ING'S
College
LONDON

By tiechinng the butinn i that fig ——
Pt the Saing Ubcary aits hin
=t Frierd

abbrdCesaniser « that
Smbngt and 4 mot inthueted i
dema

Prana Nawt 10 gontings

Making MATLAB® Swing

Summary of the Project Waterloo Swing Library for MATLAB

Malcolm Lidierth
Wolfson Centre for Age-Related Diseases

http://sigtool.sourceforge.net/

Revised: 25th September 2011

Acknowlegements:

MATLAB code in this document was styled using Florian Knorn’s
M-code ETEXPackage.
http://www.mathworks.com/matlabcentral /fileexchange /8015-m-code-
latex-package

The document was prepared using Pascal Brachet’s TEXMaker
http://www.xmlmath.net/texmaker/

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
MATLAB is a registered trademark of The MathWorks, Inc. Other names
may be trademarks of their respective owners.

Contents

Requirements o 3
License 3
Settingup 4
The jecontrol class 4
The GTool superclass 7
GSplitPaneo 8
GCardPane 10
GTabContainer L 10
GAccordion 11
GTaskPaneContainer 12
GFlyoutPanel 13
GScroller and GScrollPane 14
GWait and GProgressBars L. 18
Nesting GTool components 25
Future developments L. 26

The Project Waterloo Swing Library provides widgets and tools to create
a richer desktop experience than is available as standard in your MATLAB
code. The tools mix MATLAB graphics with Java Swing and, occassionally,
its extensions from the SwingLabs SwingX Project at java.net. Simple-to-use
wrappers are provided for these components in MATLAB.

Unlike the standard MATLAB uicontrol family of tools, the GTool wrap-
pers expose the underlying Java Swing objects for further programmatic use.
They are therefore far less restrictive and allow much richer GUIs to be de-
veloped. This document provides an overview of the library. Each function is
fully documented in its in-line code although a basic knowledge of MATLAB,
Java and OOP is assumed.

Requirements

The library is platform-independent but requires MATLAB R2008a or later.
It can be accessed from:
http://sigtool.sourceforge.net /

License

W Project Waterloo code is distributed under the GNU General Pub-
lic License Version 3, see

http://www.gnu.org/copyleft /gpl.html.

Some third-party packages included in the library have separate but GPL-
compatible licenses. See the full documentation for details.

Setting up

Unzip the project folder and place the main folder named "waterloo” on your
MATLAB path. This contains an m-file, waterloo.m, that will do the rest
of the setup on demand in each MATLAB session. This avoids adding the
subfolders and Java code to your MATLAB paths unless they are needed.
Just run

waterloo()

at the MATLAB prompt or include the command in any code that uses the
Library.

The jcontrol class

The jcontrol class allows Java Swing components to be added and used easily
in MATLAB figures and other MATLAB graphics containers. The jcontrol
class makes use of an undocumented MATLAB function, javacomponent,
which does most of the work. Full details are provided in Yair Altman’s
forthcoming book!. While the jcontrol class is used extensively within the
Swing Library, the wrappers largely hide them from the end-user, so only a
brief description is given here. To add a Swing component to a MATLAB
container such as a figure or uipanel invoke jcontrol providing the MAT-
LAB HG handle of the parent component as the first argument. The Swing
component can be provided
1. as an instance or

2. specified using a string

If a string is used, the component must have a default constructor with no
input arguments. In all cases you need also to provide the required position
in the parent container as a 4-element vector [z y width height]. Normalized
units are assumed by default and positions follow the MATLAB convention
where the origin is bottom-left e.g.

j=jcontrol (figurehandle , javax.swing.JButton (’Button 17),...
"Position’, [0.1 0.2 0.2 0.1]);

Y. Altman,Undocumented Secrets of MATLAB-Java Programming, CRC Press, 2011,
ISBN 9781439869031

The jcontrol class lets you add pretty much anything supported in Java Swing
to a MATLAB graphics container such as a figure or uipanel. You are not
restricted to the standard Swing components - custom Java Beans can be
added. The figure below shows Kai Toedter’s JCalendar from

http://www.toedter.com/en/jcalendar/index.html

drawn in a MATLAB figure window: You can also, in effect, create new

anon Figure 1
s NgHe h RA0DEE- 2 08 s O
(september 18] (3

Sun Mon Tue Wed Thu Fri Sat

‘) H ’ H ’ H ! H ’ H ’ H ° ‘
38 ‘ 11 H 12 H 13 H 14 H 15 H 16 H 17 ‘

39 18 H 19 H 20 H 21 H 22 H 23 H 24

40 23 H 26 H 27 H 28 H 28 H 30 ‘

@7

Figure 1: A JCalendar in a MATLAB figure window

components from within MATLAB by creating many jcontrol objects. In
general though, a better approach is to create these inside a single jcontrol
that has a Java Swing container as its component. So, if you need 5 buttons,
create a JPanel and add 5 JButtons to that:

button=cell (1,5);
j=jcontrol(figure (), javax.swing.JPanel(), ...
"Position’, [0.2 0.8 0.6 0.15]);
for k=1:5
button{k}=j.add (javax.swing.JButton (num2str(k)));
end

Try resizing the MATLAB figure and see how the buttons in the JPanel be-
have. The layout is being managed by a center aligned java.awt.FlowLayout

which is the default layout manager for the JPanel. You could change this
if you wanted, e.g. try

j.setLayout (java.awt.GridLayout (1,5));

and see how the resizing behaviour changes.

In the example above, the buttons were added to a cell array. While you
can make an array of jcontrols, it is often easiest to use a cell array instead.
There may be some efficiency advantages to this also with large numbers
of jeontrols- cell arrays do not require a single contiguous memory block in
MATLAB.

Directly access the buttons using normal MATLAB syntax, e.g.:

button{1}.setText ('OK’);

The GTool superclass

GTool is the superclass for most other classes in this package. It provides
methods used in common by other components and a set of static methods
for controlling the color schemes. GTool has no constructor. Instead, you
create instances of GTool subclasses by calling the constructors for those
subclasses.

In general, each instance of GTool subclass has an object that does the work
and a set of components that the object controls. The object is usually a
Java component but sometimes it is a MATLAB component container. A
few classes have no object - in those cases the components do the work.

GTool classes exist in parallel with MATLAB’s graphical hierarchy. While
each instance of a GTool class has a MATLAB parent container such as a
figure or uipanel? , the GTool does not form part of the MATLAB graphics
hierarchy. Here are some of the methods:

obj.getParent/()
Returns the handle of the associated MATLAB graphics container

obj.getObject()
This returns the object that is central to the component - it either controls
it or contains it. You will not need this unless you want to coerce the object
into behaving in a non-standard way

obj.getComponents|()
Returns the components this object contains as a cell array.

obj.getComponent(n)
Returns the component specified by n. Components are numbered from 1
following the usual MATLAB convention.

obj.getComponentCount()
Returns the number of components in this object.

2GWait and GProgressBars are exceptions: they use a JFrame and exist outside the
normal MATLAB hierarchy

GSplitPane

The GSplitPane allows you to divide a MATLAB container into 2 components
that can be resized using the mouse. Create one using:
g=GSplitPane(figure(), ’ vertical);3

qqqqqqq

Figure 2: A GSplitPane with nothing added to the uipanels

A split pane has two components, a uipanel on each side of the divider.
You can populate these as usual with graphics. With the GSplitPane ¢ from
above
myaxes=axes('Parent’, g.getComponent(2));
will add a set of MATLAB axes to the right side uipanel (component 2).

Plot to the axes in the usual way:
line (1:10, 1:10, ’Parent’, myaxes)

GSplitPanes, like most GTools, can be nested. Here we use nested panes and
set the positions of the dividers programmatically by calling setProportion:

fig=figure ();

panel=GSplitPane(fig , ’vertical ’);
panel.setProportion(0.2);

% Now use the right side uipanel for another split pane
pane2=GSplitPane (panel.getComponent (2), 'horizontal’);
pane2.setProportion (0.2);

axl=axes('parent’, panel.getComponent(1));

3Remember you need to run waterloo first to set-up the path

8

»»»»»»»

Figure 3: A GSplitPane with MATLAB axes added on the right

plot (ax1, 0:0.1:2, sin(0:0.1:2));
ax2=axes ('parent ', pane2.getComponent (2));
plot (ax2, 0:0.1:5, sin(0:0.1:5)+(0:0.1:5));
ax3=axes('parent’, pane2.getComponent(1));
plot (ax3, 0:0.1:20, sin (0:0.1:20) —(0:0.1:20));

Here is the result:

igure 2

o
/

Figure 4: Mutiple split panes in a MATLAB figure window

Note that, when you drag the dividers, the screen continually updates.
This is fast, but maybe not fast enough in all cases. GSplitPanes, and many
other components have a setAnimated method to turn off the continous up-

dates. Try it pane2.setAnimated(false);

The divider will move as before, but the remaining graphics is only up-
dated at the end.

As well as the GSplitPane, there is a GElasticPane. This allows the user
to resize it with the mouse but springs back to its programmed position
when the mouse is released. For GElasticPanes, only one side is usually pop-
ulated and that drags over, and obscures, all other graphics when it is moved.

GCardPane

The split panes allow a MATLAB figure to be split into regions. GCardPanes
add depth. With a GCardPane, uipanels can be placed in a stack like a deck
of cards with only one of the cards being visible at any time.

The GCardPane does not provide GUl-based control of which card is
showing. Instead, GCardPanes are added to other classes that do provide
this control. For the GTabbedPane, control is implemented using a standard
Swing JTabbedPane (or an extension of it such as the JideTabbedPane which
is included in the MATLAB distribution). Better for MATLAB use are the
GTabContainer and its partner GAccordion. These use custom controllers
combining Swing and MATLAB.

GTabContainer

Creating a tabbed container is easy:

GTool.setTheme (’blue ")
g=GTabContainer (figure
g.addTab('Panel 17);
g.addTab('Panel 27);
axes ('Parent’, g.getComponentAt(1));
surf (peaks(30));

axes (’Parent’, g.getComponentAt(2));
contour (peaks(30));

,()7 "top 7);

Note here, that components are added by calling a custom method, in this
case addTab(). This creates a new component, a uipanel, that can be pop-
ulated as before. The only difference is that the panels each fill the parent

10

LS
AN AN
AN

Figure 5: A GTabContainer with two tabs. The expanded sections views show
the controls for scrolling through the tabs and for undocking and closing them

container and only one is visible at any time. Also, we called the GTool
static method setTheme here. This sets up the color scheme.

The tabs at the top control which uipanel is visible. You can also control
that programmatically withg.setSelectedIndex(n);. The tabs also have con-
trols that allow a uipanel to be undocked from the container (and opened
in a new figure) or closed. With many tabs, you can scroll through those
available using the arrows or the dropdown list that appears when you click
the button. These features are programmable.

GAccordion

A GAccordion is much like a GTabContainer but instead of a single row
of tabs, each added uipanel has its own banner. These baners are always
visible and you can select which associated uipanel is visible by clicking on
the banner or using the button associated with each banner. The banners
take up space, so a GAccordion will usually only be useful when you have a
few uipanels in the card pane.

Construct a GAccordion as you would a GTabContainer, e.g.:

g=GAccordion (figure ());
g.addTab('Panel 17);

11

g.addTab('Panel 27);
g.addTab(’Panel 37);

As before, individual cards can be undocked to a new figure or closed and
this ability is user-programmable.

Note: With both GTabContainers and GAccordions, undocked panels
can be redocked into the original container by clicking the associated redock
button - though this behaviour can be deselected by programmers. When
a card is redocked, it is placed at the index location it occupied when it
was undocked- so the cards will be shuffled if redocking is not done in exact
reverse order.

-~y oy

Figure 2

» NHd® * AR UDEW- 8 0H aO

Panel 3 [~] B

Figure 6: A GAccordion with three tabs. The theme for this GAccordion has
been set to ‘red’

GTaskPaneContainer

Java-savvy users might also use the GTaskPaneContainer. This requires
that the SwinglLabs SwingX library from Oracle - so that needs to be on
your MATLAB javaclasspath. Only Swing components can be added to a
GTaskPaneContainer - not MATLAB graphics. The addTab() and getComponent(n)
methods return org.jdesktop.swingx.JXTaskPane objects, not MATLAB HG

12

handles.

GFlyoutPanel

GFlyoutPanels extend the general-purpose GHotSpot class that provides
components that are sensitive to mouse-movement. With these you can cre-
ate panels that appear only when the mouse is near the edge of a figure -
rather like the dock on a Mac.

GFlyoutPanels can be placed at any edge of a figure e.g. to place a panel
on the right

g=GFlyoutPanel(figure(), right’);

A GFlyoutPanel has just one component, a uipanel, that can be retrieved
as usual with getComponent(1) and populated as required. If you need a
broader panel than the default, use setWidth() to make it wider (or deeper
for horizontal panels). The code below simply adds a GFlyoutPanel with 10
Swing JButtons.

% Add a GFlyoutPanel to the right of figure
flyoutPanel=GFlyoutPanel (figure (), ’right’);
% Add a Swing JPanel to the uipanel associated with the
% GFlyoutPanel
panel=jcontrol (flyoutPanel.getComponent (1), ...
javax.swing.JPanel (), ’Position’, [0 0 1 1], ...
"Background ’, GColor.getColor('w’), ’'Visible’, ’off’);
panel.setBorder (javax.swing.border.LineBorder(...
java.awt.Color.black ,1,true));
panel.setLayout (java.awt.GridLayout (10,1));
% Put some buttons in the JPanel and have them alter the text in
% the message box through their callbacks
for k=1:10
button=panel.add (javax.swing.JButton (num?2str(k)));
button=handle (button, ’callbackproperties’);
% For a real application we would need to add a callback ...
for each button
%set (button, "MouseClickedCallback >, {@LocalCallback, k});
end

13

The GFlyoutPanel depends for its function on the MouseMotionHandler class
which is part of the library. Most of the components in this library have a
Java Swing object which provide for detecting mouse clicks and movements
within them. For MATLAB graphics containers, only figures have mouse-
motion sensitivity. MouseMotionHandler effectively extends this to all other
MATLAB components using the existing MATLAB WindowButtonMotion-
Fen callback as a hook.

GScroller and GScrollPane

So far, the graphics have been added within the limits of the standard MAT-
LAB graphics window - although we have added depth to the 2D window
using the GCardPane and its derivatives. Two classes allow plotting outside
of the standard [0 0 1 1] delimited window. These are GScroller, which pro-
vides a view that is scrollable in one direction only and GScrollPane which
allows 2D scrolling.

GScroller is simplest because most of the work is done internally by the
code in its methods. To illustrate, load some data from a MATLAB file (its
included as part of the MATLAB distribution):

colormap ("gray ’);
x=load ("durer.mat ") ;

Create a figure. This time we will create a uipanel and add the GTool to
that rather than directly to the figure as in the previous examples.

fh=figure () ;
h=uipanel (’Parent’, fh, "Position’, [0 0 0.3 1]);

Add the GScroller as usual; left’ here indicates that the scrollbar should
be placed on the left side of the parent uipanel

g=GScroller (h, ’left’);

Now we can add uipanels, place axes in them and plot the image loaded
above from the MATLAB data file

pl=g.add () ;

14

axes('Parent’, pl);
imagesc (x.X);
axis(’off’);
p2=g.add () ;

axes (’Parent’, p2);
imagesc (x.X);
axis(’off’);
p3=g.add () ;

axes (’'Parent’, p3);
imagesc (x.X);
axis(’off’);
pd=g.add () ;

axes (' Parent’, pd);
imagesc (x.X);

axis(off’);
p5=g.add () ;
axes('Parent’, pb);
imagesc (x.X);
axis(’off’);
colormap ('gray ’);

The output is shown below (to examine the component better, you might
want to add further panels as above).

anNno Figure 2
» NEHS b AAODEE- 2 0E O

Figure 7: A GScroller with 4 visible panels and a scrollbar to left

15

Note that the added panels are all the same size. You can control how
many panels will be visible at the time of construction using:

g=GScroller (h, ’left’, n);

where n defaults to 4. Control which n of the available panels is visible
using the scrollbar or programmatically using the scrollTo method. This
accepts an index on input or the handle of the required uipanel e.g.:

g.scrollTo (3)
g.scrollTo (p2)

The panel that slides in a GScroller can be accessed with the getView()
method, though it is simpler to use the provided add() and remove() methods
to control its contents. For the more complex GScrollPane though, you will
need to call getView() to access the scrolling panel and add/remove compo-
nents yourself.
GScrollPane offers 2D scrolling and more flexibility but requires more pro-
grammer effort. In the simplest case we might add just one set of axes - but
these should be put in a uipanel, not added directly to the view.

g=GScrollPane (figure ());

% Note here the added panel exceeds the usual position limits
hl=uipanel (’Parent’, g.getView (), ’Position’, [0 —1 2 2]);
g.revalidate ();

axes (’Parent’, hl);

x=load (*durer.mat) ;

imagesc (x.X);

colormap ('gray ’);

There are a couple of new features here. The revalidate () method was
called to update the screen positions. This is called automatically when the
parent container is resized. Also, the uipanel was added outside of the normal

[0 0 1 1] limits. GScrollPane coerces MATLAB’s graphics into painting these
regions, hopefully as intended. To have more than one panel:

g=GScrollPane (figure ());

hl=uipanel ('Parent’, g.getView (), ’Position’, [0 0 1 1]);

h2=uipanel ('Parent’, g.getView (), ’Position’, [0.25 —0.75 0.5 ..
0.5]);

16

800 Figure 1

Figure 8: A GScrollPane. The view contains a single panel and has been
positioned to show the axes’ origin

Figure 1

[\

Figure 9: A GScrollPane. The view contains 4 panels and has been positioned
to the centre

17

h3=uipanel(’Parent’, g.getView (), ’Position’, [1.25 0.25 0.5 ..
0.5]);

h4=uipanel ('Parent’, g.getView (), ’Position’, [1 =1 1 1]);

set (get (g.getView (), 'Parent’), ’BackgroundColor’, 'w’);

g.revalidate () ;

x=load (’durer.mat ") ;

axes('Parent’, hl);

imagesc (x.X) ;

axes (’Parent’, h2);

imagesc (x.X);

axes (’Parent’, h3);

imagesc (x.X);

axes (' Parent’, h4);

imagesc (x.X) ;

colormap ('gray’);

GWait and GProgressBars

Displaying a progress bar when performing lengthy calculations is useful for
the user but including support for these in a loop can be problematic: when
a short loop executes many times the code for managing the progress bar
can take up a substantial part of the cpu time. The Swing library offers
two components to help with this. Both use JFrames rather than MATLAB
graphics - they sit in the Java graphics hierarchy of the MATLAB desktop but
not in the usually accessible MATLAB graphics hierarchy. You can provide
a MATLAB container to the constructor, in which case the position of the
GWait will be centered on the container. Otherwise specify 0, the MATLAB
root.

The GWait class offers a simple wait bar that shows a message and an
image - which can be an animated GIF. There is then no need to control
this at all from within your code. although the text can be updated through
the setText method. If you do not specify an icon, a default animation from
the collection at http://www.sevenoaksart.co.uk will be used. The user can
close the GWait bar as usual, and they can be deleted programatically with
delete (obj).

% Use a default icon

g=GWait(gcf, 'MyFunction’, ’'Calculation in progress...’);

% Use the specified file for the image — this should be ...
specified with its path or be on the MATLAB

18

% search path
g=GWait (gcf, 'MyFunction’, ’Calculation in progress...’, ..
"MylImageFile.gif ’);

™ ™ MyFunction

S
9 .., Calculation in progress...
L

Figure 10: A GWait bar with on of the sillier default animated GIF's from
Sevenoaks Art - a set of gnashers.

A GProgressBar adds a progress bar to the display. The bar is updated on
a timer, so the graphics is not updated on every loop - GProgressBars do
not therefore take up much cpu time or block the MATLAB computational
thread. GProgressBars also display an estimate of the time left to completion.
This is calculated internally - there is no need to program this yourself.

a0 MyFunction

p . This takes a while... .

!J:mﬁ— (5)

Figure 11: A GProgressBar

Create a GProgressBar with:

g=GProgressBar (gcf, 'MyFunction’, ’Calculation in progress...’);

As with the GWait bar, you can add your own preferred icon.

g=GProgressBar(gcf, 'MyFunction’, ’Calculation in ..
progress... , 'MyPicture.gif’);

To use the bar you need to alter the value property:

19

for k=1:100

g.Value=k;
% Your code goes here
end

Setting the minimum and maximum

By default, the progress bar has limits of 0 to 100. Change these using
setMinimum(x) and setMaximum(y) .

Controlling the clock

The internal clock is started by default when the progress bar is constructed.
Often, you will want to reset it and start it again just before you loop begins:

1. reset () Resets the timer and graphics displaying an "indeterminate”
waitbar.

2. start () Sets the clock running. It does not perform a reset.

3. stop() Stops the clock.

g=GProgressBar (gcf, 'MyFunction’, ’'Calculation in progress...”)
g.setMinimum (0) ;
g.setMaximum (50000) ;

g.reset ();
g.start ();
for k=1:50000
g.Value=k;
% Your code goes here
end

20

Keeping things fast

Note that the value in the GProgressBar was set by direct assignment.
This is much faster than calling the setValue() method and is therefore pre-
ferred when in a loop. Even then, assignment to a property of an object
is slow compared to setting the value of a primitive data type. You might
prefer to upate the value only on some iterations of the loop:

for k=1:50000
if rem(k,1000)==

g.Value=k;
end
% Your code goes here
end

Ordinarily, conditional statements are something to minimize in loops, but
here the if statement saves time by ensuring that g.Value is updated only
once every thousand iterations. The graphical display will be updated only
on the next tick of the GProgressBar’s internal clock (once every 0.75s by
default).

Keeping code tidy

What would happen if the user closed the GProgressBar with the code above?
That deletes our object so the call to g.Value=x would throw an error and the
loop would exit. In MATLAB, that may be good enough because control will
return to the command window, but the GProgressBar has some mechanisms
to let you control this process better:

QueryOnClose

Did the user really want to stop the code loop? Good software generally
checks this my issuing a prompt to the user to confirm the request. The
QueryOnClose property of the GProgressBar provides support for this. This
is set true by default. To switch the behaviour off call:

g.setQueryOnClose(false);

21

When true, the GProgressBar displays a message asking if this was really
intended. If the user answers 'No’ nothing happens (apart from getting rid
of the question). If yes, the GProgressBar is deleted. Note that program-
matically deleting a GProgressBar does not invoke the query - it is seen only
when the JFrame close icon is clicked.

aNn MyFunction

Calculation in progress...
{,J ———385 [efr
!

[

Do you really want to stop processing?

[No) Yes

(-]

Figure 12: A GProgressBar displaying the default question presented when
the close icon is clicked.

Controlling closing

Setting QueryOnClose to true just issues a prompt. If the user answers "Yes’
the GProgressBar will be deleted and the error in the code loop above will be
thrown as before. There are several main ways improve on this. You could
just include a call to isvalid in the loop.

for k=1:50000
if rem(k,1000)==
if isvalid(g)
g.Value=k;
else
% Clean up code can go here
% Then break out of the loop
break
end
end
% Your code goes here

end

22

This is simple, but adds code in the loop which takes time to execute on each
iteration. Better is to include the loop in a try/catch sequence. This adds
no code within the main loop so does not slow down the code.

N

g=GProgressBar(gcf, 'MyFunction’,
g.setMaximum (5000000) ;

g.reset () ;

g.start () ;

try

Calculation in progress...’);

for k=1:5000000
if rem(k,1000)==
g.Value=k;
pause(0.01); % add a pause for demo purposes only
end
% Your code for normal operation goes here.....
end
catch ex
if strcmp(ex.identifier , MATLAB: class:InvalidHandle”) ...
&& isvalid (g)==false
% Cleanup code goes here....
else
rethrow (ex) ;
end
end

Note that the catch block tests not just for the cause of the exception (an
invalid handle) but also that the GProgressBar has been deleted i.e. that
isvalid returns false (as other objects may have been the source of the ex-
ception - there is no getSource method for MATLAB MExceptions). This
code may seem a bit too lengthy to use often. In any case, what happens if
the user tries to break out of the loop by hitting control-C instead if closing
the progress bar? That has not been accounted for. If we make use of MAT-
LAB’s onCleanup class, we can achieve much the same result as above with
less code, account for the use of control-C and do less typing:

g=GProgressBar(gcf, 'MyFunction’, ’Calculation in progress...’);
% Set up MATLAB’s onCleanup

¢ = onCleanup (@Q() LocalCleanup(g));

g.setMaximum (5000000) ;

g.reset () ;

g.start () ;

try

23

for k=1:5000000
if rem(k,1000)==0
g.Value=k;
end
% Your loop code goes here.....
end
catch Y#ok<CTCH>
end

Note that a catch is included here but the catch block does nothing but allow
the function to terminate - thus invoking the onCleanup code. All that is
left is to define the cleanup routine:

function LocalCleanup (
if isvalid(g);delete(g
return

end

g)
)

;end ;

Add any other code, exception checks etc you like to this function. Note we
tested the validity of g again. For a control-C, g will not have been deleted.
With closure of the GProgressBar it will have been (by default anyway).

24

Nesting GTool components

For the most part, GTool components can be nested within each other. For
example, the figure below shows a split pane with a GTabContainer on its
right and a uipanel containing a GAccordion on its left. The GAccordion
has been added to the component list for the GTabContainer. As a result,
clicking the buttons in the tab container controls which card is displayed in
both the tab container and the accordion.

fno Figure 2: demo.kel

Channels n 7 RawData * ¢ Amplitude Histogram *

(& demo.kl
1 [1] Depth .
(2] Test i,
3] Cond h
(4] Control
1 [5] DRP#1
| 6] DRP#2
(7] Video
(8] untitled H
1 [9] untitled i
7 [10] DRP

|
aBk

;?
J

P
11 | ¥

e

—200.4 b h " ey " b ° "
h“&w—" @ Mr?a —

Figure 13: Nesting GTool components. This shows a window from the sig-
TOOL Project: the MATLAB figure contains a GSplitPane. On the left of
the divider is a GAccordion and, on the right, a GTabContainer

25

Future developments

The Swing Library is one part of a larger Project Waterloo. This includes

1. a set of miscellaneous utilities dealing, amongst other things, with
project development and large data sets in MATLAB

2. a Swing-based graphics library that allows scientific graphics and Swing
to be easily mixed

The graphics library is Java-based and can be called from Java or MATLAB
code (first release expected early 2012). See the project website for further
information:

http://sigtool.sourceforge.net/

ano Figure 1
00 % —
(5] (2 —
/’T‘ T~
L -
ool (L)
e~ |
500 \ — \
T)
// \i) [NeNe) Figure 1

400} { Y Scatter plot + line

7/3 o} C
(&

| | | Layer 0: x= 7.266, y= 5.682
0 2 4 6 8 10

Figure 14: Scatter/line and contour plots in MATLAB created with the
Project Waterloo Graphics Library.

26

