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Copula functions have become the standard tool in modeling multivariate dependence

over the last decade hence there are toolboxes available for simulating and estimating cop-

ulas in the major statistical software such as R/S+, SAS and MATLAB. However recent

developments in copulas like copula � GARCH models (Jondeau and Rockinger, 2006)

and copula vines (Aas et al 2009) have not been incorporated so far to any statistical lan-

guage/software. The dynamic copula toolbox we present here is a list of MATLAB functions

speci�cally designed to estimate the two aforementioned classes of copulas and it is partic-

ularly oriented towards cases met in �nance, although scientists from other �elds can also

use the toolbox without any major modi�cations. The toolbox is publicly available over the

internet from the Mathworks site.
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1. INTRODUCTION

In many �nancial theories like asset allocation, derivatives pricing and risk man-

agement, the dependence among the risk factors is of crucial importance. Copula

functions describe the dependence structure of a set of variables and thus have be-

come the standard tool in modeling dependence among �nancial time series especially

when the researcher does not want to resort to the highly criticized assumption of

multivariate normality. Examples of applications of copulas in �nance can be found

at Mendez et al (2004), Dias and Embrechts (2007), Van de Goorbergh et al (2005),

Rodriguez (2007) and Hurlimann (2004) to name a few. Patton (2007) provides a

review of the use of copulas in �nance while Genest et al (2009) depicts the increasing

use of copulas in the statistical literature.

Sklar�s theorem (Sklar, 1959) provides the link between a joint distribution and

the corresponding copula. According to it, for every p �dimensional distribution F ,

with marginal distributions Fi, i = 1; : : : ; p there exists a copula C, such that:
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F (x1; :::; xp) = C(F1 (x1) ; :::; Fp (xp)): (1)

The copula de�ned in (1) is unique if all marginal distributions are continuous.

From (1) one can obtain the copula according to the following formula:

C (u1; :::; up) = F
�
F�11 (u1) ; :::; F

�1
p (up)

�
; (2)

where

ui = Fi (xi) ; i = 1; :::; p:

If F is p �times di¤erentiable, the joint density can be obtained:

f(x) =
@p

@x1@x2:::@xp
F (x) =

=

pY
i=1

fi (xi)
@p

@u1@u2:::@up
C(F1 (x1) ; :::; Fp (xp))

f(x) =

pY
i=1

fi (xi) c(F1 (x1) ; :::; Fp (xp))

and the corresponding copula density is:

c (u1; :::; up) =
f
�
F�11 (u1) ; :::; F

�1
p (up)

�
pY
i=1

fi
�
F�1i (ui)

� ; (3)

where x = (x1; :::; xp) and c is the copula density.

Copula parameters are usually estimated by optimizing the log �likelihood func-

tion:

L (�;x) =
TX
j=1

 
pX
i=1

log (fi (xi;t;�i)) + log (c(F1 (x1;t) ; :::; Fp (xp;t) ;�))

!
; (4)

where � = (�;�) is the vector that contains the marginal parameters � =
�
�1; :::;�p

�
and the copula parameters �: Equation 4 can be decomposed to two parts, the

marginal log likelihoods:
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mL (�;x)=
pX
i=1

mlli =

pX
i=1

TX
j=1

log (fi (xi;t;�i)) (5)

and the copula log likelihood:

cL (�;u; �)= log (c(F1 (x1;t) ; :::; Fp (xp;t) ;�)) ; (6)

where u = (F1 (x1) ; :::; Fp (xp)) : Since the number of parameters can be large even

in moderate dimensions, two step methods are usually employed. The marginal para-

meters are estimated at the �rst step by optimizing the marginal log likelihoods mlli;

independently of each other and the copula parameters are estimated at the second

step, by optimizing the corresponding copula log likelihood cL (�;u; �), conditional
upon the results from the �rst step. The properties of the two stage estimators are

studied in Joe (1997) when the margins are estimated parametrically and in Chen

and Fan (2004) when a semiparametric method for the margins is employed. A com-

parison of the two methods can be found at Kim et al (2007). In general, two stage

estimators provide computational tractability in the expense of loss of full e¢ ciency.

The Dynamic copula toolbox supports the following general classes of models:

� Copula - GARCH models
� Copula Vines
Copula �GARCH models is the class of models where some of the parameters are

potentially time varying, in an autoregressive manner, conditional on the set of past

information. Patton (2006) extended Sklar�s theorem to the conditional case and

studied the attributes of this new class of models. Applications of copula - GARCH

models in �nance can be found for example in Panchenko(2006), Serban et al (2007),

Huang et al (2009).and Wang et al (2009). The toolbox supports four time varying

copulas, namely the Gaussian copula, t copula, Clayton copula and Symmetrized Joe

- Clayton (SJC) copula. The latter two are supporter only when p = 2, while the �rst

two have no dimensional constraint. The time varying parameter is the correlation

among the risk factors for the �rst two, Kendall�s tau for the third and upper and

lower tail dependence for the last.

Copula vines, known also as pair copula constructions are the class of models

produced by the decomposition of a multivariate (p>2) copula to a cascade of bi-

variate copulas. A formal introduction to copula vines is beyond the scope of this

paper and the interested reader is referred to Aas et al (2009) or Bredford and Cooke

3



(2001). In general, a p �dimensional copula can be decomposed into p(p�1)
2 bivariate

copulas. Copula vines provide greater �exibility than the traditional multivariate

copulas because some of the restrictions of multivariate copulas do not hold in the

copula vine case. For example in a multivariate t copula all pairs share the same

degree of freedom parameter, unlike a copula vine decomposed in t - copulas, where

each pair is allowed to have di¤erent degrees of freedom. The toolbox supports two

copula vine decompositions, the canonical vine and the d - vine, assuming that each

bivariate copula is a t copula or a Clayton copula or an SJC copula. Applications of

copula vines in �nance can be found in Min et al (2009) and Chollete et al (2010).

The main functions of the toolbox are modelspec and �tModel. The former is used

to de�ne the model speci�cations and the latter is used to estimate the parameters

of the model de�ned by modelspec. For the one step models, the user should call

modelspec to de�ne the model and then call �tModel to estimated the parameters.

The same is true for the two step models also, only now the user has to repeat the

procedure two times. First the marginal models are de�ned with modelspec and esti-

mated with �tModel. Then the copula model is de�ned by modelspec and estimated

with �tModel. These two functions will be presented in detail in the following two

sections. For all the other functions in the toolbox, the interested user can �nd com-

ments in the corresponding m - �les. Function names or function inputs/outputs

are emphasized, to avoid confusion. The toolbox is tested on MATLAB R2008B

and it uses the optimization toolbox and statistics toolbox from Mathworks. The

command:

>> CopulaToolboxTutorial

provides a brief tutorial and a sort description of some of the Dynamic Copula

Toolbox functions.

2. SPECIFICATION OF THE SUPPORTED MODELS

The function that estimates all supported models is �tModel however prior to

the estimation of the model parameters, the model speci�cations should be de�ned.

This is achieved with the command:

>> spec = modelspec(data)

The function modelspec creates a structured array called spec that contains all

speci�cations of the model that the user wants to estimate. The function input,
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data, is the data set. This routine utilizes the menu function of MATLAB to create a

sequence of model speci�cation options, conditioned upon the user�s previous choices.

Each option is presented with all possible values it can take and the user is called

to choose one of these values. First, the user is called to de�ne what type of model

he wants to estimate. A snapshot of the �rst pop up menu item from modelspec is

presented in �gure 1

Figure 1: Snapshot of the �rst pop up menu item from the modelspec function

Choice number one: "GARCH model for each series" should be used to de�ne

the �rst step speci�cations when the user wants to employ a two step procedure

for the estimation of the model parameters and when each series in the data set is

heteroscedastic and possibly autocorellated, as in the case of �nancial data. The

supported univariate GARCH models are:

� AR(q) - GARCH(1,1)
� AR(q) - GJR(1,1)
With the Gaussian, Student t or Skewed Student t (Hansen, 1994) distributions

for the residuals. Having made this choice the user is called to de�ne the order,

q, of the autoregressive terms in the mean equation (non - negative integer), the

variance equation (�GARCH(1,1)� or �GJR(1,1)�), the distribution of the residuals

(�Gaussian�, �t�or �SkewT�) that de�nes the log likelihood function of the margins1

and the method that transforms the standardized, iid residuals from the �ltration, to

uniform (�IFM�or �CML�). This transformation is achieved by the probability integral

transform: Let "t; t = 1; :::T be a time series of iid variables, where we assume that:

"i � F; i = 1; :::; T . Then the series:
1The expressions for the three supported marginal log likelihoods are given in the appendix.
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ut = F ("t) ;

is the probability integral transform of "t and it holds that ui � U [0; 1] ; i = 1; :::; T:
When the user chooses �CML�the transformation is being made by the empiricalCDF

function 2 :

Fi(x) =
1

T + 1

TX
j=1

1(Xi;j�x);

where 1 denotes the indicator function: 1 (expression) =
�
1; If expression is true
0; If expression is false and T

is the number of observations. On the other hand, if the user chooses �IFM�, the

transformation to U [0; 1] is being made parametrically, by using the distribution

assumed for the residuals. When the input argument data is multivariate the same

speci�cation is applied to all series. If the user wants to apply di¤erent speci�cations

to each series he should input a single series to modelspec, estimate the parameters

with the �tModel function and repeat this procedure for all series in the data set.

Choice number two: "Copula" should be used to de�ne the second step speci�-

cations when the user wants to employ a two step procedure for the estimation of

the model parameters. The available options for the copula models depend on p and

they are presented in table 1 along with their possible values

user de�ned options possible values

copula family
Gaussian

p � 2
t

p � 2
Clayton

p = 2

SJC

p = 2

dependence parameter

evolution
DCC

DCC

Static

Patton

Static

Patton

Static
Table 1: Supported copula options, based on the size p, of the data set.

The input Copula family de�nes the log �likelihood function (equation 6) of the

dependence structure. The log likelihoods of the two elliptical copulas, the Gaussian

and t copula are given by:

2The ecdf.m function of MATLAB is almost the same as the empiricalCDF.m, the only di¤erence
is that the denomenator of the former equals T while the denomenator of the latter is T+1. However
ecdf.m should not be used because it can produce in�tite values to some steps of the procedure,
that cause the estimation routine to terminate. The empiricalCDF.m function was taken from A.J.
Patton�s home page: http://econ.duke.edu/~ap172/

6



LGaussian (R;ut) = �
1

2

TX
t=1

�
log jRj+ �0t

�
R�1 � I

�
�t
�
: (7)

LSt (R; d;ut) = �T log
�
�
d+p
2

�
�
�
d
2

� � pT log
�
�
d+1
2

�
�
�
d
2

� � d+ p
2

TX
t=1

log

�
1 +

�0tR
�1�t
d

�

�
TX
t=1

log jRj+ d+ 1
2

TX
t=1

pX
i=1

log

�
1 +

�2it
d

�
: (8)

The vector �t is the vector of the transformed standardized residuals which de-

pends on the copula speci�cation. For the Normal copula it holds that: �t =

(��1(u1;t); : : : ;�
�1(up;t)), whereas for the t copula, the vector �t is de�ned analo-

gously, as: �t = (t
�1
d (u1;t); :::; t

�1
d (up;t)): �

�1 denotes the inverse univariate standard

normal distribution and t�1d is the inverse student�s t distribution with d degrees of

freedom. In both likelihoods R denotes the correlation matrix of �t: The log likeli-

hoods of the two supported archimedean copulas, the Clayton and SJC copula, are

presented in equations 9 and 10, respectively:

LClayton (d;ut) =
TX
t=1

log

�
(1 + d) (u1t � u2t)�1�d

�
u�d1t + u

�d
2t � 1

��2� 1
d

�
; (9)

LSJC
�
�U ; �L;ut

�
=

=
TX
t=1

log

�
@2

@u1@u2

�
1

2

�
CJC

�
utj�U ; �L

�
+ CJC

�
1� utj�L; �U

�
+ u1t + u2t � 1

���
;

(10)

with d = 2�
1�� ; where � is Kendall�s tau and ut = (u1t; u2t). CJC is the Joe �Clayton

copula with upper and lower tail dependence coe¢ cients �U ; �L respectively. The

distribution of the JC copula is de�ned as:

CJC
�
u; vj�U ; �L

�
= 1�

0BBB@1� 1�
1

(1�(1�u)k)
 + 1

(1�(1�v)k)
 � 1

�1=
1CCCA
1=k

; (11)
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where k = 1
log2(2��U )

and  = � 1
log2 �

L . Both �Uand �L belong to (0; 1) : The analytic

expressions of the SJC copula density and of the function @CSJC(u;v;#)
@v are given at

the appendix.

The second option de�nes how copula parameters evolve through time. The choice

�static�de�nes a copula whose parameters are assumed constant over time. More

speci�cally if a static t copula is assumed, a method similar to Marshal and Zeevi

(2002) is employed, according to which the correlation matrix of the t copula is taken

to be equal to the sample correlation of the transformed standardized residuals and

only the degree of freedom parameter is estimated, therefore the number of copula

parameters is one, independent of p. The �DCC�choice de�nes that the degree of

freedom parameter is static (for the t copula) and the correlation Rt evolves through

time as in the DCC(1,1) model of Engle (2002):

Qt = (1� �� �) �Q+ ��t�1 � �0t�1 + � �Qt�1 (12)

Rt = eQ�1t Qt eQ�1t ;

where Q is sample covariance of �t; eQt is a square p � p matrix with zeros as o¤
- diagonal elements and diagonal elements the square root of those of Qt. The

parameter constraints for the DCC are the same as for the univariate GARCH(1,1)

models:

�+ � < 1; a; � 2 (0; 1) :

The choice, �Patton�, available for the Clayton and SJC copulas, de�nes the evolution

of the dependency parameter (Kendall�s tau for the Clayton copula, upper and lower

tail dependence coe¢ cients for the SJC copula), according to the equations, de�ned

in Patton (2006):

� t = �

 
! + �� t�1 + � �

1

10

10X
i=1

ju1;t�i � u2;t�ij
!
; (13)

for the SJC copula, and

� (! + �� t�1 + � � ju1;t�i � u2;t�ij) ;
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for the Clayton copula. � denotes the logistic transformation: � (x) = (1 + e�x)�1

in order to keep the parameters of both Clayton and SJC copulas in (0; 1) :

Choice number three: "Copula in one step" should be used to de�ne the model

speci�cations when the user wants to employ the one step procedure for the esti-

mation of copula parameters. This choice de�nes the options for both the marginal

GARCH models and the copula. The available options for both the margins and the

copula are identical to those of the two step procedures, therefore all models that can

be estimated with the two step procedures can be estimated in one step, as well, with

one exception. The one step is a fully parametric method, therefore the standardized

residuals from the GARCH processes are transform to uniform parametrically, by

automatically setting the PIT method to �IFM�. Thus the user is not called to choose

the PIT method, it is set to �IFM�by default.

Choice number four:"Copula Vine" should be used to de�ne the model speci�ca-

tions when the user wants to �t a copula vine to a multivariate (p > 2) data set that

consists of iid uniform U [0; 1] margins therefore, a �ltration of the data set, usually

through a GARCH model, that will extract the iid residuals from the raw data and

transform them to uniform, is usually necessary. A copula vine is a decomposition

of a multivariate copula to a product of bivariate copulas, in a form of a nested set

of p � 1 trees. The �rst tree consists of p � 1 bivariate copulas, the second tree
consists of p�2 copulas and so on. The toolbox supports estimation of d - vines and
canonical vines, assuming that all the bivariate copulas that the multivariate copula

is decomposed to, are t copulas or Clayton copulas or SJC copulas. Table 2 illus-

trates the canonical vine and d - vine decomposition of a �ve dimensional copula.

The corresponding copula vine log likelihood is the sum of these (p(p � 1))=2 bi-
variate log likelihoods. The only di¤erence between choices four: "Copula Vine" and

�ve: "Copula Vine sequentially" is on how �tModel estimates the copula parameters.

"Copula Vine" choice, forces the �tting function to estimate all the parameters of the

vine at the same time, in one step. However this one step optimization scheme can

be signi�cantly time consuming therefore the use of good starting values is essential.

The choice "Copula Vine sequentially" forces the �tting function to estimate the vine

parameters in multiple steps, in each step a bivariate copula likelihood found in the

corresponding decomposition, is optimized. The procedure ends when the parame-

ters of all the bivariate copulas have been estimated. This sequential procedure is

extremely faster when compared to one step method: it can save up to 90% of the

time but it may result to a signi�cant loss of e¢ ciency. Aas et al (2009) suggests
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that one should estimate the copula parameters with the multi step method �rst

and then use these estimates as starting values for the one step method. In practice

however the results under both methods are very close thus a user that favors speed

over accuracy might consider using only the multi step estimators.

c(F (x1) ; :::; F (x5) ) =

c12�c13�c14�c15
c23j1�c24j1�c25j1
c35j12�c34j12
c45j123

c(F (x1) ; :::; F (x5) ) =

c12�c23�c34�c45
c13j2�c24j3�c35j4F3j4; F5j4

c14j23�c25j34
c15j234

Tree 1

Tree 2

Tree 3

Tree 4
Table 2: The decomposition of a �ve dimensional copula, implied by the canonical vine (left

panel) and the d - vine decomposition. cijjkl stands for c
�
F
�
xijkl

�
; G
�
xjjkl

��
; where F and

G denote the distribution functions of xijkl and xjjkl; respectively.

3. ESTIMATION OF THE SUPPORTED MODELS

Having created the structure array that contains the model speci�cations the

model parameters are estimated with the �tModel function:

>>[parameters, LogL, evalmodel, GradHess, udata] = �tModel(spec, data, solver)

The inputs of this function are spec, the structure that contains the model speci-

�cations, created with modelspec, the data array data and solver, a string that takes

values �fminunc�or �fmincon�, depending on which MATLAB function the user wants

to use in order to optimize the corresponding log likelihood function. Since most of

the supported models are constrained by nature, a reparametrization of the parame-

ters is needed, in order to estimate them with fminunc. The increasing functions that

are used to reparametrise the problem depend on the domain of the real parameter

and are illustrated in table 3.

Real Parameter Space reparametrization function

y 2 (a;+1) y = a+ exp(x); x 2 R
y 2 (a; a+ b) y = a+ b exp(x)

1+exp(x) ; x 2 R
Table 3: Reparametrizations supported by the toolbox. x is an unconstrained parameter and

y is the corresponding constrained one.

The output arguments of the function are the column vector parameters that con-

tains the model parameters, LogL which is the log likelihood value at the optimum,
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evalmodel which is a structure array that contains secondary outputs from the opti-

mization procedure, like the exit�ag and the number of iterations, a structure array

GradHess that contains both the standard errors based on the Godambe information

matrix and all elements used to calculate the standard errors and udata which con-

tains the �ltered data, transformed to uniform, if the model de�ned by modelspec is

"GARCH model for each series". In any other case udata is an empty matrix. When

the estimation is �nished the optimum parameters along with their standard errors,

the values of the log likelihood, the Akaike (AIC) and Schwarz (BIC) are printed on

the computer screen. Figure 2 illustrates a typical output of the �tModel function,

printed on the screen.

Figure 2: FitModel output, printed on the computer screen.

Care should be taken when the model of choice de�ned withmodelspec is "Copula"

or "Copula Vine" or "Copula Vine sequentially". In all these cases the second input

argument, data, should consist of margins that are iid uniform, therefore prior to

estimating such models the user should transform his data to uniform as follows:

First the user de�nes the desired model as "GARCH model for each series" and �ts

a GARCH model to each series with �tModel, in order to extract udata. Then he

rede�nes the model as "Copula" or "Copula Vine" or "Copula Vine sequentially"

and estimates the parameters by calling �tModel, with udata as the second input
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argument.

3.1. Standard errors of the parameters

The variance covariance (VCV) matrix of model parameters is the Godambe

information matrix:

V CV = H�1MH�1; (14)

where H�1 is the expectation of the log likelihood Hessian and M is the covariance

of the log likelihood scores. Both Hessian and scores of the log likelihood func-

tion are calculated numerically, at the optimum, with the functions Hessian_2sided

and MyFuncScores3 , respectively. However the numerical Hessian calculated with

hessian_2sided is not always positive de�nite at the optimum, unlike the Hessians

provided by both fminunc or fmincon which are always positive de�nite. When the

numerical Hessian is not positive de�nite and the solver input is �fmincon�, H in

equation 14 is replaced by the Hessian provided by the solver, which is not a good

approximation of the real hessian, especially when some of the parameters are close

to the boundaries and thus standard errors might be inaccurate. When the solver is

�fminunc�H�1 is calculated from the fminunc Hessian Hu, with the chain rule, since

Hu corresponds to the hessian of the unconstrained parameters. Let c = (c1; :::; cn)

and u = (u1; :::; un) be the vectors of constrained and unconstrained parameters, re-

spectively and h : Rn ! Rn the reparametrization function: u = h (c) : The Hessian
of the log likelihood function f , with respect to c is given by

Hc = J �Hu � J 0 + V; (15)

where J is the Jacobian matrix of the reparametrization: J =

2664
@u1
@c1

::: @un
@c1

...
. . .

...
@u1
@cn

::: @un
@cn

3775
and V is an n�nmatrix whose generic element Vij is de�ned as: Vij = ruf 0�Hij ; with

Hij=
h

@2u1
@ci@cj

::: @2un
@ci@cj

i0
and ruf =

h
@f
@u1

::: @f
@un

i0
: In the toolbox case,

instead of u = h (c) ; an one to one reparametrization was used: ui = hi (ci)
4 ; i =

3Both functions are minor modi�cations of two similar functions
found in the MFE GARCH toolbox of Kevin Sheppard, available at:
http://www.kevinsheppard.com/wiki/MFE_MATLAB_Introduction

4For simplicity to the notations hi corresponds to the inverse of the reparametrization functions
gi de�ned in table 3. That is hi � g�1i :
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1; :::; n therefore equation 15 is simpli�ed to

Hc = J
� �Hu � J� +r2ch � ruf 0;

where J� =

2664
du1
dc1

::: 0
...

. . .
...

0 ::: dun
dcn

3775 and r2ch = �d2h1dc21
; :::; d

2hn
dc2n

�0
:

4. EMPIRICAL APPLICATION OF THE TOOLBOX

The dependence of the daily log � returns of four stocks listed in the S&P500

index, with tickers AXP, BA, LMT and MS5 is studied. The data was collected from

yahoo! �nance (http://�nance.yahoo.com/q/cp?s=^GSPC+Components) covering

a period from January 04, 2002 to December 29, 2006, total 1256 returns observations.

From the stock prices, pi;t, the geometric returns of the i - th stock, for the day - t,

ri;t, are calculated:

ri;t = log

�
pi;t
pi;t�1

�

For the copula vine models the four variate data set was. For the copula models

the bivariate set consisting of AXP and MS was used. The descriptive statistics

of the returns are calculated with the DescriptiveStatistics function of the toolbox

and are presented in table 4. We observe that all variables exhibit the characteristic

features of �nancial time series like excess kurtosis and non positive skewness. The

normality hypothesis is rejected for all cases, at every con�dence level, according to

the Jarque Bera test.

5AXP is American Express, BA is Boeing, LMT is Lockheed Martin and MS is Morgan Stanley
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Statistic Stock

AXP BA LMT MS

Mean 0.0004 0.0006 0.0005 0.0002

Medean -0.0005 0.0006 0.0002 0.0003

IQR 0.0150 0.0207 0.0151 0.0210

St. Deviation 0.0166 0.0172 0.0148 0.0194

Skewness -0.0476 0.0056 -0.2920 -0.1068

Kurtosis 9.8807 4.7032 8.2831 5.6921

JB test p value 0 0 0 0
Table 4: Descriptive statistics of the four stock returns. JB test, p - val is the probability

that the data comes from the Normal distribution, according to Jarque - Berra normality

test

4.1. Two step estimation of Copula GARCH models

In the two step procedure the marginal parameters are estimated at the �rst

step. An AR(1) - GJR(1,1)6 with Skew-T residuals was �tted to each series. The

choice of the Skew-T distribution is justi�ed from the fact that three out of the four

series in the data set exhibit negative skewness and the only distribution supported

by the toolbox that can account for the presence of skewness in data is the Skew-

T distribution. The AR(1) - GJR(1,1) model can be described as follows: Let ri;t
denote the returns of the i-th asset at time t. Then:

ri;t = c0 + c1ri;t�1 + ei;t (16)

ei;t = hi;t"i;t; "i;t � SkT (v; �) (17)

hi;t = !i;t + �e
2
i;t�1 + �hi;t�1 + e

2
i;t�11 (ei;t�1 < 0) (18)

Thus, each marginal model has eight parameters, two parameters (c0; c1) in the mean

equation, four parameters (!; �; �; ) in the variance equation and two distributional

parameters (v; �) : 1 is the indicator function. To �t the GARCH model to each of

the series, the modelspec function is called �rst, to create the structure array spec,

that contains the model speci�cations. and then the �tModel function is called. All

models were estimated with �fminunc� as the solver and �IFM� as the PIT method.

6For the GJR(1,1) model, the constraints applied to equation 18 are: a++2� < 2; a > �; � 2
(0; 1)
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The estimated parameters along with their standard errors, the values of the log

likelihood and the Akaike (AIC) and Schwarz (BIC) criteria are illustrated in table

5.
AXP BA LMT MS

c0
0.00042

(0.0003)

0.00097

(0.0004)

0.00068

(0.0003)

0.0004

(0.0003)

c1
-0.0403

(0.0263)

-0.1234

(0.0315)

-0.0426

(0.0309)

-0.0281

(0.0262)

!
2.06�10-6

(9.1 10-7)

2.88 � 10-6

(1.60 10-6)

3.32 � 10-6

(2.47 10-6)

1.98 10-6

(9 10-7 )

�
0.0232

(0.0126)

0.0065

(0.0117)

0.0557

(0.0221)

0.0042

(0.013)

�
0.9158

(0.0187)

0.9537

(0.0185)

0.9036

(0.0428)

0.9565

(0.0187)


0.1166

(0.0424)

0.0586

(0.0198)

0.0479

(0.0399)

0.0635

(0.0418)

v
5.9828

(1.4675)

12.736

(6.5802)

9.114

(2.988)

10.481

(1.4663)

�
0.1009

(0.0359)

0.0637

(0.0421)

0.0205

(0.0385)

�0.043
(0.0359)

LL 3683 3428.8 3694.5 3339.02

AIC -7350 -6841.6 -7373 -6662

BIC -7308.9 -6800.5 -7332 -6621
Table 5: The estimated parameters correspond to equations 16 to 18. LL is the value

of the log - likelihood function at the optimum. AIC and BIC correspond to the Akaike and

Swcharz criteria. Standard errors are in parentheses.

4.2. Copula Results

Having estimated the marginal parameters, modelspec is called again to de�ne

the speci�cations of the copula. Then the copula is �tted by calling the �tModel

function. Tables 6 and 7 illustrate the estimated copula parameters for the bivariate

data set. Table 6 contains the estimated parameters from three elliptical copulas,

namely the static t copula (t), the time varying t (tDCC) and Gaussian (GDCC)

copulas. In both time varying copulas the time varying parameters is the correlation

that follows the DCC model of Engle. Table 7 contains the estimated parameters
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from three Archimedean copulas, the static SJC copula (SJC) along with the time

varying SJC (tvSJC) and Clayton (tvC) copulas

t tDCC GDCC

v
10.0734

(0.011)

13.2175

(5.449)
-

� -
0.016

(0.006)

0.0186

(0.007)

� -
0.9797

(0.007)

0.9747

(0.009)

AIC -542.087 -576.903 -566.751

BIC -536.951 -561.496 -556.480

LL 272.043 291.451 285.376
Table 6: Estimated parameters of three elliptical copula models. The parameters � and �

correspond to the parameters of equation 12 and v is the degree of freedom parameter of the t

copula. Asymptotic standard errors are in parentheses.

tvC SJC tvSJC

�U - �L
0.4079 0.3461

(0.0325) (0.0428)

!
-0.6943

(0.3181)

1.6658 0.0877

(0.944) (0.051)

�
-0.908

(0.5061)

-7.032 -0.4709

(4.466) (0.277)

�
-0.5007

(0.3547)

-0.986 0.9804

(0.070) (0.011)

AIC -382.057 -507.504 -528.669

BIC -366.45 -497.232 -497.854

LL 194.028 255.752 270.334
Table 7: Estimated parameters of three Archimedean copula models. The parameters !; � and

� correspond to the parameters of equations 13 and 14. For the tvSJC copula the left column

corresponds to the upper tail equation parameters. Asymptotic standard errors are in parentheses.

4.3. One step versus two step results

To illustrate the di¤erences between the two estimation methods, the tDCC model

of section 4.1 was also estimated with the one step procedure. The estimated para-
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meters from the two models are presented in table 8.

two step results one step results

marginal parameters marginal parameters

AXP MS

c0
0.00043

(0.0003)

0.0004

(0.0003)

c1
-0.0402

(0.0263)

-0.0281

(0.0262)

!
2.03 10-6

(9.1 10-7 )

1.98 10-6

(9 10-7 )

�
0.0245

(0.0126)

0.0042

(0.013)

�
0.9158

(0.0187)

0.9565

(0.0187)


0.1138

(0.0424)

0.0635

(0.0418)

v
5.9807

(1.4675)

10.481

(1.4663)

�
0.1013

(0.0359)

�0.043
(0.0359)

AXP MS

c0
0.00054

(0.0003)

0.00055

(0.00042)

c1
-0.0431

(0.0247)

-0.0175

(0.0244)

!
3.06 � 10-6

(1.05 10-6 )

2.8 � 10-6

(1.26 10-6 )

�
0.0396

(0.0143)

0.0135

(0.0117)

�
0.9103

(0.0196)

0.9561

(0.013)


0.0761

(0.0366)

0.0382

(0.0192)

v
5.4616

(1.1301)

8.4805

(2.3537)

�
0.0989

(0.032)

-0.0411

(0.0363)

copula parameters copula parameters

v
13.2175

(5.449)

�
0.016

(0.006)

�
0.9797

(0.007)

v
12.0681

(4.8903)

�
0.0143

(0.0054)

�
0.9804

(0.0066)

LL 7313.67 LL 7318.39
Table 8: Comparison of the estimated parameters of the tDCC copula, from the one and two

step methods.

4.4. Copula Vine results

The toolbox supports six di¤erent copula vine models, the canonical vine and d -

vine, assuming that each bivariate copula in the cascade is t, Clayton or SJC copula.

The log likelihood function of the canonical vine t copula model (tCVine) did not
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converge to a solution with fminunc and the numerical hessian was not positive

de�nite, when fmincon was the solver, consequently the results are not reported

here because they might be inaccurate. The results from the �ve copula vines are

illustrated in table 9.

canonical vine d - vine

Clayton SJC

a12
0.2020

(0.021)

0.1564 0.2673

(0.0501) (0.0427)

a13
0.1201

(0.0212)

0.0520 0.1324

(0.032) (0.0410)

a14
0.3008

(0.0191)

0.4087 0.3464

(0.0337) (0.0464)

a23j1
0.1781

(0.0176)

0.1657 0.1845

(0.0422) (0.0403)

a24j1
0.0895

(0.0139)

0.0311 0.0635

(0.0287) (0.0328)

a34j12
0.0090

(0.0124)

0.0018 0.000

(0.0087) (0.000)

AIC -836.241 -1050.473

BIC -805.427 -988.845

LL 424.120 537.236

Clayton t SJC

a12
0.1895

(0.019)

12.934

(0.029)

0.1235 0.2537

(0.0538) (0.0421)

a23
0.2259

(0.0162)

43.898

(0.006)

0.1838 0.2883

(0.0435) (0.0388)

a34
0.0874

(0.0167)

13.22

(0.0144)

0.0608 0.0857

(0.0325) (0.0387)

a13j2
0.0136

(0.017)

23.75

(0.0107)

0.0000 0.0027

(0.003) (0.0124)

a24j3
0.1441

(0.016)

60.809

(65.048)

0.0079 0.1861

(0.0442) (0.044)

a14j23
0.2409

(0.0214)

14.305

(6.800)

0.3498 0.2082

(0.0422) (0.0605)

AIC -823.335 -1144.1 -1031.771

BIC -792.521 -1113.2 -970.143

LL 417.667 578.031 527.887
Table 9: Estimated parameters from the two canonical vine (left panel) and three D vine models.

aijjkl denotes the parameter(s) of the copula cijjkl in the decomposition. Zero value in a parameter

indicates that the estimated parameter was less that 0.0001. Standard errors are in parentheses.

5. NUMERICAL ISSUES

During the development of the toolbox I encountered several numerical issues,

that forced the optimization to crash, or provided NaN�s or inf for some of the

copula parameters. This section deals with issues concerning the optimization of the

log likelihood functions, like the starting values and the choice of the solver. For

general numerical issues concerning copulas the interested reader is referred to Yan

(2007).

When the user calls the �tModel function, he is asked to input the starting values

for the optimization procedure. A good choice of the starting values is essential, since
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if the starting values are away from the actual ones the routine might take a lot of

time to converge to the true parameters vector, get stucked to a local minimum or

even not converge at all. The user has three choices for the starting values. He can

use a naive guess, stored inside the structured array spec that contains the models

speci�cations in the spec.theta0 array, that is created automaticaly when modelspec

is called, he can type a vector of starting values in the Command Window or he

can choose any vector located in the Workspace, to be used as starting values. In

the latter two cases, the provided vector should have the correct size, otherwise an

error message is printed and the procedure ends. The starting values should always

be a column vector with structure that is identical to the structure of the estimated

parameters vector. For example, in one step copula models the correct structure

is:
�
�1; :::; �p; #

�0
where �i and # represent the marginal and copula parameters,

respectively. Empirical implementation of the toolbox has revealed that two step

copula models can be e¢ ciently estimated with naive starting values, unlike one step

copula models or copula vines where the choice of good starting values is critical. For

one step copula models, the user is advised to �rst estimate the model in two steps

and use the two step results as starting values for the one step model. For copula

vines the user should estimate the bivariate copula parameters found in the cascade

sequentially and use these estimates as starting values for the vine estimation.

Another critical choice is that of the solver. The constrained nonlinear mini-

mization solver (fmincon) is more robust than the unconstrained one, in the sense

that if good starting values are used, the solver always converges to a solution. The

drawback of fmincon is that when some parameters are near the boundary, the solver

Hessian is a rather poor approximation of the actual Hessian and hence the variance

covariance matrix of the estimated parameters might be inaccurate. On the other

hand fminunc provides a much better approximation of the real Hessian therefore

fminunc is a better choice than fmincon when asymptotic standard errors are to be

computed. The drawback of fminunc is that it doesn�t always converge to a solution,

in highly complex models. Furthermore there is an issue concerning linear inequality

constraints. During the �rst iterations of the estimation procedure, fmincon may

choose some extreme values for the parameters that may cause the optimization to

crash, therefore the parametric space used by the toolbox is wide enough to cover al-

most all real data set cases, but not the same as the true parametric space. Table 12

summarizes the parametric spaces used by fmincon. In cases where the user believes

that the true value of the parameter is outside the parametric space he can change
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the bounds of the parameters, de�ned and created by the CreateFminconConstraints

function.

parameter true parametric space used parametric space

degree of freedom parameter v (2;+1) [2:01; 200]

asymmetry parameter � (�1; 1) [�0:5; 0:5]
GARCH parameter ! (0;+1)

�
10�5s; s

�
GARCH or DCC parameter a (0; 1)

�
10�9; 0:5

�
GARCH or DCC parameter b (0; 1)

�
10�9; 0:9995

�
Table 12: True and used parametric space. s denotes the sample variance of the corresponding

series

A similar problem might appear when the fminunc solver is used. In order to keep

the calculation of the Hessian, calculated by the fminunc Hessian, simple and feasible,

each reparametrization function depends on only one parameter, thus the GARCH

or DCC constraint a+ b < 1, is not directly incorporated to the model. Instead, at

each iteration the sum a+ b is calculated, if a+ b > 1; a is set equal to 0:99999� b:
In case this constraint is activated by the optimum values the standard error of a is

NaN or Inf. In empirical applications however the constraint a + b > 1 is activated

only for the �rst few iterations, if it is activated at all and the optimum values of the

parameters, have sum aopt + bopt; that is close to unity but extremely rarely above

unity. If such a problem does come up the user is advised to experiment with the

reparametrization function RescaleParameters, in order to narrow the parametric

space, or change the starting values.

6. CONCLUSION

AMATLAB toolbox for the estimation of the parameters of various copula models

was presented and although it is designed to tackle problems usually met in �nance

scientists from other �elds can also use it without any modi�cations. The toolbox

is constantly expanding, following the research on the �eld, to cover more cases.

Possible future extensions are:

1. More copulas, like the skewed t �copula (De Marta and McNeil, 2002)

2. Copula mixture models.

3. Functions to simulate copulas.

4. Extensions of copula vines like the CAVA model (Heinen and Valdesogo, 2009).

5. Analytical derivatives of the supported models.
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6. Bayesian estimation of copula models.

The author welcomes collaborations with users that will lead to extensions of the

toolbox.

7. APPENDIX

7.1. The log likelihood functions of the supported GARCH models

The log likelihoods of the two GARCH type models for the marginal time series

ri;t, are:

The Gaussian log likelihood

LLt (�i; "i;t) = �
1

2

�
log (2�)� log (hi;t)� "2i;t

�
:

The student t log likelihood

LLt (�i; "i;t) = log
 
�
�
v+1
2

�
�
�
v
2

� !�1
2

 
log (� (v � 2)) + log (hi;t) + (v + 1) log

 
1 +

"2i;t
v � 2

!!
:

The skewed student t log likelihood

LLt (�i; "i;t) = �
1

2
log (hi;t) + pt (v; �; "i;t)

where pt denotes the natural logarithm of the corresponding density:

dt ("i;t; v; �) =

8>>><>>>:
bc

�
1 + 1

v�2

�
b"i;t+a
1��

�2�� v+1
2

"i;t < �a=b

bc

�
1 + 1

v�2

�
b"i;t+a
1+�

�2�� v+1
2

"i;t � �a=b;

with a = 4�c v�2v�1 ; b
2 = 1 + 3�2 � a2 and c =

�( v+12 )
�( v2 )

p
�(v�2)

:

7.2. The density and h function of the Symmetrized Joe - Clayton
copula

The SJC copula was de�ned in Patton (2006), however the author does not pro-

vide an explicit formula of the density of the copula. Furthermore the h �function

of the SJC copula is not available, since, according to my knowledge, this is the
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�rst attempt to estimate a vine assuming all bivariate copulas are SJC copulas. The

distribution of the the SJC copula is derived form the Joe - Clayton copula (eq. 8):

CSJC
�
u; vj�U ; �L

�
=
1

2

�
CJC

�
u; vj�U ; �L

�
+ CJC

�
1� u; 1� vj�L; �U

�
+ u+ v � 1

�
Therefore, the corresponding h - function is:

hSJC
�
u; vj�U ; �L

�
=
@CSJC
@v

=
1

2

 
@CJC

�
u; vj�U ; �L

�
@v

�
@CJC

�
1� u; 1� vj�L; �U

�
@v

+ 1

!

Where:

CJC
�
u; vj�U ; �L

�
@v

=

�
1� 1

Z1=

�� 1
k+1�

1� (1� v)k
�+1

� Z
1
+1

Z =
1�

1� (1� u)k
� + 1�

1� (1� v)k
� � 1

The density of the SJC copula is produced in a similar manner:

cSJC
�
u; vj�U ; �L

�
=

@2CSJC
@u@v

=

1

2

 
@2CJC

�
u; vj�U ; �L

�
@u@v

�
@2CJC

�
1� u; 1� vj�L; �U

�
@u@v

!

Where:
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@2CJC
�
u; vj�U ; �L

�
@u@v

= A�B

A =
 � k

�
1� 1

Z1=

��2+1=k � � 1 � 1� � (1� u)k�1 � (1� v)k�1�
1� (1� u)k

�1+
�
�
1� (1� v)k

�+1
� Z2+1=

B =
k
�
1� 1

Z1=

��2+1=k � � 1k � 1� � (1� u)k�1 � (1� v)k�1�
1� (1� u)k

�1+
�
�
1� (1� v)k

�+1
� Z2+2=
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