
Real-Time Workshop Targeting Tips

Tips on Configuring Your Model for Embedded Code
Generation
Authors: Pete Szpak, John Duesenberry, Tom Erkkinen

Introduction
This document describes highly recommended practices for users of Real-Time
Workshop, Real-Time Workshop Embedded Coder, and related embedded targets. These
tips will help you to:

• Configure the code generator properly for your target.
• Tailor the build process to fit seamlessly into your development environment.

It is particularly important to follow Tip 2; if you do not configure the target-specific
parameters of the code generator correctly, incorrect code may be generated.

Note that, although the example files and examples discussed in the documentation are
mainly oriented toward use with Real-Time Workshop Embedded Coder, the M-files in
this package are suitable for general use with other Real-Time Workshop targets, such as
the generic real-time (GRT) target.

Tip 1: Customize Your Target Build Process via the
STF_make_rtw Hook File

The build process allows you to supply optional hook files that are executed at specified
points in the code generation and make process. You can use hook files to add target-
specific actions to the build process.

This tip describes a particularly important M-file hook, generically referred to as
STF_make_rtw_hook.m. STF_make_rtw_hook.m implements a function that dispatches
to a specific action, dependent on the method argument that is passed in. The build
process automatically calls STF_make_rtw_hook.m, passing in the correct method
argument and other arguments described below. You need only implement those methods
that are required by your build process.

To ensure that STF_make_rtw_hook.m is called correctly by the build process, the
following conditions must be met:

• The file is on the MATLAB path.
• The filename is the name of your system target file (STF), prepended to the string

'_make_rtw_hook.m'. For example, if you are generating code via the default
Real-Time Workshop Embedded Coder system target file (ert.tlc), you would
name your STF_make_rtw_hook.m file to ert_make_rtw_hook.m.

 1 of 11

Real-Time Workshop Targeting Tips

• The hook function implemented in the file follows the function prototype
described below.

STF_make_rtw_hook.m Function Prototype and Arguments

The function prototype for STF_make_rtw_hook is

function STF_make_rtw_hook(hookMethod, modelName, rtwRoot,
templateMakefile, buildOpts, buildArgs)

where the arguments are defined as:

• hookMethod: String specifying the stage of build process from which the
STFname_make_rtw_hook function is called. Figure 1 below summarizes the
build process and highlights the hook points in red.
Possible values are 'entry', 'before_tlc', 'before_make', and 'exit'. The STFname
_make_rtw_hook function dispatches to the relevant code via a switch statement.

Start RTW GEN

RTW validation

Create build directory

Generate code

Make

End RTW GEN

modelName, buildArgs

buildOpts, templateMakefile

Start RTW GEN

RTW validation

Create build directory

Generate code

Make

End RTW GEN

modelName, buildArgs

buildOpts, templateMakefile

STF ‘entry’ hook

STF ‘before_tlc’ hook

STF ‘before_make’ hook

STF ‘exit’ hook

STF ‘entry’ hook

STF ‘before_tlc’ hook

STF ‘before_make’ hook

STF ‘exit’ hook

Figure 1: Build Process Flowchart. Hooks Indicated in Red.

 2 of 11

Real-Time Workshop Targeting Tips

• rtwRoot: Reserved.
• modelName: String specifying the name of the model. Valid at all stages of the

build process.
• templateMakefile: Name of template makefile.
• buildOpts: A MATLAB structure containing the member fields described in the

table below. Valid for the 'before_make' and 'exit' stages.

buildOpts Fields

modules Char array specifying list of generated C files: model.c,
model_data.c, etc.

codeFormat Char array containing code format: 'RealTime', 'RealTimeMalloc',
'Embedded-C', and 'S-Function'

noninlinedSFcns Cell array specifying list of non-inlined S-Functions
compilerEnvVal String specifying compiler environment variable value, e.g.,

C:\Applications\Microsoft Visual

• buildArgs: Character array containing the argument to make_rtw. When the
build process is invoked via the Build button, or from the direct command
rtwbuild ('model'), buildArgs is copied from the argument string (if any)
following 'make_rtw' in the Make command edit field of the Real-Time
Workshop target configuration options.

Name of - file.
Returns
makefil

buildAr

Name of - file.
Returns
makefil

buildArgs

Note that buildArgs is automatically passed to make. For example,

% make -f ecdemo.mk VAR1=0 VAR2=4

 3 of 11

Real-Time Workshop Targeting Tips

Applications for STF_make_rtw_hook.m

An enumeration of all possible uses for STF_make_rtw_hook.m is beyond the scope of
this tip. We can, however, suggest the some ways in which you might apply the available
hooks.

The 'entry' hook is ideal for auto-configuring a model, as described in " Tip 3: Auto-
Configure Models for Code Generation" below. In general, this hook is used to prepare
for whatever requirements you have for the target.

The other hook points 'before_tlc', 'before_make', and 'exit' are ideal for interfacing with
external toolchains, source control tools, and other environment tools.

Another use for the STF_make_rtw_hook.m hook file is to obtain the build directory. An
example of how you might use this information would be to locate generated code files
and check them into your version control system. Another use for this information (most
likely in the 'exit' stage) would be to find the generated executable within the build
directory and download it to the target hardware via a target-specific utility.

You can obtain the build directory anytime after the 'entry' stage using the function

rtwprivate(‘rtwattic’,’getBuildDir’)

Note that that the build process temporarily changes the MATLAB directory to the build
directory for stages 'before_make' and 'exit'.

Using STF_make_rtw_hook.m

Follow these steps to customize your build procedure.

1. Copy the attached ert_make_rtw_hook.m file to a directory on the MATLAB path.

This file works automatically with the Real-Time Workshop Embedded Coder system
target file (ert.tlc). If you are using a different target, rename the file in accordance
with the naming conventions described above. For example, rename it to
grt_make_rtw_hook.m to use it with the default GRT target grt.tlc.

2. Rename the function within the file to match the file name.
3. Implement the hooks you require by adding code to appropriate case statements

within the switch hookMethod statement.

Tip 2: Specify Target-Specific Information for Your Target
It is necessary to specify word sizes for integer data types (such as short, int, and long),
and the C implementation-specific properties of your target (such as integer overflow
behavior), because the C language does not specify this information.

 4 of 11

Real-Time Workshop Targeting Tips

Note: If these settings are wrong, incorrect code may be generated.

The build process lets you specify this information by providing another hook file,
generically referred to as STF_rtw_info_hook.m. To ensure that STF_rtw_info_hook.m
is called correctly by the build process, the following conditions must be met:

• The file is on the MATLAB path.
• The filename is the name of your system target file (STF), prepended to the string

"_rtw_info_hook.m'. For example, if you are generating code via the default
Real-Time Workshop Embedded Coder system target file (ert.tlc), you would
name your STF_rtw_info_hook.m file to ert_rtw_info_hook.m.

If STF_rtw_info_hook.m exists, the build process invokes this file to extract the
necessary target-specific information. Otherwise, the word size and other information
default to values appropriate to the host system. The STF_rtw_info_hook.m implements
a function that contains a switch Action statement with two cases:

• The case 'wordlengths' configures the word lengths appropriate for your target
• The case 'cImplementation' configures the C-implementation details for your

target.

Using STF_rtw_info_hook.m

To set up an STF_rtw_info_hook.m file for your target:

1. An example STF_rtw_info_hook.m hook file is available in

matlabroot\toolbox\rtw\rtwdemos\ example_rtw_info_hook.m. Copy
example_rtw_info_hook.m to a desired directory.

2. Rename example_rtw_info_hook.m in accordance with the naming convention
above (for example, to ert_rtw_info_hook.m if using ert.tlc).

3. Add this directory to the MATLAB path.
4. Change the name of the function defined in the hook file to match your STF (for

example, ert_rtw_info_hook).
5. In the case 'wordlengths' of the switch Action statement, configure the word

lengths. If your target is the host computer, use the following code:

varargout{1} = rtwhostwordlengths(modelName);

Otherwise, specify the word sizes of your target. For example,

value.CharNumBits = 8;
value.ShortNumBits = 16;
value.IntNumBits = 32;
value.LongNumBits = 32;

 5 of 11

Real-Time Workshop Targeting Tips

If you are unfamiliar with these properties, see the "Hook Files for Communicating
Target-specific Word Characteristics" section of the Real-Time Workshop
documentation.

6. In the case 'cImplementation' of the switch Action statement, configure the C-

implementation details for your target. If your target is the host computer, use the
following code:

varargout{1} = rtw_host_implementation_props(modelName);

Otherwise, specify the details for your target. For example,

value.ShiftRightIntArith = true;
value.Float2IntSaturates = false;
value.IntPlusIntSaturates = false;
value.IntTimesIntSaturates = true;

If you are unfamiliar with these properties, see the "Hook Files for Communicating
Target-specific Word Characteristics" section of the Real-Time Workshop
documentation.

It is sometimes difficult to determine the target-specific information, particularly the C
implementation details. The word size information is contained in your compiler’s
limits.h file. Another very useful, and robust method of determining the correct settings
is to utilize the demo model rtwtargetsettings. The demo will generate code that you
can execute on your target to obtain the actual target settings. Simply load this model and
follow the instructions.

Note that it is possible to emulate your target’s execution environment during simulation,
rapid prototyping, or for any arbitrary RTW target. To do this, you need to provide target
word lengths and implementation details within Simulink’s Simulation->Simulation
Parameters–>Advanced->Production Hardware Characteristics. When the
generated code is planned for execution on the production target then the Production
Hardware Characteristics settings should match those in the STF_rtw_info_hook.m file.
Fortunately, a synching mechanism for doing this is already part of the
EntryConfiguration function in the STF_make_rtw_hook.m file described in Tip 1.

Tip 3: Auto-Configure Models for Code Generation
In this package, we have provided the utility M-Files uset_param.m and uget_param.m.
You can use these utilities, in conjunction with ert_make_rtw_hook.m, to automate the
configuration of a model as part of code generation. The M-files let you configure all
code generation options relevant to Simulink, Stateflow, Real-Time Workshop, and Real-
Time Workshop Embedded Coder. Using this technique, you can eliminate the need for
manual configuration of a model prior to code generation, saving time and eliminating
errors.

The example ert_make_rtw_hook.m hook file implements a function

 6 of 11

Real-Time Workshop Targeting Tips

function EntryConfiguration(model)

EntryConfiguration calls uset_param.m to set all parameters of the model. The entire
list of options is documented in uset_param.xls (an Excel spreadsheet). You can change
any of the settings in the example to suit the needs of your target.

EntryConfiguration is called from the 'entry' stage of the build process. At the 'exit'
stage, the previous model settings are restored (see the following code excerpt). Note that
the EntryConfiguration call is made within a try/catch block so that in the event of a
build error, the model settings will also be restored.

switch hookMethod
case 'entry'

% Called at start of code generation process (before
% anything happens.)

disp('Auto configuring model for ERT target.');
uset_param(modelName,'BackupSettings');
try

EntryConfiguration(modelName);
 catch
 uset_param(modelName,'RestoreSettings');
 error(lasterr)
 end
case 'exit'

% Called at the end of the RTW build process.
% All arguments are valid at this stage.

disp('Restoring model configuration.');
uset_param(modelName,'RestoreSettings');

 end

 Using the Auto-Configuration Utilities

1. Set up the example ert_make_rtw_hook.m as your STF_make_rtw_hook file (see

"Using STF_make_rtw_hook.m" above).
2. Copy uset_param.m and uget_param.m to a directory on the MATLAB path.
3. Reconfigure the uset_param calls within ert_make_rtw_hook.m to suite your

application needs.

Tip 4: Managing projects using the auto configuration
utilities and hook files
Embedded system developers and project managers need to consistently develop and
manage large systems of many models. Model style guidelines help address this need as
do the establishment of project-wide code generation and compiler configuration settings.
This tip demonstrates how to apply the hook files and auto configuration utilities
described in the previous tips to manage code generation settings.

 7 of 11

Real-Time Workshop Targeting Tips

Displaying default configuration values within the model

Code generation configuration occurs by using the ert_make_rtw_hook.m file as
described in Tip 1. However these settings are not visible to developers during model
inspection or simulation. The included config_ert_project.m script addresses this by
first loading the model and then applying default embedded real-time target (ERT) code
generation settings so that they can be viewed from within the model.

L

oading the model:
 try
 open_system(modelName);
 catch
 error(['Unable to access model: ', modelName]);
 end

Applying default settings using ConfigurationDefault function:

 stf = deblank(get_param(modelName, 'RTWSystemTargetFile'));
 if strmatch('ert', stf)
 ConfigurationDefault(modelName);
 …
 disp(['Configured ', modelName,' using default ERT project
 codegen settings.']);

To invoke config_ert_project.m for an existing model

• Ensure that the file is on your MATLAB path.
• Invoke the script: matlab -r config_ert_project(‘modelName’).

This script will work for targets other than ERT, including the generic real-time (GRT)
target, but warnings will be issued noting that some parameters could not be set.

Another option for invoking and using scripts that is important for managing projects
involves the use of the startup.m file. This file will not be discussed here because it is
described in MATLAB’s documentation for Development Environment: Starting
and Quitting MATLAB: Startup Options.

Establishing multiple code generation configuration Options

The settings in the above ConfigurationDefault function match those in the
EntryConfiguration function of the ert_make_rtw_hook.m file. However, other
configuration variations were created and included with this tip including
ConfigurationDebug and ConfigurationOptimized. To use one of these during
model load, simply substitute it for ConfigurationDefault in config_ert_project.m.

It is also possible to use these configuration files during code generation by employing a
modified version of the make hook file, adv_ert_make_rtw_hook.m. This version of the
hook file also supports an override setting that applies the model’s current configuration
settings instead of those within a configuration file. buildArgs described in Tip 1 are used

 8 of 11

Real-Time Workshop Targeting Tips

for specifying configuration options from the Simulation->Simulation Parameters-
>Real-Time Workshop build window.

The new buildArgs options are:

- opt (Configuration based on optimized code efficiency)
- debug (Configuration based on maximum clarity and traceability)
- model (Configuration based on current model settings)

If no options are specified the default configuration in EntryConfiguration is used.

To invoke config_ert_project.m

• Ensure that configuration files are on your MATLAB path.
• Save or rename the existing ert_make_rtw_hook.m
• Rename adv_ert_make_rtw_hook.m to ert_make_rtw_hook.m
• Set the desired configuration option in the Make command of Simulation-

>Simulation Parameters->Real-Time Workshop build window
• Generate code

The example above uses the –model option. This causes the current model parameters to
be used instead of a configuration file. While useful during development, project
managers may want to restrict this capability during later stages of the project to ensure
that a consistent configuration is used for the final software build.

 9 of 11

Real-Time Workshop Targeting Tips

Tip 5: Use MAT to quickly establish target configuration
settings

The Model Assistant Tool (MAT) is a new tool that makes it easy to configure, check,
and optimize Simulink models for production code generation. It also provides a concise
graphical user interface to search for and replace model information, even if those models
are not intended for code generation.

MAT has four main components:

1. General Code Generation Goals
This component lets you quickly configure your code generation settings based on
specific goals. Once you have decided the overall optimization and tradeoffs for
your application (e.g., what is more important: RAM or ROM?), MAT will select
the model settings that will best suit your goals.

2. Detailed Code Generation Goals
This component presents a centralized means for configuring your model for code
generation. Options are logically grouped by category, and are applied across
products.

3. Model Advisor

This component comprehensively analyzes your model to ensure that you best
utilize Real-Time Workshop Embedded Coder. Specific checks can be enabled or
disabled at any point. This is particularly useful early in the design cycle.

4. Search and Modify
This component provides powerful search and modify capability. MAT
significantly reduces the burden of block-by-block configuration. The search
feature helps you quickly find attributes of blocks, lines, input ports, output ports,
and annotations. The modify feature lets you perform rapid batch operations on
the search results. Frequently performed tasks are packaged conveniently into a
single button click. The component has several capabilities.

 10 of 11

Real-Time Workshop Targeting Tips

The Detailed Code Generation Goals component is shown.

To obtain MAT, simply download a zip file from MATLAB CENTRAL and install it
directly on top of Simulink 5.0 (or higher). A recently article describing MAT’s usage
was in the January 2003 version of MATLAB Digest.

 11 of 11

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=2827&objectType=file
http://www.mathworks.com/company/digest/jan03/meetmat.shtml

	Tips on Configuring Your Model for Embedded Code Generation
	
	
	
	
	Authors: Pete Szpak, John Duesenberry, Tom Erkkinen

	Introduction
	Tip 1: Customize Your Target Build Process via the STF_make_rtw Hook File
	
	STF_make_rtw_hook.m Function Prototype and Arguments
	Applications for STF_make_rtw_hook.m
	Using STF_make_rtw_hook.m

	Tip 2: Specify Target-Specific Information for Your Target
	
	Using STF_rtw_info_hook.m

	Tip 3: Auto-Configure Models for Code Generation
	
	Using the Auto-Configuration Utilities

	Tip 4: Managing projects using the auto configuration utilities and hook files
	
	
	
	
	
	Displaying default configuration values within the model

	Tip 5: Use MAT to quickly establish target configuration settings

