICS 



 

FIGURE 49: FIT TO DATA5 

Can we do better? In the spirit of “black box” modeling, we shall use generic nonlinear functions for 
input/output nonlinearities. These nonlinear functions are not derived from physical insight. Some 
trial and error reveals that a model of order [nb, nf, nk] = [3 3 0] and piecewise linear functions for 
both input and output nonlinearities works quite well. This is how we configure this form: 

1. Under the I/O Nonlinearity tab, set both Input and Output Nonlinearity to “Piecewise 
Linear”. 

2. Under Linear Block, set orders to 3, 3 and 0 respectively for B order, F order and Input 
Delay. 

3. Set the Initial_State option under Algorithm Options to ‘Zero’. It turns out keeping initial 
conditions fixed at zero leads to better results for this configuration. 

4. Under Algorithm options, set Maximum_Iterations to 200.  

The form of the model is as shown below: 

 

 

 

 

Press the Estimate button to estimate the above model. This creates a model named “nlhw2” in the 
Model Board. The response of this model, compared to data and the previous model nlhw1 is show 
below. As observed, the model performs quite well for all the data sets.  

𝐺(𝑧) =  
𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3
 

 

F(t) y(t) pw linear pw linear 



    

FIGURE 50: FIT TO ESTIMATION DATA (EXP. 1)               FIGURE 51: FIT TO ESTIMATION DATA (EXP. 2) 

    

FIGURE 52: FIT TO DATA3                                                        FIGURE 53: FIT TO DATA4    



 

 

 

 

FIGURE 54: FIT TO DATA5 

Model nlhw2 is more or less same as nlhw1 in its data fitting abilities, although on data5 it seems to 
provide better fit (90% vs. 60%). 

This concludes our demonstration of some black box modeling approaches using System 
Identification Toolbox. This document described a GUI based approach to modeling. The same tasks 
can be in command line. The MATLAB file “throttledemo.m” shows how to create the same models 
without using the GUI.  The essential elements you will need to be aware of are the following: 

a) Data objects: data has to be packaged in an object called “iddata” when using System 
Identification Toolbox.  

b) Estimation commands: nlarx, nlhw, train commands create nonlinear models from data 
c) Nonlinear model objects: the models are represented by idnlarx, and idnlhw objects. 

It was briefly mentioned at the end of section on linear model estimation that the linear models can 
be used directly as a component of the nonlinear model structure when estimating them. The GUI 
does not support this operation. However, in command line you can utilize the linear model as an 
input argument to estimation commands when creating nonlinear models.  This is shown in 
command line demo throttledemo.m. 

SUMMARIZING BLACK BOX MODELING APPROACH 

The following things should be kept in mind: 

1. Getting model from data is a systematic, multi-step process. You rarely get good models 
right away by throwing data at estimation routines. Especially for nonlinear modeling, make 
sure that the system has been sufficiently excited in the region of operation and that the 
data has sufficient number of samples.  



2. When choosing a model structure, always begin with simpler forms such as low-order linear 
models.  Use model order selection facility available with linear state-space and ARX 
models. This will quickly give you a feel for the complexity of the system (order of 
underlying dynamics) and whether you need nonlinear models. 

3. Some special items to pay attention to: 
a. Dead time: the input to output delay is a quantity that can have significant effect on 

a model’s quality. For most model structures, this delay is not estimated but needs 
to be specified in advanced (such as using “nk” in Nonlinear ARX models). 
Fortunately, delays can often be determined separately from physical 
considerations. Before starting with nonlinear modeling, try to ascertain of the 
system has large delays (larger than the data sample time); if so, try to determine its 
value accurately. 

b. Feedback: many times models do not give good results because the data 
corresponds to a system operating under feedback. If removal of feedback is 
possible, it could simplify your modeling approach. Otherwise, when using data 
containing output feedback, you have to pay attention to the model structures you 
use: when using linear models, use the ones that have a sufficiently flexible noise 
component. Do not use output-error type of models, or trust non-parametric 
modeling techniques.  

c. Outliers: If data contains missing values or outliers, it is best to remove them by 
segmenting data into several experiments and using segments free from these 
issues. Some other ways to handle missing data in System Identification Toolbox 
are:  

i. “Fill-in” missing values, by designating them as unknown parameters (see 
“misdata”).  

ii. There is an estimation algorithm option called “LimitError” that can be set to 
a non-zero value (say, 1.6), which reduces the influence of outliers on 
model’s parameter estimation. 

4. To a large extent, the process of selecting a model structure, configuring its order and 
components (such as regressors/nonlinear function, or number of neurons/layers) and 
estimating its parameters is an iterative, trial/error approach. Be ready to try a variety of 
forms. 

5. Always validate your models using independent data sets. For nonlinear models, your 
model may not validate if the validate data set corresponds to a different operating point or 
radically different input signal levels. With nonlinear models it is difficult to obtain a 
universal model that fits all types of data (unless configured based on physical intuition). 

6. For modeling of processes that span across several operational regions, you may have to 
use a cluster of models with a way of combining or witching among them; that approach 
could work better than trying a create a single black box model directly from data.   

GREY BOX MODELING APPROACH 

Those who are familiar with the throttle valve device may not find it too difficult to derive an exact 
relationship between the command input and the valve angle purely from physical considerations. 
In fact, we used some of those considerations to arrive at the formula for custom regressor in the 
Nonlinear ARX modeling approach. The ability to write explicit equations for the system leads us to 
a slightly different modeling approach wherein the structure of the model is fixed, but only the 



values of its parameters are computed using test data. To study this approach, let us investigate the 
dynamics of throttle valve system more closely.   

The DC motor operating the valve responds very quickly to the step command. Hence compared to 
the throttle valve, the dynamics of the motor can be captured simply as a steady-state gain.  The 
butterfly valve behaves like a mass-spring-damper system (second order), except for the hard 
stops. The hard stops can be described by a resistive hard spring. Hence the overall dynamics can 
be represented by a second order differential equation that uses a nonlinear resistive torsional 
spring: 

𝐽𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 + 𝐾(max(𝑦, 90) − 90 + min(𝑦, 15) − 15) = 𝑏𝐹(𝑡) 

where J is the rotational inertia of the throttle valve, c is its damping coefficient, k is its torsional 
spring constant (linear stiffness) and K is the stiffness constant related to the nonlinear resistive 
force. The constant b describes the system gain originating from the DC motor that transforms the 
step command input a real power signal that moves the throttle valve.  The parameters of this 
model are the coefficients J, c, k, K and b. We can reduce one parameter by dividing the whole 
equation by J. Hence in the following discussions, assume J=1, or equivalently, that the constants c, 
k, K and b are parameters whose values have been normalized by that of J. The equation of motion 
is now:   

𝑦̈ + 𝑐𝑦̇ + 𝑘𝑦 + 𝐾(max(𝑦, 90) − 90 + min(𝑦, 15) − 15) = 𝑏𝐹(𝑡) 

Now we move on to the task of estimating the values of the (normalized) constants c, k, K and b 
using test data. There are two ways of doing so: 

(a) Simulink® centric approach: If Simulink is your preferred modeling platform, you can create 
the above system as a block diagram that uses some integrator, gain and saturation blocks. 
Then Simulink Design Optimization™ can be used to calculate the values of the unknown 
constants that fit chosen data set(s). This approach is discussed in the demo: 
http://www.mathworks.com/products/sl-design-
optimization/demos.html?file=/products/demos/shipping/sldo/spe_engine_throttle.html 
 

(b) MATLAB® centric approach: Write a MATLAB function (similar to an ODE file to be used for 
solving differential equations, or an objective file used in Optimization Toolbox for 
minimization)that represents the above equation: the function should return the derivative and 
output values as a function of model’s parameters and current input values. This MATLAB 
function would look something like this: 

 
function [dx, y] = throttleODE(t, x, F, c, k, K, b) 
% ODE function for throttle body dynamics. 
% Represent equation of motion by a set of first order equations (state-space)  
% 
% dx: state derivatives at time t 
% y: output at time t 
%  
% t: time value (scalar) 
% x: state vector at time t 
% F: input (step command) at time t 
% c, k, K, b: parameters to be estimated 
 
g = max(90,x(1))-90+min(x(1),15)-15; 
 

http://www.mathworks.com/products/sl-design-optimization/demos.html?file=/products/demos/shipping/sldo/spe_engine_throttle.html�
http://www.mathworks.com/products/sl-design-optimization/demos.html?file=/products/demos/shipping/sldo/spe_engine_throttle.html�


% State equations 
dx(1) = x(2); 
dx(2) = b*F - c*x(2) - k*x(1) - K*g; 
  
% Output equation 
y = x(1); 

end 

 

Use this function (throttleODE.m) to create what is called a “Nonlinear Grey Box” model of System 
Identification Toolbox. The parameters of this model can be estimated to fit chosen data set(s). This 
approach is discussed in the demo throttledemo.m. This demo shows that getting good parameter 
values is contingent upon using good initial guesses, which may not be known. Hence some trial and 
error is required for trying out various initial guesses. 

The main difference between the grey-box approach and the black box modeling approach is that 
the grey box approach requires explicit knowledge of the system’s dynamics. When you perform 
grey-box modeling, you must first create an exact mathematical representation of you system (in 
either MATLAB or Simulink) and also prescribe initial guess values to all parameters. Black box 
approaches, on the other hand, do not require initial guess values of model’s parameters. Read the 
grey box modeling section of command line demo throttledemo.m for more details. 

The grey-box approach is not facilitated by the GUI, since it requires you to write some code by 
hand. However, estimated models can be imported into the GUI so that they may be analyzed and 
compared against other models.  

CONCLUDING REMARKS ON MODELING 

In the preceding sections, we discussed several modeling approaches. In the end, we must choose 
one of these models as a representation of the throttle system. The obvious criterion for choosing a 
model is how well it fits the estimation and validation data sets. However, we also need to keep 
some other factors in mind: 

1. Model’s simplicity: A simpler model should be preferred over a model complex one, if their 
performances are in the same ballpark. 

2. Not all models may be amenable to automatic code generation. See the section on “Code 
Generation” later on in this document. 

In the following sections, we discuss how to make use of these models. That involves fetching the 
model’s parameters, simulating the model, linearizing it, importing it as a block in Simulink and 
generating code for deployment on a target.  

If you have created models using a GUI (System Identification Tool or Neural Network Tool), you 
should first export the desired model(s) from the GUI to MATLAB workspace.  

VIEWING MODEL PARAMETERS 

Many times in the description above, we showed the underlying equation of a model and the 
parameters it uses. It may be natural to ask what values were assigned to those parameters, how 



can one fetch them? This information may be required if you are going to implement the model 
equation “by hand”, such as in C for a hardware deployment. In the following we discuss how to 
query identified models for their parameters.  

PARAMETERS OF A NONLINEAR ARX MODEL 

A nonlinear ARX model created using System Identification Toolbox is represented by a dedicated 
object called “IDNLARX” object. This object contains the list of regressors used by the model and 
parameters of the linear and/or nonlinear function employed by the model.  

 

FIGURE 55: STRUCTURE OF A NONLINEAR ARX MODEL 

1. Model regressors:  
a. The standard regressors, which are time-shifted I/O variables, are stored implicitly 

as model orders – na, nb and nk. For example, if na=2, nb=1 and nk=0, the 
regressors indicated by these orders are: y(t-1), y(t-2), u(t) 

b. Any custom regressors you specify manually (such as “max(y(t), 90) + min(y(t),15)-
105” we used to capture hard stops at 15 and 90 degrees) are listed under a 
property called “CustomRegressors”.  

c. To view a unified list of all regressors used by a model, run the “getreg” command, 
as in “getreg(nlarx2)”. You will see the mathematical expressions for all the 
regressors printed in a list. For example getreg(nlarx1) shows the following: 

 
 

2. Nonlinear function parameters: Model has a property called “Nonlinearity”. This property 
contains all the parameters and settings associated with the linear and nonlinear functions 
employed by the model. For example, consider the model “nlarx4” which uses a sigmoid 
network with additional linear terms to transform regressors into output: 
 

y(t) = α1 y(t-1)+ α2 y(t-2) + β u(t) + d + g(y(t-1), y(t-2), u(t), θ) 

where g() is a single-layer sigmoid network expressed as a weighted sum of translated and 
dilated sigmoid functions. The parameters α1, α2 and β are related to the linear function, d is 

Regressors: 

Valve Angle(t-1) 

Valve Angle(t-2) 

Step Command(t) 

 



an offset (“bias” in neural network terminology) and the set θ denoted all the coefficients 
associated with the sigmoid network. The values of all of these parameters are available 
under the “Nonlinearity” property. Typing “nlarx4.Nonlinearity” shows the following:   

 

NumberOfUnits refers to the number of terms in the series expansion for sigmoid network 
(number of “neurons” in neural network terminology).  LinearTerm = ‘on’ means that the 
model uses the linear component (which is α1 y(t-1)+ α2 y(t-2) + β u(t)). “Parameters” is a 
structure containing all the parameter values. Typing “nlarx4.Nonlinearity.Parameters” 
displays the following:  

 

To make sense of the various field names, you must know the formula for a sigmoid 
network, which can be found in product documentation (e.g., type “doc sigmoidnet”). In 
particular, LinearCoef contains the parameters α1, α2  and  β, while OutputOffset refers to 
parameter d in the equation above.  

By knowing the mathematical form of the model and by fetching the values of its various 
parameters, we can write code manually to simulate this model. For more details on querying the 
model and computing response by hand, see the documentation topic:  

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/bq5o_xw-1.html#br7139m 

PARAMETERS OF A HAMMERSTEIN-WIENER MODEL 

As described before, a Hammerstein-Wiener model uses a series connection of input and/or output 
nonlinear functions with a dynamic linear system: 

ans =  

            RegressorMean: [57.0526 56.9563 0.3247 -0.2828] 

    NonLinearSubspace: [4x4 double] 

             LinearSubspace: [4x4 double] 

                       LinearCoef: [4x1 double] 

                             Dilation: [4x5 double] 

                      Translation: [1.4403 -2.9774 0.4151 1.4286 17.2277] 

                     OutputCoef: [5x1 double] 

                   OutputOffset: 56.7809 

Sigmoid Network: 

    NumberOfUnits: 5 

       LinearTerm: 'on' 

       Parameters: [1x1 struct] 

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/bq5o_xw-1.html#br7139m�


 

FIGURE 56: STRUCTURE OF A HAMMERSTEIN-WIENER MODEL 

The model is represented by an “IDNLHW” object. This object stores the information of model 
configuration (types of nonlinear functions, order of linear model etc) and various parameter 
values as its properties.  

The linear system is described by a state-space model (IDSS object) or a polynomial model (IDPOLY 
object). For single-input, single-output models, such as the case here, the linear model is 
represented by an IDPOLY object configured to describe a transfer function: 

 x(t) = B/F w(t)  

where x(t) is the response of the linear block. The input (f) and output (h) nonlinear functions are 
similar to the nonlinear function used by a Nonlinear ARX model, and are represented by forms 
such as sigmoid network, wavelet network, piecewise linear function, saturation, deadzone etc.  

1. Input nonlinear function (f): The settings and parameter values associated with the input 
nonlinearity is stored in the property “InputNonlinearity”. For example, for the model 
nlhw1, typing “nlhw1.InputNonlinearity” displays: 

 
Unit Gain object (no property). 

The model nlhw1 has no input nonlinearity. This is achieved by setting the function to 1 
(i.e., f(t) = 1). This configuration is represented in the model by a “unit gain” function. It has 
no properties associated with it. 

2. Output nonlinear function (h): The settings and parameter values associated with the 
output nonlinearity is stored in the property “OutputNonlinearity”. The format of the value 
of this property depends upon the form of the chosen nonlinear function. For example, for 
the model nlhw1, typing “nlhw1.OutputNonlinearity” displays: 

 
Saturation: 
    LinearInterval: [15.0000 90.0000] 

The output nonlinearity is represented by a saturation function that clips the entering 
values below 15 or above 90. The mathematical expression for this function is h(t) = 
min(max(x,15), 90). The saturation function has only one property called “LinearInterval” 
that stores the lower and upper saturation limits. These values can be set manually or could 
be estimated automatically by running an estimation of the overall model. 

3. Linear block: This is stored in the model property called “LinearModel”. Typing 
“nlhw1.LinearModel” shows the equation for the linear block: 
 
Discrete-time IDPOLY model: y(t) = [B(q)/F(q)]u(t) + e(t) 
B(q) = -6.727 + 17.93 q^-1 - 11.2 q^-2                    
                                                          
F(q) = 1 - 2.405 q^-1 + 1.868 q^-2 - 0.4622 q^-3          
              



Sampling interval: 0.01      

The linear model coefficients B and F represent the numerator and denominator, 
respectively, of the linear (discrete-time) transfer function.  

By knowing the mathematical form of the model and by fetching the values of its various 
parameters, we can write code manually to simulate this model. For more details on querying the 
model and computing response by hand, see the documentation topic:  

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/bq2ix15.html#br73coo 

 

PARAMETERS OF A NONLINEAR GREY BOX MODEL 

The parameters of grey box models are explicitly defined. The display of model shows them. Their 
values can be fetched using “getpar” command. In the model object, they are stored in a property 
called “Parameters”; so typing “Model.Parameters” would return the list of parameters as a struct-
array. 

USING MODELS FOR SIMULATION AND ANALYSIS 

A model is used for simulation and analysis. The nonlinear models created using System 
Identification Toolbox can be used in several ways:  

- You can simulate them using given inputs in MATLAB (see “sim” command)  
- You can linearize them about chosen operating points or input signals (see “linearize” and 

“linapp” commands); see also: 
http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/brjukrq.html 

- You can import them into Simulink using dedicated blocks.   See System Identification 
Toolbox block library (slident) for models created using System Identification Toolbox, and 
Neural Network Toolbox block diagram generating function (gensim) and associated block 
library (neural) for neural network models. 

SIMULATING IN MATLAB 

The models created using the System Identification Tool can be simulated in the GUI itself using the 
Model output and Transient Response options. For other actions, you must export the model first to 
MATLAB workspace. You can do this by dragging the model icons from the model board of the GUI 
to its “To Workspace” box. Similarly, you can export data sets to the MATLAB base workspace. For 
example, after exporting “data1” and “nlarx4” to the base workspace, you can simulate the model’s 
response to input signal in data1 as follows: 

u = data1(:,[],:); % extract input signal 

sim(nlarx4, u)     % simulate using zero initial conditions 

Similarly, the data based models created using Neural Network Toolbox can be simulated using the 
“sim” command.  

http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/bq2ix15.html#br73coo�
http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ug/brjukrq.html�


USING MODELS IN SIMULINK 

Both System Identification Toolbox and Neural Network Toolbox provide blocks that allow you to 
incorporate estimated models into a Simulink model. This is useful when you have a Simulink 
model of a larger system, some of whose components are created using a data based modeling 
approach. For example, the throttle is a component of an engine. The model of an engine, 
represented by a large number of blocks and subsystems in Simulink, can use a block representing 
the throttle dynamics. System Identification Toolbox provides 4 blocks for representing identified 
models: 

(a) Idmodel: block for identified linear models 
(b)  Nonlinear ARX Model: block for identified nonlinear ARX models 
(c) Hammerstein-Wiener Model: block for identified Hammerstein-Wiener models 

To simulate a model, simply drag its corresponding block from the block library into your model.  
For Neural Network models, the most convenient way is to use the “gensim” command that 
automatically creates a Simulink model for the network. However, the resulting model is difficult to 
simulate with time based input signals. 

The following picture shows a Simulink model that simulates the responses of various identified 
models created using System Identification Toolbox. The models are simulated using the input from 
data set number 3 (“data3”). The responses of the models are overlaid on the measured response 
for same input. An offset of 15 degrees is added to the response of the linear model, since the linear 
model by itself does not account for 15 degree offset that exists in the response. 

 

FIGURE 57: SIMULINK MODEL THAT USES THE IDENTIFIED MODELS 



 

The responses in the Scope block for 1 second long simulation looks like this: 

 

FIGURE 58: COMPARING MODEL RESPONSES TO MEASURED VALUES FOR A PARTICULAR INPUT SIGNAL 

The green curve is for the measured response, while the others correspond to the responses of 
various models (yellow: linear model arx210, magenta: Nonlinear ARX model nlarx4, cyan: 
Hammerstein-Wiener model nlhw2 and red: Nonlinear grey-box model Mgrey).  

Note: these responses may not match those seen in the GUI because of difference in initial conditions. 
In the GUI, the initial conditions are estimated to maximize the match to measured response. However, 
in implementation environment like Simulink, you should derive initial conditions from physical 
considerations - what was system doing before simulation started? 

The block diagram structure of black box models might be of interest. If you look under the mask of 
the model blocks you can see how the input is transformed into outputs. For example, in case of a 
Nonlinear ARX model, the diagram under the hood shows how the output is computed in two 
stages: first the inputs and past output values are used to compute a set of regressors (the 
“UX2Reg” block) and then the regressors are transformed into output by the nonlinear function 
(“sigmoidnet”). 



 

FIGURE 59: INPECTING DETAILED STRUCTURE OF A NONLINEAR ARX MODEL 

  

 

CODE GENERATION 

The model blocks for System Identification Toolbox support code generation with the following 
exceptions: 

1. Nonlinear Grey Box model are not supported. 
2. Nonlinear ARX models containing custom regressors can’t be built using Real Time 

Workshop®. The reason is that evaluation of the formulas specified for custom regressors 
requires access to MATLAB. If you need to build such models, you can replace the “MATLAB 
Function” block used for custom regressors (named “EvalCustomReg”) with Simulink’s 
built-in blocks that generate the same answers. For example, in the model nlarx4 above, the 



custom regressor employed has the formula:  y(t) = max(x(t), 90) + min(x(t),15)-105. You 
can easily compute this result in Simulink by using saturation and summation blocks as 
shown below: 
 

 

FIGURE 60: REPLACEMENT COMPONENT FOR CUSTOM REGRESSOR USED IN MODEL NLARX4 

To achieve this replacement, you can proceed as follows: 
(a) Look under the mask of the nonlinear ARX model that employs the custom regressor. 

Select all and copy 
(b) Create a new Model (or subsystem) and paste the copied contents in there.  
(c) Break library link for the Regressor block called “UX2Reg”.  
(d) Look under the mask of Regressor block called “UX2Reg”. Delete EvalCustomReg block 

and replace it with a block that generates the custom regressor (here we have only one 
as a function of output signal). 

(e) In the regressor block dialog, set the Model variable name to the name of the system 
(“nlarx4”). 

The automatically generated block diagram of a Neural Network model cannot be built using RTW.  

FINAL NOTES 

Some issues to be aware of: 

CHOICE OF SAMPLE TIME 

The sample time for modeling is chosen based on the nature of the system (its bandwidth) and a 
suitable length of data. The resulting models are discrete in time and have a fixed sample time (0.01 
here). This need not be same as the sample time required for the generated code, which may be 
dictated by needs of the overall system or the hardware on which the code has to be executed. 
There are some ways to manage this difference: 

1. In Simulink, rate transition blocks may be inserted around the model block to reconcile the 
model sample time with the simulation’s fixed time step.  

2. You can also estimate the model of a chosen form using data whose sample time is same as 
the desired sample time for code generation. If doing so, it is useful to keep in mind that the 
time delays (represented by “nk” parameter or “Input Delay” GUI option) are expressed in 
number of samples; it would have to be recalculated to be expressed as a multiple of the 
new sample time.  For example, our models were created using a sample time of 0.01 sec. If 
the desired sample time is 0.001 sec, then the original value of nk would have to be 



multiplied by 10. However, zero values may require extra consideration: in our examples, 
nk was zero indicating that for the sample time of 0.01 sec, the delay was insignificant. 
When the sample time is 0.001 sec, the delay need not be insignificant. Essentially, a choice 
of zero value only indicates that the delay is less than the sample time.  If sample time 
should reduce, a zero value may have to be replaced by a non-zero value. 

HOW TO CHOOSE INITIAL CONDITIONS (“INITIAL STATES”) FOR SIMULATION 

As mentioned before, the values of initial conditions should be given fresh thought; you should not 
simply use the values that were computed by the estimation algorithms (unless the same input 
signal is used for simulation and the simulation environment closely emulates the experimental set 
up used for collecting data). The values should be derived from physical considerations regarding 
the state of the system before start of simulation. Often, zero values or constant values denoting 
pre-existing equilibrium conditions are good choices. Look up documentation for definition of 
initial states for various model types. 
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