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Monte Carlo methods have long been used in computational finance to solve problems where analytical 

solutions are not feasible or are difficult to formulate. However, these methods are computationally 

intensive making it challenging to implement and adopt. In the last decade, advances in hardware, 

increasing processor speeds and decreasing costs have made it easier to adopt Monte Carlo methods to 

solve numerically intensive problems. With growing access to data and demand for quicker results, 

researchers are constantly looking for better ways to implement algorithms using Monte Carlo methods. 

As consultants at MathWorks, we have seen many organizations use MATLAB to implement Monte Carlo 

solutions. Many times, MATLAB is used for rapid prototyping and when the application is ready for 

production, they ask us for advice on how to improve performance and scalability for their applications. 

In this article, we will share some of our observations and demonstrate various ways MATLAB could be 

used to implement Monte Carlo methods. We take a case study of pricing Asian options and show 

various approaches to implementing them in MATLAB. 

Let us explore a sample Asian option pricing problem using Monte Carlo simulations.  As discussed in [1], 

an Asian call option with arithmetic averaging has a payoff defined as: 
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where K is the strike price, N is the number of sampled points, and       is the asset price at time   . Our 

goal would be to simulate N sample points that describe the asset price dynamics and take the expected 

value to generate the option price for this scenario. In the Black-Scholes framework, the asset price 

dynamics for each scenario is driven by a geometric Brownian motion with:   

                  

where    is the asset price at time t,                                               

                                              represents Brownian motion. From this, it can be 

derived that: 

                  √                                            (2) 

where           and                                      (3) 

We repeat this process M-times and take the expected value of the MX1 vector of generated option 

prices to be the Asian option price for this asset. 

To help implement this, let’s conceptualize using the grid shown in Fig 1. The x-axis represents the 

sampling points for each scenario and the y-axis represents the actual scenarios. Note each scenario is 

independent of the others in this case. 



 

Fig 1: Visualizing the asset price generation as a grid 

In order to implement this in MATLAB, let us consider various approaches. The examples illustrated are 

available for download at MATLAB central [3] 

C/Java programmer’s approach 

Developers new to MATLAB, but familiar with C or Java, look for ‘C or Java like syntax’ in MATLAB to 

implement their algorithms. Example PriceArithmeticAsianOption.m illustrates this approach.  

From equations 2, 3, it is evident that we need to compute the asset prices for each step NSteps times 

and then use equation 1 to price the option for each scenario. The Statistics Toolbox provides various 

functions to generate random numbers and we will use the randn function to generate normal random 

numbers. We repeat this process NPaths times to generate NPaths option prices. The expected value 

of these NPaths option prices is the arithmetic Asian option price.  

To see how well this algorithm performs, we run the MATLAB profiler tool which gives us two insights.  

First, we haven’t pre-allocated our variables though we know the size of the output beforehand. The 

for loops that incrementally grow can adversely affect performance and memory use. Repeatedly 

resizing arrays often requires that MATLAB spend extra time looking for larger contiguous blocks of 

memory and then moving the array into those blocks. You can often improve code execution time by 

pre-allocating the maximum amount of space required for the array ahead of time. The mlint 

messages in the MATLAB editor will highlight this in the code to warn the user. 

Second, the structure of the loops indicates scope to vectorize our solution. MATLAB uses a matrix 

language, ideal for vector and matrix operations. You can often speed up your code by vectorizing 

algorithms that take advantage of this design. 

MATLAB programmer’s approach 

Example PriceArithmeticAsianOptionV.m illustrates a MATLAB optimized approach to 

implement this algorithm. Note that we pre-allocated the variable Path and avoided loops using the 



function cumprod to generate all asset prices in one line. Also note that the structure of this particular 

problem allows us to -benefit from vectorizing but this may not always be the case. 

To see how well this algorithm performs, the profiler tool observes that, this approach takes just 0.22 

seconds for 10,000 iterations with 150steps, which achieves a 215-X improvement compared to our 

prior approach.  

Leveraging the Parallel Computing Toolbox 

Monte Carlo simulation problems are typically well-suited to parallel computing. In our example, since 

each path is independent, we could take a task parallel approach i.e.  run each task on a separate 

processor and improve performance further. The Parallel Computing Toolbox offers the ability to do 

exactly that. PriceArithmeticAsianOptionPCT.m illustrates how the Parallel Computing 

Toolbox uses the function parfor, the parallelized version of the traditional for loop. On our local 

test machine, we set up 4 “workers” and run the application. We scale up the number of trials to 

1,000,000. We observe that with these changes, the application ran in 4.88 seconds, a 5-X performance 

improvement over the vectorized approach (with one worker) described earlier.  

Fig 2 summarizes the performance of the three approaches described above. 

 

Fig 2: Performance on running the Arithmetic Average Asian Option pricing algorithm 

Now, can we improve the performance of this algorithm further? We can. The Parallel Computing 

Toolbox can run as many as eight MATLAB workers on your local machine in addition to your MATLAB 

client session. Of course that also depends on how many cores/processors you have available to you on 

your machine. To scale up beyond eight MATLAB workers, you can easily run your applications in parallel 

across hundreds of computers in a cluster equipped with MATLAB Distributed Computer Server. From 

release 2010B, MATLAB GPU support is also available in the Parallel Computing Toolbox, allowing you to 



take advantage of GPUs without low-level C programming. Furthermore, Monte Carlo problems are 

ideally suited to run on GPU architectures making it easier to structure and implement in MATLAB. We 

will address GPU computing in a future article. 

Using Out-of-the box functionality in Toolboxes 

The Asian Option pricing example we chose was for a single asset and we implemented the algorithm 

from scratch. At the heart of this algorithm was simulating Geometric Brownian motion which we 

implemented using multiple approaches. We could also use out-of-the box functionality. 

PriceArithmeticAsianOptionFin.m illustrates using the Financial Toolbox to simulate 

univariate geometric Brownian motion. The example uses the function portsim to simulate asset 

returns and the ret2tick function is used to derive asset prices. Though the example illustrates 

simulation of only one asset, it can be easily extended to simulate a portfolio. When simulating a 

portfolio, portsim simulates correlated asset returns taking the expected covariance matrix as a 

parameter. 

A variety of models are commonly used to model asset prices with Monte Carlo methods .The 

Econometrics Toolbox provides a Stochastic Differential Equation (SDE) class structure that supports 

modeling using different structures such as GBM, CIR, HWV, Heston etc. The SDE class structure uses an 

object-oriented approach making it extensible and customizable. 

PriceArithmeticAsianOptionSDE.m illustrates how a gbm object can simulate asset prices. 

The example [Fig 3] illustrates the simbyeuler method which implements an Euler approach to 

approximate continuous-time stochastic processes.  

In addition to providing different models to choose from and different methods for simulation, the SDE 

class library supports various variance reduction techniques. Variance reduction techniques, as the 

name suggests, reduce the variance of estimates thereby increasing the accuracy of estimation. [1] and 

[2] provide detailed introductions to variance reduction techniques used in Monte Carlo simulations.  

We discuss two methods that are commonly used in practice here.  

Using antithetic variables reduces the average error in option pricing, When the ‘Antithetic’ flag is 

set to ‘true’, the generated random numbers are used both for the primary and antithetic paths 

there by reducing the number of simulations required. 

PriceArithmeticAsianOptionSDEAntithetic.m illustrates using the ‘Antithetic’ flag. 

Another variance reduction method commonly used is stratified sampling. Stratified sampling is a 

variance reduction technique that constrains a proportion of sample paths to specific subsets (or strata) 

of the sample. priceArithmeticAsianOptionSDEZ.m illustrates the use of the ‘z’ parameter 

to accomplish Stratified sampling. The z parameter allows you to specify a noise process directly, as a 

callable function of time and state or as an array of dependent random variates.  

We noted earlier the use of portsim to simulate correlated asset returns when simulating a portfolio. 

We could also simulate a portfolio with correlated asset returns where the noise processes are Gaussian 

random draws using the gbm object and by specifying the correlation matrix using the 



‘correlation’ parameter. Alternatively, noise processes driven by Gaussian and Student's t copulas 

can also be specified using the ‘z’ parameter when simulating portfolios. The Econometrics Toolbox has 

a demo which demonstrates all these use cases in an American Option pricing example setting [5]. 

The SDE framework in the Econometric toolbox eliminates the need to implement models from scratch. 

The availability of commonly used simulation models and the use of object oriented methodologies 

simplifies the task of the quantitative modeler, allowing him to focus on algorithm development rather 

than building artifacts from scratch. 

 

Fig 3: Simulated Monte Carlo paths 

Further Optimizations using Quasi-Random Numbers 

The methods we have discussed rely on random generation methods and to improve the accuracy of our 

computation, we have increased the number of paths and demonstrated how variance reduction 

methods can improve the efficiency of generating Monte Carlo paths. Recently, quasi-random number 

generation has become popular. Quasi-random number generators produce highly uniform samples of 

the unit hypercube. Quasi-random sequences are not random but seek to fill space uniformly and are 

supposed to perform better than generating pseudo random numbers. We refer the readers to [1] and 

[6] for additional coverage on these topics. In this section, we will discuss how the quasi-random 

sequences can be generated and used using functionality in the Statistics Toolbox.  

The Statistics Toolbox supports three quasi-random sequence generators. lhsdesign, sobolset, 

and haltonset. PriceArithmeticAsianOptionQuasi.m illustrates use of all three 

generators. 

In the Stratified Sampling example above, we demonstrated how we could achieve variance reduction 

by partitioning the hypercube into strata. Latin Hypercube Sampling (using lhsdesign) is another 

form of stratified sampling. The function lhsdesign produces a latin hypercube of sparse uniform 

samples containing n values on each of p variables.  In the example, we demonstrate generating Npaths 

values for each of the NSteps variables. We then use the inverse transform method norminv to 



obtain normal random variables used for generating Quasi-Monte Carlo Paths that are used for option 

pricing. 

You could also use sobolset and haltonset classes for quasi-random number generation. 

sobolset and haltonset are built using the MATLAB object oriented technology and are 

extensions of the qrandset class. They generate the Sobol and Halton low-discrepancy sequences that 

are deterministic and uniformly cover the unit interval (0, 1). [1,6] provide detailed coverage of these 

topics. Because of how quasi-random sequences are generated, they may contain undesirable 

correlations, especially in their initial segments, and in higher dimensions. To address this issue, quasi-

random point sets often skip, leap over, or scramble values in a sequence. The Skip and a Leap 

property can be set during the construction of the object and the scramble method can be invoked 

to apply the desired scrambling method. The net method is then invoked to generate the quasi-

random sequence.  

In our example PriceArithmeticAsianOptionQuasi.m we illustrate how an object of 

NSteps dimensions can be constructed. We skip the first 1000 numbers, use 100 as the Leap number 

and invoke the scramble method to scramble the quasi-random number set and then use the net 

method used to generate NPaths. Once the sequences are generated, we use the inverse transform 

method norminv to obtain normal random variables that are used for generating Quasi-Monte Carlo 

Paths that are used for option pricing. 

Conclusion:  

Our goal in this article has been to demonstrate various approaches to implementing Monte-Carlo 

methods using MATLAB. Using an Asian-Option pricing example, we show how MATLAB can be used to 

develop algorithms starting from scratch, and/or to leverage out-of-the box functionality in toolboxes. 

We demonstrate how simulation performance can be enhanced through following best practices and by 

using parallel computing. We also demonstrate how out-of-the box functionality in the Statistics 

Toolbox, Econometrics Toolbox and the Financial Toolbox enable easier development of algorithms. 

Quants and developers can choose their favored methodology and implement their algorithms optimally 

to build scalable applications. 
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