
Spectral Clustering

Bachelor Thesis

in partial requirement for the degree of the Bachelor of Science

by
Ingo Bürk

University of Stuttgart
2012

Contents

Contents

List of Figures 5

1. Introduction 6
1.1. Preface . 6
1.2. Honesty Declaration . 9

2. Preparation and Terminology 11
2.1. Eigenvalues and Eigenvectors 11
2.2. Basic Clustering Algorithms 12

2.2.1. k-Means Algorithm . 12
2.3. Graphs . 14

2.3.1. Notation . 14
2.3.2. Similarity Graphs . 17
2.3.3. Graph Laplacians . 19
2.3.4. Graph Cuts . 24

3. Spectral Clustering 27
3.1. Unnormalized Algorithm . 27

3.1.1. Derivation for k = 2 27
3.1.2. Derivation for Arbitrary k 30
3.1.3. The Algorithm . 32

3.2. Normalized Algorithms . 32
3.2.1. Derivation for k = 2 33
3.2.2. Derivation for Arbitrary k 35
3.2.3. The Algorithms . 36

3.3. Complexity . 39
3.4. Comments . 40
3.5. Applications . 42

4. Programming 45
4.1. MATLAB . 45

4.1.1. Constructing Similarity Graphs 45
4.1.2. Performing Spectral Clustering 48

4.2. Comments . 49

5. Tests and Results 51
5.1. Toy Examples . 51

3

Contents

5.2. Real-World Datasets . 58
5.3. Image Segmentation . 65

6. Conclusion 69

A. Appendix 71
A.1. Silhouette . 71
A.2. Star Coordinates . 71
A.3. German Summary . 72

References 75

4

List of Figures

List of Figures
1. Example of Spectral Clustering 7
2. Visualization of k-Means Algorithm 13
3. DiUerent Types of Graphs . 15
4. k-Nearest Neighbors Graphs are directed 18
5. Similarity Graphs and Connected Components 19
6. Algorithm: Unnormalized Spectral Clustering 32
7. Algorithm: Normalized spectral clustering (Shi and Malik) . . 37
8. Algorithm: Unnormalized spectral clustering (Jordan and Weiss) 38
9. Complexity Plot of Spectral Clustering 41
10. Toy Example: Gaussians of Same Size and Variance 52
11. Toy Example: Gaussians of DiUerent Sizes and Variances . . . 53
12. Toy Example: Two Half-Moons 55
13. Toy Example: Chain Link (Unclustered and Clustered Data) . . 56
14. Toy Example: Chain Link (Similarity Graph and Silhouette) . . 57
15. Toy Example: Hepta . 58
16. Clustering of Abalone Dataset 61
17. Clustering of Swiss Banknotes Dataset 62
18. Clustering of Parkinson’s Disease Dataset 64
19. Segmentation of Picture "All Ponies" 66
20. Segmentation of Picture "Pinkie Pie" 67

5

1. Introduction

1. Introduction

1.1. Preface

The objective of cluster analysis is to divide a given set of data into subsets,
such that those subsets represent a certain similarity of the data itself. For
example, let us look at the data points shown on the left picture in Figure 1.
The human eye instantly recognizes two geometric shapes, two half-moons,
and is able to divide the data into two clusters, where points within the same
cluster belong to the same half-moon. However, in general, and especially
with data from real world problems, it is not possible to just look at the data,
so we need to rely on algorithms to do this.

Conventional cluster analysis has various kinds of algorithms, one of the
most popular being the k-means algorithm. It is fairly easy to understand
and often gives satisfying results, but k-means also has many disadvantages.
For example, it would fail to cluster the example shown in Figure 1, since
it relies only on the pairwise distances between points and fails to detect
patterns. This is where spectral clustering comes into play. In spectral
clustering methods, we try to transform the given data in a manner, such that
conventional algorithms like k-means can easily detect the correct patterns. In
order to do that, we utilize eigenvalues and eigenvectors, thus explaining the
name spectral clustering. Spectral clustering has become especially popular
because it is fairly easy to implement, using only basic linear algebra, and
gives fast and accurate results, even for more general sets of data. On the
right picture in Figure 1, we can see the resulting clusters calculated by using
a spectral clustering algorithm. We can agree that this result matches our
intuitive expectations quite well, however, much is yet unknown about why
spectral algorithms work as well as they do.

In this thesis, mainly based on the work of [Luxburg07], we want to introduce
the reader to the basics of spectral clustering and develop an implementation
of the presented algorithms.

In Section 2, we are going to introduce basic concepts needed for our later
work and the terminology behind it. After recalling the meaning of eigenvalue
problems, we will take a look at a fairly simple, but eUective, clustering
algorithms that we will be using to ultimately cluster our data after applying
spectral methods. We will then focus on an introduction to graph theory,

6

1.1. Preface

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Data

(a) Unclustered Data
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Clustered Data

(b) Clustered Data

Figure 1: The Vrst picture shows a sample set of data points in the shape of
two half-moons. The second picture shows the clusters found by
applying a spectral clustering algorithm.

discussing similarity graphs, describing the similarity of given data sets, graph
Laplacians and graph cut problems, which will eventually lead us to the
spectral methods being studied in this thesis.

The main work will be seen in Section 3 where we will derive diUerent
spectral clustering algorithms by approximating the graph cut problems from
the preceding section. Furthermore, we are going to discuss a few properties
and problems of these methods, but also talk about their advantages and look
at applications of spectral clustering.

The next part, Section 4, is dedicated to the implementation of the algorithms
we just got to know. We will be using MathWorks’ MATLAB as the pro-
gramming language and platform to get the diUerent algorithms to work and
discuss advantages and disadvantages of this implementation.

In the last section, we will put the MATLAB program we just developed
to work, run it on diUerent types of data sets and take a look at both the
quality and the problems of spectral clustering. We will see typical behavior,
advantages to more simple algorithms like k-means and boundaries to the
abilities of spectral methods.

7

1. Introduction

Acknowledgements

Thanks to my stochastics professor and advisor for this thesis, Prof. Dr.
Ingo Steinwart, for his inspirational and motivating way of teaching and for
supervising me throughout the process of writing this thesis.

A special thanks goes out to my friend Patricia Concepcion, who, despite being
a mathematical layman, made the time for proofreading this work, therefore
enabling me to write this thesis in English in the Vrst place.

Thanks to all my friends on www.matheboard.de for getting me interested in
mathematics, helping me with any questions over the course of my studies
and becoming like a second family to me. I apologize for not listing them
individually since this would take too much space, and I would likely forget
someone. Also thanks to my actual family, especially my parents, for support-
ing me in every way possible and without whom I would have never made it
to the point of writing this.

8

1.2. Honesty Declaration

1.2. Honesty Declaration

I hereby declare that the work submitted is my own and that all passages
and ideas that are not mine have been fully and properly acknowledged.
Furthermore, I declare that this work has not been in parts or wholly published
as a submission for another examination procedure and that all copies, both
printed and electronic, are the same.

Date and Signature
08/09/2012

9

2. Preparation and Terminology

In this section we are going to introduce some concepts that we will be needing
for our work on spectral clustering methods.

We will take a quick look at eigenvalue problems and then proceed to discuss
a basic, non-spectral clustering algorithm that we will use to cluster our data
after applying spectral methods.

The main part of this section, however, will be on graphs. We are going
to introduce the general concept of graphs, talk about the similarity graphs
describing the pairwise similarities between data points of a given set of data,
deVne the Graph Laplacians and study some of their properties. Finally, we are
going to introduce graph cut problems, representing the graph version of the
clustering problem. Solving those graph cut problems, using approximations,
will lead us to the spectral algorithms that we are looking for.

2.1. Eigenvalues and Eigenvectors

Eigenvalue problems play a major role in several Velds of mathematics, but
since it is not the objective of this work to introduce to eigenvalues and eigen-
vectors, we are going to keep the section on them fairly short. Furthermore,
we are going to focus on real-valued situations rather than arbitrary vector
spaces.

DeVnition 1: Let n ∈ N and A ∈ Rn×n be a real-valued, square matrix. If there
is a vector x ∈ Rn×1 \ {0} such that Ax = λx for some λ ∈ R, we call v an
eigenvector to the eigenvalue λ .

It can be shown that symmetric matrices have at least one eigenvalue, which
is of interest to us since we will be looking at such matrices later on. A
relatively straight-forward approach to calculating eigenvalues is looking
for zeros of the characteristic polynomial det(A−λ I), where I is the n-by-n
identity matrix. Eigenvectors to a certain eigenvalue λ can then be found by
solving the linear equation system (A−λ I)x = 0.

For large matrices this can be quite expensive work. We will face large
matrices containing mostly zeros for several reasons that will be explained
when talking about similarity graphs. Such sparse structured matrices can be
handled more eXciently by using, for example, the Lanczos algorithm. There

11

2. Preparation and Terminology

exist several variations of this algorithm in order to improve the numerical
stability. We will not discuss this very complex topic any further here and
rather reference to [Golub96] and [Saad11].

2.2. Basic Clustering Algorithms

2.2.1. k-Means Algorithm

There exist many algorithms for cluster analysis, each one having its own
beneVts and disadvantages. A very common and often-used method is the k-
means algorithm. The idea behind this particular algorithm is rather intuitive,
and though it’s very simple, k-means is still an extremely fast algorithm which
is one of its biggest advantages.

On the other hand, this algorithm is very limited and often doesn’t result
in good clustering. It can be shown that Vnding an optimal clustering with
k-means is actually a NP-hard problem1. In our later work we are, in a way,
going to transform the given data such that the classic k-means algorithm will
be able to easily cluster the data, thus giving us a much better result than just
running k-means. For those reasons, we will now discuss the classic k-means
algorithm.

k-means is an iterative algorithm that reVnes the result in every iteration.
Before starting the algorithm, one has to choose a number k of clusters to look
for. The standard k-means algorithm then consists of the following steps that
are being visualized in Figure 2:

1. Randomly choose k cluster centroids.
2. Assign each datum to the cluster with the closest centroid.
3. Recalculate the centroids for each cluster.
4. Go back to Step 2 until the algorithm terminates.

With this brief description, there are several questions to answer. First of
all, since this is an iterative algorithm, we need a suitable exit condition.
Usually, we would either set a maximum number of iterations, abort when the
new centroids do not diUer from the old ones (or at least not too much) or a
combination of both. Furthermore, assigning the data points to clusters based
on the distance to the centroids, we obviously need a distance function for the

1 See [Mahajan09].

12

2.2. Basic Clustering Algorithms

(a) Choosing initial centroids (b) Assigning data points to clusters

(c) Updating centroid positions (d) ReVning cluster assignments

Figure 2: Visualization of k-means algorithm.

data. Usually, we would use the Euclidean metric or similar known metrics,
although the question of which metric to use depends on the particular data
set.

Consider, for example, the case of a 500-by-500 pixels picture. We store each
pixel as a data point by using the horizontal and vertical position and the
RGB channel values, ranging from 0.0 to 1.0, as attributes, giving us a Vve-
dimensional data set. Using an unmodiVed Euclidean metric would not be a
good idea because the pixel position has a much larger range than the color
values. This would result in the position of the pixel having a much greater
eUect on the distance than the color, which in terms of segmenting the picture
into areas of the same color will lead to bad results.

13

2. Preparation and Terminology

Choosing the initial centroids is a critical step in k-means that can have a huge
eUect on the result. Therefore, choosing them randomly as mentioned above
would not seem like the best idea. Indeed, there exists a variety of variations
and improvements to the standard algorithm, in particular k-means++ tries to
solve exactly this problem by choosing better initial centroids.

2.3. Graphs

Next, we are going to introduce the general concept of graphs and then discuss
the special kind of graph we will be needing. Then we will talk about graph
Laplacians and graph cut problems that will lead us to the spectral clustering
algorithms later on.

2.3.1. Notation

DeVnition 2 (Graph): Let G = (V,E) with a non-empty and Vnite set V =
{v1, . . . ,vn} of vertices and a set E ⊂ V ×V of edges between such vertices.
Then G is called a (directed) graph. If (vi,v j) ∈ E , we denote this edge by ei j .
Moreover, if E is symmetric, that is ei j ∈ E⇔ e ji ∈ E for all edges, we call G an
undirected graph.

The similarity or distance of vertices in a graph could just be described by
them being connected by an edge or not. However, this does not really allow
for a deep level of information and we would much rather be able to describe
these crucial information more freely. This is where the concept of weighted
graphs comes into play.

DeVnition 3 (Weighted Graph): Let G′ = (V,E ′) be a graph as deVned above.
We now replace E ′ by E := E ′×R+

0 , which lets each edge ei j ∈ E ′ carry a certain
value wi j ≥ 0. Then, G := (V,E) is called a weighted graph and wi j is called
the weight of the edge connecting vi and v j .

Examples for the diUerent types of graphs can be seen in Figure 3. Furthermore,
from now on we will only consider undirected graphs. Our next step is to
describe graphs with matrices the we will use to study their properties.

DeVnition 4 (Adjacency Matrix): Let G = (V,E) be an undirected graph
with weights wi j . If (vi,v j) /∈ E , we deVne wi j := 0. Then the matrix W =
(wi j)i, j=1,...,n is called adjacency matrix of G.

14

2.3. Graphs

v1

v2

v3

v4

v5

(a) Directed, unweighted

v1

v2

v3

v4

v5

(b) Undirected, unweighted

v1

v2

v3

v4

v5

2

53

1
10

(c) Undirected, weighted

Figure 3: DiUerent types of graphs with V = {v1, . . . ,v5}.

15

2. Preparation and Terminology

Since we were looking at an undirected graph, we have wi j = w ji for all
weights which shows that W is symmetrical.

DeVnition 5 (Degree Matrix): Let G be an undirected, weighted graph as above.
Then di := ∑

n
j=1 wi j for some i ∈ {1, . . . ,n} is called the degree of the vertex

vi ∈V . Furthermore, D = diag{d1, . . . ,dn} is called the degree matrix of G.

Additionally, we will shorten {i | vi ∈ A} for a subset A⊂V by i ∈ A and then
deVne

W (A,B) := ∑
i∈A, j∈B

wi j

for two arbitrary sets A,B ⊂ V . Later on, we will be forced to measure the
size of a subset A⊂V . One way is to simply use the number of vertices in A,
which is given by |A|. Another way, however, is to sum over the weights of
edges attached to vertices in A, i. e. vol(A) := ∑i∈A di.

If we think of graphs that contain components, which are not connected by
edges, it makes sense that they will describe clusters we would like to Vnd. In
general, we cannot expect the graphs we are going to look at to be exactly
structured like that. However, the structure will be similar to this situation.
In order to study this in detail, we need to deVne what exactly we mean by
components and their connections.

DeVnition 6 (Connected Components): Let G be a graph as described above
and A⊂V . We say that A is connected if there exists a path between any two
vertices in A that lies completely in A, i. e. all points of this path are in A, too.
Furthermore, we call A a connected component if it is connected and there is no
connection between A and its complement Ac :=V \A.
DeVnition 7 (Indicator Vector): Let A⊂V for a graph as described above. We
then deVne the indicator vector of A by 1A = (f1, . . . , fn)

′ ∈ Rn with

fi =

{
1 if vi ∈ A
0 otherwise

.

16

2.3. Graphs

2.3.2. Similarity Graphs

After introducing the general concept of graphs, we will now take a look at a
special kind of graphs that describe the pairwise similarity of the points in a
given dataset.

DeVnition 8 (Similarity Graph): Let D = {x1, . . . ,xn} be a given set of data and
assume that we have values si j describing the similarity of xi and x j for all those
data. We then construct the graph G = (V,E) by using the data points as vertices
and weighting each edge with the corresponding similarity, i. e. wi j := si j . Then,
G is called the similarity graph of this dataset.

There are two things we need to point out: First of all, we will refer to both
the graph itself and its adjacency matrix as similarity graph. Secondly, since
for n data points the similarity graph will be a n-by-n matrix and because n is
usually a large number, we need to consider technological limits in computer
memory. We will therefore alter the shape of such similarity graphs to bycome
these obstacles. The goal of this section is to discuss diUerent approaches on
how such similarity graphs can be obtained.

This leads us to the idea of trying to make the matrix sparse, which means
that most entries should be zeros. This allows us to store the matrix more
eXciently rather than storing n2 entries individually, e. g. MATLAB uses a
procedure called Compressed Sparse Column2 (CSC) to achieve this. There are
diUerent ways to construct sparse similarity graphs, and we are now going to
discuss the most common types.

However, we note Vrst that in many situations, we have distances rather than
similarity values between data points. We need to be careful about this since
great similarity values are the equivalent of small distances and vice versa.

Full Similarity Graph

The easiest way to construct a similarity graph is simply connecting all vertices
vi and v j with si j 6= 0. Keeping in mind that the similarity graph should model

2 The idea is to have an array containing the non-zero values, another array containing the row
indices for those values and a third array containing the indices of the value array where a new
column starts.

17

2. Preparation and Terminology

local neighborhoods, a standard approach for fully connected graphs would
be a Gaussian similarity function

si j := exp
(
−

d(xi,x j)
2

2σ2

)
,

where σ is a parameter controlling the size of these neighborhoods. The metric
d could, for example, be the Euclidean metric. The obvious disadvantage to
this type of similarity graphs is that it lacks the sparse structure we desire.
This is why this graph type is not recommended for large data sets.

k-Nearest Neighbors Similarity Graph

A better approach in terms of memory eXciency is the k-nearest neighbors
graph type. We connect vi with v j , if v j is among the k nearest neighbors of vi,
where k is a Vxed number. The simple example in Figure 4, however, shows
that this usually results in a directed graph. To convert it into an undirected
similarity graph, we can use either one of the following two methods:

• Normal k-Nearest Neighbors: We connect the vertices if either one of
them is among the k-nearest neighbors of the other one.

• Mutual k-Nearest Neighbors: We connect the vertices if vi is among the
k-nearest neighbors of v j and v j is among the k-nearest neighbors of vi.

For both types we use the similarity3 of vi and v j to weight the edge. Figure 5
shows two k-nearest similarity graphs.

v2

v1

v3

Figure 4: The nearest neighbor of v3 is v2, but the nearest neighbor for v2 is
v1, therefore the 1-nearest neighbor graph would be directed.

3 We can obtain similarity values from distances by applying a similarity function to only the
connected vertices.

18

2.3. Graphs

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5
Similarity Graph

(a) One connected component
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Similarity Graph

(b) Two connected components

Figure 5: Both pictures show a k-nearest neighbor similarity graph for the
situation of two half-moons as seen in Figure 1. In the case of
two connected components, the components represent a desirable
clustering result. We will further study this behavior later on.

ε-Neighborhood Similarity Graph

The last type we look at is the ε-neighborhood graph type. Here, we simply
connect vi and v j if d(xi,x j) < ε for a Vxed threshold ε > 0. Because the
distances between connected points are numerically similar and at most ε , we
consider this graph to be unweighted.

2.3.3. Graph Laplacians

Graph Laplacians are matrices representing graphs in a certain way. Spectral
graph theory is the study of these matrices because they turn out to be
holding many useful information about the graphs. We will study some of
these properties in this section so that we can use them later on for our
spectral algorithms. As before, G is assumed to be an undirected and weighted
graph with adjacency matrix W and degree matrix D.

DeVnition 9: The unnormalized graph Laplacian is deVned as

L = D−W .

19

2. Preparation and Terminology

As mentioned above, despite its simple structure, graph Laplacians have very
interesting properties:

Proposition 1: Let L be a graph Laplacian as deVned above. Then we have the
following properties:

1. For every vector (f1, . . . , fn)
′ = f ∈ Rn we have

f ′L f =
1
2

n

∑
i, j=1

wi j(fi− f j)
2.

2. L is symmetric and positive semi-deVnite.

3. The smallest eigenvalue of L is 0, a corresponding eigenvector is the con-
stant one vector 1.

4. L has n non-negative, real-values eigenvalues 0 = λ1 ≤ λ2 ≤ . . .≤ λn.

Proof. Let us take a look at the statements individually:

1. Using the deVnition of L and the degrees di, we get

f ′L f = f ′(D−W) f = f ′D f − f ′W f

=
n

∑
i=1

di f 2
i −

n

∑
i, j=1

fi f jwi j

=
1
2

(
n

∑
i=1

di f 2
i −2

n

∑
i, j=1

fi f jwi j +
n

∑
j=1

d j f 2
j

)

=
1
2

(
n

∑
i, j=1

wi j f 2
i −2

n

∑
i, j=1

fi f jwi j +
n

∑
i, j=1

wi j f 2
j

)

=
1
2

n

∑
i, j=1

wi j
(

f 2
i −2 fi f j + f 2

j
)

=
1
2

n

∑
i, j=1

wi j(fi− f j)
2.

In particular, as a sum over non-negative numbers, this shows f ′L f ≥ 0
for all f ∈ Rn.

2. W is symmetric because we assume the graph to be undirected. The
degree matrix D is obviously symmetric too, therefore L is symmetric.

20

2.3. Graphs

The positive semi-deVniteness follows from f ′L f ≥ 0 for all f ∈ Rn,
which we have just seen.

3. We want to verify that L1 = 0. By deVnition of the graph Laplacian,
this is equivalent to D1 = W1. Both D1 and W1 are n-by-1 vectors
containing the row sums of D respectively W . The sum of the i-th row
of W is exactly what we deVned to be di, which in turn is also the sum
of the i-th row of D because D is a diagonal matrix. This shows that
both vectors are the same, thus proving L1= 0.

4. We have shown that L is symmetric and positive-deVnite. Therefore, all
eigenvalues are real-valued and non-negative.

An important property for spectral clustering in particular is the following
result.

Proposition 2: Let G be an undirected, weighted graph. Then the geometric
multiplicity k of the eigenvalue 0 of L equals the number of connected components
in the graph. The eigenspace of this eigenvalue is spanned by the indicator vectors
of those components.

Proof. We start by looking at the case of a connected graph, that is k = 1,
and then reduce the general case to this one. Let f be an eigenvector with
eigenvalue 0, that is L f = 0 and therefore f ′L f = f ′0 = 0, then according to
Proposition 1 we have

0 = f ′L f =
1
2

n

∑
i, j=1

wi j (fi− f j)
2 .

As already mentioned in the proof of the Vrst property in Proposition 1, the
sum can only equal zero if all terms wi j (fi− f j)

2 vanish. Since we have wi j > 0
for two connected vertices vi and v j , we can conclude fi = f j . Therefore, f
needs to be constant for all vertices in the graph that can be connected and
since we assumed the graph to be connected, f has to be constant on the whole
graph. Of course, every multiple of an eigenvector is an eigenvector, but since
we usually treat them as one, we see that f = 1 is the only eigenvector with
eigenvalue 0. It is obvious that this is the indicator vector for the connected
component.

Now we are going to look at arbitrary k, that is we have k connected compo-
nents. Obviously, we can change the order of the vertices without changing

21

2. Preparation and Terminology

the graph and therefore sorting them by the connected components they
belong to, we can achieve that the adjacency matrix W has a block diagonal
form. Then, we also get such a form for

L =


L1 0 . . . 0

0 L2
...

...
. . . 0

0 . . . 0 Lk

 .

Each one of these blocks Li is a graph Laplacian on its own and therefore
represents a graph. More precisely, it represents the i-th connected component
subgraph of G. Since L is in block diagonal form, its spectrum equals the
union of the spectra of Li and we get the corresponding eigenvectors by Vlling
all other entries with zeros. The Vrst step has shown that each Li has the
constant vector 1 as an eigenvector with eigenvalue 0. Therefore, the number
of eigenvalues 0 of L equals the number of connected components and the
corresponding eigenvectors are exactly their indicator vectors.

The graph Laplacian we got to know so far is often referred to as the unnor-
malized graph Laplacian, suggesting that it can be normalized in some sense.
In fact, there are many diUerent ways to normalize it, but they usually don’t
have names on their own and are just referred to as the normalized graph
Laplacian. We are going to introduce two diUerent ways to normalized the
graph Laplacian, leading to two diUerent spectral clustering algorithms later
on.

DeVnition 10:We deVne the two normalized graph Laplacians

Lsym := D−
1
2 LD−

1
2

and
Lrw := D−1L.

Note that in order for these matrices to be well-deVned, we need detD =

∏i di 6= 0, otherwise the inverse matrix would not exist. This is equivalent
to di 6= 0 for all i. We can safely assume wii > 0 for all i and recalling the
deVnition of the degrees, we get di ≥ wii > 0.

We chose those names for the normalized graph Laplacians, as Lsym is a
symmetric matrix and Lrw is related to a random walk. As before, we are
going to take a look at a few important properties of both graph Laplacians.

22

2.3. Graphs

Proposition 3: Let Lsym and Lrw be deVned as above, then we have the following
properties:

1. For every vector (f1, . . . , fn)
′ = f ∈ Rn we have

f ′Lsym f =
1
2

n

∑
i, j=1

wi j

(
fi√
di
−

f j√
d j

)2

.

2. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigen-
value of Lsym with eigenvector w = D

1
2 u.

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve
the generalized eigenproblem

Lu = λDu.

4. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0
is an eigenvalue of Lsym with eigenvector D

1
2 1.

5. Lsym and Lrw are positive semi-deVnite and have n non-negative, real-
valued eigenvalues 0 = λ1 ≤ . . .≤ λn.

Proof. Once again, we look at the statements individually:

1. The matrix D−
1
2 is a diagonal matrix containing 1√

di
on the i-th diagonal

element. Therefore, f ′D−
1
2 and D−

1
2 f are just scaled versions of the

vectors f ′ and f , where each entry fi has been replaced with fi√
di
.

Substituting these vectors with g′ and g, we have the same situation as
in Proposition 1.

2. Let w be an eigenvector of Lsym to the eigenvalue λ , that is Lsymw = λw.
Multiplying with D−

1
2 from the left gives us D−

1
2 Lsymw=D−

1
2 λw. With

D−
1
2 Lsym = D−

1
2 D−

1
2 LD−

1
2 = D−1LD−

1
2 = LrwD−

1
2 ,

this leads us to LrwD−
1
2 w = λD−

1
2 w and substituting u = D−

1
2 w gives

us the eigenvalue equation Lrwu = λu for Lrw.

3. Starting with Lrwu = λu, we multiply D onto both sides from the left
and with DLrw = DD−1L = L, we get Lu = λDu.

23

2. Preparation and Terminology

4. From Proposition 1 we know that L1 = 0. Therefore, we get Lrw1 =
D−1L1= D−10 = 0, i. e. 1 is an eigenvector to eigenvalue 0. The other
statement is a direct consequence of 2.

5. Just like in Proposition 1, the statement about Lsym follows from 1 and
then 2 shows it for Lrw.

As before with the unnormalized graph Laplacian, we can derive a similar
result as in 2 for normalized graph Laplacians.

Proposition 4: Let G be an undirected, weighted graph. Then the geometric
multiplicity k of the eigenvalue 0 of both Lsym and Lrw equals the number of
connected components A1, . . . ,Ak in the graph.

For Lrw, the eigenspace of 0 is spanned by the indicator vectors 1Ai of those
components. For Lsym, the eigenspace of 0 is spanned by the vectors D

1
2 1Ai .

Proof. We can prove this proposition just like Proposition 2 by using the
properties from Proposition 3.

2.3.4. Graph Cuts

Up to this point we developed some solid theory about graphs and their
spectral properties. However, originally we wanted to solve a clustering
problem. Representing the data with a graph like we discussed it before, we
are now able to rephrase the clustering problem and express it in the language
of graphs. That is, we are looking for a partition4 of the graph such that each
group represents a collection of data points with high weights to each other
while points from diUerent groups have very low weights. Spectral clustering
algorithms will then be the result of approximating this problem.

DeVnition 11: Let W be the adjacency matrix of a given similarity graph and
k ∈ N. Then, minimizing

cut(A1, . . . ,Ak) :=
1
2

k

∑
i=1

W (Ai,Ac
i)

for A1, . . . ,Ak ⊂V is called the mincut problem.

4 A partition is a set of non-empty, disjoint subgraphs such that their union equals the whole
graph.

24

2.3. Graphs

However, solving the mincut problem often leads to separating a single vertex
from the rest of the graph, which of course is not what we would like to see
when clustering data. Therefore, we want to work in the condition of the
sets A1, . . . ,Ak being large in some sense. In a previous section, we already
introduced two ways to measure the size of such sets. This leads to the
following graph cut problems:

DeVnition 12: Given the adjacency matrix W as above, the RatioCut problem
consists of minimizing

RatioCut(A1, . . . ,Ak) :=
1
2

k

∑
i=1

W (Ai,Ac
i)

|Ai|
=

k

∑
i=1

cut(Ai,Ac
i)

|Ai|
.

DeVnition 13: Given the adjacency matrixW as above, theNcut problem (short
for normalized cut) consists of minimizing

Ncut(A1, . . . ,Ak) :=
1
2

k

∑
i=1

W (Ai,Ac
i)

vol(Ai)
=

k

∑
i=1

cut(Ai,Ac
i)

vol(Ai)
.

Both cut problems try to balance the size of the groups Ai, but they are trying
to achieve this in diUerent ways: The RatioCut problem takes the number of
vertices in each group into account, while the Ncut problem uses the edge
weights for this. While solving these problems would give us better results,
the downside is that, unlike the original mincut problem, which is easy to
solve, they are hard to solve. In fact, it can be shown that they are NP-hard5.
Therefore, instead of solving it exactly, we will rely on approximating the
solutions. This will Vnally lead us to the spectral clustering algorithms.

5 See [Wagner93].

25

3. Spectral Clustering

We now have all the tools we need to get started on deriving spectral clustering
algorithms. In order to do so, we will approximate the graph cut problems
we discussed in the previous section. These approximations are done by a
relaxation step, where we switch from a discrete to a continuous problem. We
will see that relaxing Ncut and RatioCut leads to diUerent algorithms. We will
also summarize the algorithm in a way so that it can be realized on computers
since we will be doing that in the next section. Furthermore, we are going to
talk about the complexity of spectral clustering algorithms and brieWy discuss
some of its applications.

3.1. Unnormalized Algorithm

In order to make things easier to understand, we will start out with approxi-
mating RatioCut in the special case of two clusters. With the second step, we
will transfer the idea of that scenario to the general case of arbitrary k.

3.1.1. Derivation for k = 2

We begin with approximating RatioCut for k = 2 and recall that the problem
we want to solve is

min
A⊂V

RatioCut(A,Ac) . (1)

First, we introduce the vector f = (f1, . . . , fn)
′ ∈ Rn that is deVned by

fi =


√
|Ac|
|A| for vi ∈ A

−
√
|A|
|Ac| for vi ∈ Ac

.

Proposition 5: Let L be the graph Laplacian of a given graph, A⊂V and f as
deVned above. Then, we have

f ′L f = |V | ·RatioCut(A,Ac).

27

3. Spectral Clustering

Proof. Using Proposition 1, we get

f ′L f =
1
2

n

∑
i, j=1

wi j (fi− f j)
2

=
1
2 ∑

i∈A, j∈Ac
wi j

(√
|Ac|
|A|

+

√
|A|
|Ac|

)2

+
1
2 ∑

i∈Ac, j∈A
wi j

(
−

√
|Ac|
|A|
−

√
|A|
|Ac|

)2

=
1
2

(
∑

i∈A, j∈Ac
wi j + ∑

i∈Ac, j∈A
wi j

)(
|Ac|
|A|

+
|A|
|Ac| +2

)
= cut(A,Ac)

(
|Ac|
|A|

+
|A|
|Ac| +2

)
= cut(A,Ac)

(
|A|+ |Ac|
|A|

+
|A|+ |Ac|
|Ac|

)
= |V | ·RatioCut(A,Ac).

Proposition 6: Let f be deVned as above, then

1. f⊥1 and

2. ‖ f‖2 = n.

Proof. Simply computing the inner product, we get

f1=
n

∑
i=1

fi = ∑
i∈A

√
|Ac|
|A|
− ∑

i∈Ac

√
|A|
|Ac| =

|A|

√
|Ac|
|A|
− |Ac|

√
|A|
|Ac|

= 0,

therefore we have f⊥1. Furthermore, we have

‖ f‖2 =
n

∑
i=1

f 2
i = |A| |A

c|
|A|

+ |Ac| |A|
|Ac| =

|A|+ |Ac|= n.

28

3.1. Unnormalized Algorithm

Combining Proposition 5 and Proposition 6, we can rewrite the problem in (1)
as

min
A⊂V

f ′L f with

{
f deVned as above and f⊥1
‖ f‖=

√
n

. (2)

Since we haven’t actually used any kind of relaxation or approximation so
far, but rather just changed the point of view, the problem, of course, is still
NP-hard. We are now going to allow the entries of f to take arbitrary values
rather than just two particular values, therefore getting rid of the discreteness
of the problem. By doing so, we Vnally get a relaxed version of the problem:

min
f∈Rn

f ′L f with

{
f⊥1
‖ f‖=

√
n

. (3)

To solve the problem given in (3), we will take a look at the Rayleigh-Ritz
Theorem, which, in combination with a more general version of it, will tell us
the solution.

Theorem 1 (Rayleigh-Ritz 1): Let A ∈ Rm×m be a symmetric matrix, then the
smallest and largest eigenvalues are given by

λmin(A) = min
{

x′Ax
x′x
| 0 6= x ∈ Rm

}
respectively

λmax(A) = max
{

x′Ax
x′x
| 0 6= x ∈ Rm

}
.

Proof. See [Horn85].

Ignoring the additional conditions, the solution of (3), according to Theorem
1, would be given by the eigenvector corresponding to the smallest eigenvalue.
However, from Proposition 1 we know that this is the constant one vector 1,
which obviously cannot solve (3) because it violates the condition f⊥1.
Proposition 7: The solution of (3) is given by the eigenvector to the second
smallest eigenvalue of L.

29

3. Spectral Clustering

Proof. Proposition 1 showed that L is symmetric, therefore we can consider
the spectral decomposition of L and Vnd n eigenvectors 1

√
n = v1,v2, . . . ,vn

which are orthogonal to each other and have norm
√

n. This guarantees vi⊥1
and ‖vi‖=

√
n for all i ∈ {2, . . . ,n}, in other words all of these eigenvectors

but v1 meet the conditions in (3).

This shows that the solution of (3) is given by some eigenvector of L. A
generalized version of the Rayleigh-Ritz Theorem now shows that it is, in fact,
the eigenvector corresponding to the second smallest eigenvalue of L.

The next step is to undo the relaxation and go back from real values to a
discrete indicator vector. In order to do this, we consider the coordinates fi to
be points in R and use the 2-means algorithm to obtain two clusters C and Cc.
We can then use this clustering by setting{

vi ∈ A if fi ∈C
vi ∈ Ac if fi ∈Cc .

3.1.2. Derivation for Arbitrary k

Now that we discussed the special case k = 2, we go on to studying the case
of arbitrary k ∈ N. The general idea is the same, but we will have to make
a few technical changes. For a given partition A1, . . . ,Ak ⊂ V we deVne the
indicator vectors h j = (h1, j, . . . ,hn, j)

′ by

hi j =


1√
|A j|

if vi ∈ A j

0 if vi /∈ A j

for all i ∈ {1, . . . ,n} and j ∈ {1, . . . ,k} and deVne H ∈ Rn×k to be the matrix
containing those vectors as columns.

Proposition 8: With the notation given as above, we have

1. h′iLhi =
cut(Ai,Ac

i)

|Ai|
and

2. h′iLhi = (H ′LH)ii.

Proof. The proof is similar to the proof of Proposition 5.

30

3.1. Unnormalized Algorithm

Proposition 9: Let tr(A) denote the trace of a matrix A, that is the sum of the
entries on its diagonal. Then we have

RatioCut(A1, . . . ,Ak) = tr(H ′LH).

Proof. Using Proposition 8 twice, we get

RatioCut(A1, . . . ,Ak) =
k

∑
i=1

h′iLhi =
k

∑
i=1

(H ′LH)ii = tr(H ′LH).

Proposition 8 and Proposition 9 allow us to rewrite the RatioCut problem to

min
A1,...,Ak

tr(H ′LH) with

{
H as deVned above

H ′H = I
, (4)

wherein we see H ′H = I because the columns of H are orthonormal. Allowing
the entries of H to take arbitrary values relaxes the problem in a similar way
as we have done it for k = 2. This leads us to the relaxed RatioCut problem

min
H∈Rn×k

tr(H ′LH) with H ′H = I. (5)

At this point, we will introduce another version of the Rayleigh-Ritz Theorem,
which, similarly to the special case of k = 2, will help us to Vnd the solution
of (5).

Theorem 2 (Rayleigh-Ritz 2): Let A ∈Rm×m be a symmetric matrix with eigen-
values λ1 ≤ . . .≤ λm and let v1, . . . ,vm be the corresponding orthonormal eigen-
vectors. Then the solution of the optimization problem

min
X∈Rm×n

tr(X ′AX) with X ′X = I

for some n ∈ {1, . . . ,m} is given by the matrix X containing the Vrst n eigenvec-
tors as columns.

Proof. See [Horn85].

We can now retrieve a solution for (5) from Theorem 2 and see that it is given
by the matrix H containing the Vrst k eigenvectors6 as columns. And also,
just like before, using k-means on the rows of H to transform the real-valued
problem to a discrete problem will give us the clustering.

6 Here and anytime else we refer to the Vrst k eigenvectors as the eigenvectors corresponding to
the k smallest eigenvalues.

31

3. Spectral Clustering

3.1.3. The Algorithm

The algorithm we just presented used the unnormalized graph Laplacian L,
which is why we refer to this algorithm as the unnormalized spectral clustering
algorithm. In simple words, the algorithm is given as in Figure 6.

Let S ∈Rn×n be the similarity matrix for the n points x1, . . . ,xn, where si j
describes the similarity between xi and x j . Let k be the desired number of
clusters.

1. Construct a similarity graph with adjacency matrix W as discussed
before.

2. Compute the unnormalized graph Laplacian L = D−W .
3. Compute the Vrst k eigenvectors u1, . . . ,uk of L.
4. Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as

columns.
5. For i = 1, . . . ,n let yi ∈ Rk be the vector corresponding to the i-th

row of U .
6. Cluster the points (yi)

n
i=1 into clustersC1, . . . ,Ck using the k-means

algorithm.
7. Retrieve clusters A1, . . . ,Ak by Ai = { j | y j ∈Ci}.

Figure 6: Unnormalized spectral clustering.

3.2. Normalized Algorithms

We have seen that approximating RatioCut leads to an algorithm using the
unnormalized graph Laplacian. Similarly, we will now approximate the Ncut
problem and we are going to see that this leads to an algorithm involving
normalized graph Laplacians.

32

3.2. Normalized Algorithms

3.2.1. Derivation for k = 2

Again, we start out by looking at the special case of k = 2. We deVne the
cluster indicator vector by

fi =


√

vol(Ac)
vol(A) if vi ∈ A

−
√

vol(A)
vol(Ac) if vi ∈ Ac

.

Proposition 10: Let f be the cluster indicator vector as deVned above. Then, we
have

1. (D f)′1= 0 and

2. f ′D f = vol(V).

Proof. Both equations are shown by simple calculations. We have

(D f)′1=
n

∑
i=1

di fi

= ∑
i∈A

di

√
vol(Ac)

vol(A)
− ∑

i∈Ac

√
vol(A)
vol(Ac)

=

√
vol(Ac)

vol(A) ∑
i∈A

di−

√
vol(A)
vol(Ac) ∑

i∈Ac
di

=

√
vol(Ac)

vol(A)
vol(A)−

√
vol(A)
vol(Ac)

vol(Ac)

=
√

vol(Ac)vol(A)−
√

vol(A)vol(Ac)

= 0,

proving the Vrst statement. For the second equation, we have

f ′D f =
n

∑
i=1

f 2
i di

= ∑
i∈A

vol(Ac)

vol(A)
di + ∑

i∈Ac

vol(A)
vol(Ac)

di

= vol(Ac)+vol(A)
= vol(V).

33

3. Spectral Clustering

Proposition 11: In the situation as described above, we have

f ′L f = vol(V)Ncut(A,Ac).

Proof. Utilizing Proposition 1 we can see that

f ′L f =
1
2

n

∑
i, j=1

wi j (fi− f j)
2

=
1
2 ∑

i∈A, j∈Ac
wi j

(√
vol(Ac)

vol(A)
+

√
vol(A)
vol(Ac)

)2

+
1
2 ∑

i∈Ac, j∈A
wi j

(
−

√
vol(A)
vol(Ac)

−

√
vol(Ac)

vol(A)

)2

=
1
2

(
∑

i∈A, j∈Ac
wi j + ∑

i∈Ac, j∈A
wi j

)(
vol(Ac)

vol(A)
+

vol(A)
vol(Ac)

+2
)

= cut(A,Ac)

(
vol(Ac)

vol(A)
+

vol(A)
vol(Ac)

+2
)

= cut(A,Ac)

(
vol(Ac)+vol(A)

vol(A)
+

vol(A)+vol(Ac)

vol(Ac)

)
= vol(V)Ncut(A,Ac).

Combining Proposition 10 and Proposition 11, we can rewrite the problem as

min
A

f ′L f with

{
f as deVned above and D f⊥1
f ′D f = vol(V)

. (6)

As we did it several times by now, we allow f to take arbitrary values, thus
relaxing the problem to

min
f∈Rn

f ′L f with

{
D f⊥1
f ′D f = vol(V)

. (7)

34

3.2. Normalized Algorithms

A step that is new to us is to substitute g := D
1
2 f , which transforms the

problem to

min
g∈Rn

g′D−
1
2 LD−

1
2 g with

{
g⊥D

1
2 1

‖g‖2 = vol(V)
. (8)

We can now see that D−
1
2 LD−

1
2 = Lsym, whose Vrst eigenvector, according

to Proposition 3, is D
1
2 1. Since vol(V) is a constant, we can once again use

the Rayleigh-Ritz Theorem to see that the solution g of (8) is given by the
second eigenvector of Lsym. By using Proposition 3, we can furthermore see

that f = D−
1
2 g is the second eigenvector of Lrw.

From here on, the rest is just like in the case of the unnormalized spectral
algorithm: We cluster the coordinates fi ∈ R using the 2-means algorithm in
order to restore the discreteness and obtain the clusters.

3.2.2. Derivation for Arbitrary k

After taking a look at k = 2, we are now going to relax the Ncut problem
for an arbitrary number of clusters. We deVne the indicator vectors h j =
(h1, j, . . . ,hn, j)

′ by

hi, j =

{ 1√
vol(A j)

if vi ∈ A j

0 if vi /∈ A j

for all i ∈ {1, . . . ,n} and j ∈ {1, . . . ,k} and once again set H to be the matrix
containing these indicator vectors as columns.

Proposition 12: In the described situation, we have

1. H ′H = I,

2. h′iDhi = 1 and

3. h′iLhi =
cut(Ai,Ac

i)

vol(Ai)
.

Proof. All equations can be proven by calculations that are similar to the ones
before.

35

3. Spectral Clustering

With Proposition 12, we now rewrite the Ncut problem as

min
A1,...,Ak

tr(H ′LH) with

{
H as deVned above

H ′DH = I
. (9)

and relax the problem by allowing H to take arbitrary values, but also substi-
tute T = D

1
2 H , thus giving us

min
T∈Rn×k

tr
(

T ′D−
1
2 LD−

1
2 T
)
with T ′T = I. (10)

Again, we can see that the solution T is given by the matrix containing the
Vrst k eigenvectors of Lsym as columns and resubstituting H = D−

1
2 T shows

that H is given by the matrix containing the Vrst k eigenvectors of Lrw as
columns. Of course, we now run k-means on the rows of H again to get
discrete indicator vectors and obtain the clusters.

3.2.3. The Algorithms

Relaxing Ncut as we did above leads to an algorithm using the eigenvectors of
Lrw. Therefore, we call this a normalized spectral clustering algorithm that is
given as shown in Figure 7.

Figure 8 shows a diUerent version of the normalized spectral clustering algo-
rithm, which uses eigenvectors of Lsym rather than Lrw. However, we need to
introduce an additional step in which we normalize the rows of the matrix
U that contains the eigenvectors as columns. This step can be explained
using perturbation theory, i. e. looking at the diUerence between the ideal
case and real scenarios. However, this is beyond the scope of this thesis and
will therefore not be explained. For a short discussion on this, we refer to
[Luxburg07, Section 7.2].

36

3.2. Normalized Algorithms

Let S ∈Rn×n be the similarity matrix for the n points x1, . . . ,xn, where si j
describes the similarity between xi and x j . Let k be the desired number of
clusters.

1. Construct a similarity graph with adjacency matrix W as discussed
before.

2. Compute the unnormalized graph Laplacian L = D−W .
3. Compute the Vrst k eigenvectors u1, . . . ,uk of the normalized graph

Laplacian Lrw.
4. Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as

columns.
5. For i = 1, . . . ,n let yi ∈ Rk be the vector corresponding to the i-th

row of U .
6. Cluster the points (yi)

n
i=1 into clustersC1, . . . ,Ck using the k-means

algorithm.
7. Retrieve clusters A1, . . . ,Ak by Ai = { j | y j ∈Ci}.

Figure 7: Normalized spectral clustering according to Shi and Malik (2000).

37

3. Spectral Clustering

Let S ∈Rn×n be the similarity matrix for the n points x1, . . . ,xn, where si j
describes the similarity between xi and x j . Let k be the desired number of
clusters.

1. Construct a similarity graph with adjacency matrix W as discussed
before.

2. Compute the unnormalized graph Laplacian L = D−W .
3. Compute the Vrst k eigenvectors u1, . . . ,uk of the normalized graph

Laplacian Lsym.
4. Let U ∈ Rn×k be the matrix containing the vectors u1, . . . ,uk as

columns.
5. Form the matrix T ∈Rn×k fromU by normalizing the rows, i. e. set

T = (ti j)
n
i, j=1 with ti j =

ui j(
∑k u2

jk

) 1
2
.

6. For i = 1, . . . ,n let yi ∈ Rk be the vector corresponding to the i-th
row of T .

7. Cluster the points (yi)
n
i=1 into clustersC1, . . . ,Ck using the k-means

algorithm.
8. Retrieve clusters A1, . . . ,Ak by Ai = { j | y j ∈Ci}.

Figure 8: Unnormalized spectral clustering according to Jordan and Weiss
(2002).

38

3.3. Complexity

3.3. Complexity

Cluster analysis is being used for a wide variety of applications and the size of
the data sets may range from a few dozens or hundreds of data points to up to
hundreds of thousands. For this reason, we would naturally be interested in
some information on computational complexity of the algorithms. In order
to do this, we will take a look at the computational complexity of individual
steps of spectral clustering. As before, let n be the number of data points and
d be their dimensionality.

The very Vrst step is constructing a similarity graph. Assuming that calcu-
lating a single similarity si j between two data points xi and x j involves at
least one inner product, it costs us O(d) to calculate such a value. Therefore,
constructing the whole graph has a time complexity of O(n2d). Without
going into too much detail, we can use a so-called max-heap7 to make it a
k-nearest similarity graph. This requires us to restructure the heap constantly
and results in an overall complexity of O(n2 logk) to make the already graph
sparse.

Next, we need to compute the eigenvectors corresponding to the smallest
eigenvalues. This is a complex problem and many eigensolvers exist for
this sort of task. As mentioned before, a common approach is the Lanczos
algorithm8 and without going into details about how this algorithm works,
we can derive a time complexity of

O(m3)+(O(nm)+O(nt)) ·O(p(m− k)),

wherein m > k is the so-called Arnoldi length that is deVned by the user and
p is the number of restarted Arnoldi iterations. Just to give an idea about the
values, m is usually set to be several times larger than k. For more precise
information on how this complexity can be derived, we reference to [Song11].

The last step is running k-means on the eigenvector matrix. Within each
iteration, we have to calculate the distances between any point and all the
cluster centroids. This yields a time complexity of O(l ·nk2), where l is the
number of iterations for k-means.

Overall, we can see that constructing the similarity graph is the most expensive
step and considering that we usually want to work with large data sets, O(n2)

7 A max-heap is a tree-based data structure wherein the node with the greatest value is always
the root node. See [Atkin86] for further information.

8 See [Saad11].

39

3. Spectral Clustering

is a bottleneck. There exist several approaches to deal with this problem, for
example by using parallel computing methods (see [Song11]) or relying on
approximating algorithms (see [Yan09]).

In Figure 9 we show the results of some experiments we ran using our MAT-
LAB program. We created 50 data sets of three Gaussians, each consisting of
n = 100,1 ·200, . . . ,50 ·100 data points, and clustered them into three clusters
using a 50-nearest similarity graph. We did this both for two- and three-
dimensional sets and plotted the computing time against n. We also calculated
the average ratio when n is doubled and called this the Avg-value. If the
algorithm has a complexity of O(n2), we would expect Avg≈ 4 and indeed,
our results match this expectation.

3.4. Comments

Probably the most important comment to make on spectral clustering is to
warn about its quality. While the methods are relatively eXcient and seem to
lead to satisfying results, it can be proven that there is no guarantee on them
actually being accurate, i. e. the diUerence between RatioCut(A1, . . . ,Ak) for
the exact solution and RatioCut(B1, . . . ,Bk) for the solution given by unnor-
malized spectral clustering can be arbitrarily large. In fact, this behavior can
already be observed on relatively easy graphs9. The reason for the popularity
on spectral relaxation approaches is probably less the general quality of results,
but rather the fact that it leads to simple problems from linear algebra that
can be solved very easily.

The next thing to talk about is not only a problem in spectral clustering, but
also in many other clustering algorithms. In real-world data, we often do
not know how many clusters we are looking for, but the algorithms require
this number as an input. If we don’t have information about the data that
enable us to give a good guess of this number, we are usually forced to run
the algorithms with diUerent parameters and compare the quality10 of the
results. In spectral clustering, this is, in fact, not too bad of an approach
since the most expensive step is constructing the similarity graph, but we
don’t need the number of clusters for this step yet. Therefore, we can simply
use the same graph over and over again, thus reducing computing time a lot.

9 See [Luxburg07, Section 5.4] for an example.
10 A few ways to do this are covered in the appendix and will be used in Section 5.

40

3.4. Comments

0 5000 10000 15000
0

5

10

15

20

25

30

35

40
Time−Complexity of Spectral Clustering

Number of Data Points

T
im

e
 i
n
 s

e
c
o

n
d

s

Similarity Graph

Clustering Algorithm

Total

t(n) = cn²

(a) 2-Dimensional, Avg = 3.50

0 5000 10000 15000
0

5

10

15

20

25

30

35

40

45
Time−Complexity of Spectral Clustering

Number of Data Points

T
im

e
 i
n
 s

e
c
o
n

d
s

Similarity Graph

Clustering Algorithm

Total

t(n) = cn²

(b) 3-Dimensional, Avg = 3.60

Figure 9: Computing time for spectral clustering plotted against the number n
of data points.

41

3. Spectral Clustering

Another approach would be to compute eigenvalues until we Vnd the Vrst
k eigenvalues to be relatively small, while having a big eigengap |λk+1−λk|.
This can easily be justiVed or at least be made plausible by the theory about
graph Laplacians discussed above, especially using Proposition 2.

Constructing similarity graphs requires us to know other parameters such as a
good number of nearest neighbors or the ε-parameter and their choice might
be even more important than the number of clusters itself. There exist several
approaches, which should usually be considered a "rule of thumb". A simple
one of those is to choose the number k for the k-nearest similarity graph
in logarithmic dependency of the number n of data points. More complex
approaches use information that can be extracted from the data set very
quickly. An example can be found in [Sugar03].

3.5. Applications

Cluster analysis is used in a variety of situations, reaching into most sciences
like physics, biology and medicine, and it is almost impossible to give a full
list of applications. However, we want to take a brief look at some examples.

In image segmentation we usually try to divide an image into certain segments
or detect edges – a method useful, for example, both in image processing
and medicine. Each pixel of a n-by-n pixels image represents a data point.
DiUerent attributes could be considered, for example the RGB values or the
intensity. Therefore, we have n2 data points to work with, which would result
in dealing with n2-by-n2 matrices. Even for low-resolution images, this forces
us to deal with very big datasets. A common approach to solve this problem
is applying the clustering algorithms only to small blocks of the image and
then merge the resulting segments with methods like a stochastic ensemble
consensus. A detailed explanation can be found in [Tung10]. We will cover
some examples of image segmentation in Section 5.3.

Another possible application is in signal theory. Consider, for example, an
audio Vle containing the voices of two persons talking at the same time. Then,
we might want to separate this linear mixture of signals and Vlter out the
individual voices. This yields a very complex problem, involving many more
techniques besides cluster analysis. An in-depth discussion can be found in
[Bach09].

42

3.5. Applications

But the range of applications is even wider. We can use clustering results to
predict certain attributes. Possible uses of this is predicting the age of animals
based on physical attributes or detecting fake banknotes. Both examples will
be covered in Section 5.2.

43

4. Programming

4.1. MATLAB

In this section, we are going to show how to implement spectral clustering
algorithms. We will be using MathWorks’ MATLAB since it is a powerful tool
that allows us to manipulate and work with big matrices in an eXcient and
yet easy way. We will not go too deep into detail and discuss every possibility
but rather focus on the main algorithm. For further information we advise the
reader to look into the appended software that contains a lot of comments
and documentation. Obviously, at this point, we assume that the reader has
an understanding of how spectral clustering algorithms work. Before we start,
we want to note a few things:

• We assume to have a d-by-n matrix M containing m data points in d
dimensions. We set n = size (M, 2); to be the number of data points.

• Similarly to mathematical convention, but considering that i also stands
for the imaginary unit in MATLAB, we denote loop counters with ii .

• For a general improvement in computational eXciency, we will use
column rather than row operations on matrices whenever possible. This
increases speed due to the way MATLAB stores matrices in the memory.

• We will use a routine called distEuclidean (M, N), giving us the Euclidean
distances between the column-wise taken points of two d-by-n ma-
trices. Furthermore, we use a function called simGaussian(M, sigma)
that converts a distances matrix M into a similarity matrix by ap-
plying a Gaussian similarity function with parameter sigma, that is

s(xi,x j) = exp
(
− d(xi,x j)

2

2σ2

)
.

4.1.1. Constructing Similarity Graphs

The Vrst thing we need to do is to construct a similarity graphW for the given
set M of data points. We have discussed several ways on how to construct
such a graph that we will now look at.

45

4. Programming

Full Similarity Graph

The Vrst graph type is a full graph, which is the easiest one to construct. We
need to calculate all pairwise distances and then apply a Gaussian similarity
function with parameter σ , which can be done as shown in Listing 1.

Listing 1: Creating a full similarity graph

W = square form (p d i s t (M’)) ;
W = s imGauss ian (W, sigma) ;

k-Nearest Similarity Graphs

A little more work is required to construct a normal or mutual k-nearest
similarity graph. Since the point to constructing such graphs is the sparse
structure, we will use MATLAB’s sparse matrix routines. As recommended
in the documentation, instead of creating and constantly modifying such a
matrix, we rather store the indices and values of non-zero entries in vectors
and then create the sparse matrix from them. For this, we Vrst need to
preallocate memory for those vectors as shown in Listing 2.

Listing 2: Preallocating memory for sparse matrix vectors

i n d i = zeros (1 , k * n) ;
i n d j = zeros (1 , k * n) ;
i nd s = zeros (1 , k * n) ;

In order to Vnd the k nearest neighbors, we need to loop through all data
points, calculate the pairwise distances to all other data points and then sort
them by their distance. We can then simply take the Vrst k entries and create
the sparse matrix. This is shown in Listing 3.

Note that, in theory, we could get rid of this loop and since MATLAB is
relatively slow with loops, this would seem like a good way to go. However, it
would involve making MATLAB calculate a n-by-n matrix all at once, which
will quickly take up too much memory. This, in return, will also make it
slower because a standard computer would now use the hard-drive to store
data that would be stored in the memory otherwise. Tests when writing this
software have shown that even without reaching the memory limit, using a
loop is actually faster in this case.

46

4.1. MATLAB

Listing 3: Find k nearest neighbors

for i i = 1 : n
d i s t = d i s t E u c l i d e a n (repmat (M(: , i i) , 1 , n) , M) ;
[s , O] = sor t (d i s t , ’ a scend ’) ;

i n d i (1 , (i i −1)* k +1 : i i * k) = i i ;
i n d j (1 , (i i −1)* k +1 : i i * k) = O (1 : k) ;
i n d s (1 , (i i −1)* k +1 : i i * k) = s (1 : k) ;

end

W = sparse (i nd i , i nd j , inds , n , n) ;

However, the matrix W as constructed so far, will represent a directed graph.
We can easily construct an undirected graph by doing the following:

• For the normal k-nearest graph we execute W = max(W, W’);.

• For the mutual k-nearest graph we execute W =min(W, W’);.

The graph is currently only containing distances. We need to assign new val-
ues to the non-zero entries of W to convert it to a graph containing similarity
values. We could just make the graph unweighted by using W = (W ~= 0);, but
that is generally not a good idea because even few neighbors can be far away
if the corresponding data point does not lie within a dense area of points. We
rather call simGaussian(M, sigma), but have to be careful to only apply this to
non-zero entries of W . The way this is done is shown in Listing 4.

Listing 4: Applying Gaussian similarity function to non-zero entries of W

W = spfun (@(W) (s imGauss ian (W, sigma)) , W) ;

ε-Similarity Graph

In case of an ε-graph, we have no idea whatsoever about how many data
points will lie within each neighborhood. Therefore, preallocating memory is
not possible without relying on guesses.

Similar to the k-nearest graphs, we loop through all data points and calculate
the pairwise distances between the current datum and all other data points.
This gives us the ii -th column of the distance matrix. Epsilon graphs are
generally considered to be unweighted since all distances will be very small

47

4. Programming

anyway. We then store the indices with distances smaller than epsilon . The
corresponding MATLAB code can be seen in 5.

Listing 5: Constructing an ε-similarity graph

for i i = 1 : n
d i s t = d i s t E u c l i d e a n (repmat (M(: , i i) , 1 , n) , M) ;
d i s t = (d i s t < e p s i l o n) ;

l a s t i n d = s i z e (i nd i , 2) ;
count = nnz (d i s t) ;
[~ , c o l] = find (d i s t) ;

i n d i (1 , l a s t i n d +1 : l a s t i n d +count) = i i ;
i n d j (1 , l a s t i n d +1 : l a s t i n d +count) = c o l ;
i nd s (1 , l a s t i n d +1 : l a s t i n d +count) = 1 ;

end

W = sparse (i nd i , i nd j , inds , n , n) ;

4.1.2. Performing Spectral Clustering

After creating the similarity graph W as seen in the last section, we will now
look at how to perform spectral clustering on this graph in MATLAB. We will
focus on the normalized version following Shi and Malik.

First, we calculate the degree matrix, the unnormalized Laplacian and then
the normalized Laplacian as seen in Listing 6. Since we need to invert the
degrees, we get rid of possible zeros by setting them to eps11 Vrst. This will
have no mentionable eUect on the algorithm result.

In Listing 7 we compute the eigenvectors corresponding to the k smallest
eigenvalues by using MATLAB’s eigenproblem routine eigs (A, k, sigma) for
sparse matrices. We need to set sigma to a value close to zero rather than
exactly zero in order to Vnd multiple eigenvalues12, therefore we use eps.

Lastly, we perform a standard k-means algorithm on the rows of the matrix U
containing the eigenvectors as columns. We use MATLAB’s built-in routine

11 In MATLAB, eps represents the smallest positive number that can be stored using a double-
precision variable.

12 See MATLAB documentation.

48

4.2. Comments

Listing 6: Degree matrix and Laplacian

degs = sum (W, 2) ;
D = sparse (1 : s i z e (W, 1) , 1 : s i z e (W, 2) , degs) ;

L = D − W;

degs (degs == 0) = eps ;
D = spdiags (1 . / degs , 0 , s i z e (D , 1) , s i z e (D , 2)) ;

L = D * L ;

Listing 7: Computing eigenvectors

d i f f = eps ;
[U , ~] = e i g s (L , k , d i f f) ;

kmeans(X, k) in order to do so. MATLAB will return a n-by-1 matrix containing
the cluster number for each data point. Although we are done now, Listing 8
also shows how to convert this into a n-by-k matrix the k indicator vectors as
columns.

Listing 8: Performing k-means

C = kmeans (U , k , ’ s t a r t ’ , ’ c l u s t e r ’ , . . .
’ EmptyAction ’ , ’ s i n g l e t o n ’) ;

C = sparse (1 : s i z e (D , 1) , C , 1) ;

4.2. Comments

The obvious advantage of using MATLAB to implement spectral clustering
methods is that it’s fairly easy since we don’t need to worry about matrix
operations. Furthermore, MATLAB’s routines for working with matrices are
very eXcient, thus allowing the program to be very fast even for big data
sets. However, MATLAB’s speed advantage is lost within written scripts since
interpreting them is slower than compiled code. Therefore, speed eXciency
can probably be improved by using a language like C++.

49

4. Programming

But even within MATLAB, many improvements to the presented implementa-
tion could be done. Considering current literature like [RaVque12] and many
others, a big improvement could be seen when using parallel or distributed
computing. Allowing a change in the methods themselves, we could also
consider approximate spectral clustering methods as presented in [Yan09].

50

5. Tests and Results

In this section, we want to look at several toy examples to see how well
spectral clustering works on them. In the second part, we will take a look
at real-world problems, where judging the quality of the results is generally
much harder. In order to still be able to do this, we make use of silhouette
values13.

5.1. Toy Examples

Toy examples help us to have a good control over the data and allow us to
know exactly what behavior we would expect from the algorithms and their
results. In the vast variety of diUerent clustering algorithms we can see that
most algorithms have certain problems, for example with clusters of diUerent
density. We would like to test these situations in order to give an overview
over quality, advantages, abilities, but also disadvantages and problems of
spectral clustering.

Gaussians

The Vrst example is rather simple and could be viewed as the example that
every clustering algorithm should work on. We are talking about three
Gaussians, i. e. a data set containing three clusters generated by three diUerent
multivariate normal distributions.

First, we consider the variances – or, to be more precise, the covariance
matrices – to be identical and just vary the locations. Furthermore, we generate
1.000 data points for each Gaussian, thus giving all clusters the same density.
This example is shown in Figure 10 and as we can see, the spectral clustering
algorithm works absolutely well in this scenario.

The next step is to let each Gaussian have a diUerent number of data points,
in this case 100, 1.200 and 3.000, and diUerent covariance matrices. This is
shown in Figure 11 and again, by choosing the right parameters this is no
obstacle to spectral clustering. However, we did have to tweak the parameters
a bit to get a satisfying result, while we could almost use any settings for the
example in Figure 10.

13 See appendix.

51

5. Tests and Results

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Data

(a) Unclustered Data

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3
Clustered Data (clustered in 0.629776s)

(b) Clustered Data

Figure 10: In this Vrst toy example, all three Gaussians consist of 1.000 points
each and have the same covariance matrices.

52

5.1. Toy Examples

−4 −2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

6

7

Data

(a) Unclustered Data

−4 −2 0 2 4 6 8
−2

−1

0

1

2

3

4

5

6

7
Clustered Data (clustered in 0.228569s)

(b) Clustered Data

Figure 11: All three Gaussians have a diUerent density and are generated using
diUerent covariance matrices.

53

5. Tests and Results

This shows that spectral clustering works well with this standard toy example.
However, datasets distributed like this can, as stated above, be clustered
correctly by almost all common clustering algorithms. We therefore rather
proceed to go on and look at more interesting toy examples.

Half-Moons

The half-moons toy example consists of two to the human eye obvious clusters
which are in the shape of semi-circles. This is an useful example to test
clustering algorithms on, as it will test their ability to separate clusters with
geometrically non-trivial shapes that are not completely separated through a
higher dimension.

In our case, each half-moon consists of roughly 7.500 points. We can easily
verify the extremely accurate result by looking at the plot in Figure 12.

Chain Link

The chain link dataset14 contains data in the shape of two linked rings. It
can be used to verify how well algorithms cluster geometrically non-trivial
datasets. We can see the unclustered and clustered data in Figure 13, where a
7-nearest similarity graph has been used. The similarity graph is shown in
the left picture of Figure 14.

As we can see in the right picture of Figure 14, the silhouette is not always a
reliable tool for juding the accuracy. While the data has clearly been clustered
correctly, we still Vnd a lot of points with negative silhouette values, which
causes the average silhouette value to drop drastically.

Hepta

The Hepta dataset15 contains seven obvious clusters of which one is of higher
density and in the center, while the other clusters are positioned around the
center with equal distances. As we can see in Figure 15, the similarity graph
consists of seven connected components and each one represents one cluster.
This means that the eigenvectors of the second eigenvalue are, in fact, already
the indicator vectors of the clusters, which makes it a trivial task for k-means
to cluster them. Unlike the situation with the chain link dataset, the silhouette

14 See [Ultsch05].
15 See [Ultsch05].

54

5.1. Toy Examples

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Data

(a) Unclustered Data

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Clustered Data (clustered in 1.087722s)

(b) Clustered Data

Figure 12: Both clusters are in the shape of semi-circles and contain about the
same number of points.

55

5. Tests and Results

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Data

(a) Unclustered Data

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Clustered Data (clustered in 0.04s)

(b) Clustered Data

Figure 13: The clusters have geometrically non-trivial shapes since they are
linked rings. Spectral clustering is still able to separate the clusters
correctly.

56

5.1. Toy Examples

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Similarity Graph (created in 0.21s)

(a) Similarity Graph

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

Silhouette (Average: 0.146)

Silhouette Value

C
lu

s
te

r

(b) Silhouette

Figure 14: The similarity graph consists of two connected components, each
representing one of the two clusters. As explained in the text, the
geometric shape of the clusters causes the silhouette to indicate bad
clustering, although that is obviously not the case.

57

5. Tests and Results

value does indicate the high accuracy of the result because the clusters take
trivial geometric shapes instead of intersecting each other.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Data

(a) Unclustered Data

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Clustered Data (clustered in 0.03s)

(b) Clustered Data

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Similarity Graph (created in 0.02s)

(c) Similarity Graph

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

Silhouette (Average: 0.882)

Silhouette Value

C
lu

s
te

r

(d) Silhouette

Figure 15: The similarity graph consists of seven connected components, each
one of which is representing one cluster. The silhouette plot shows
the high quality of the result.

5.2. Real-World Datasets

After testing spectral clustering algorithms on toy examples, we also want to
give an impression of how they can be applied in real-world scenarios. We
usually face high-dimensional data sets whose clusters are not easy to spot

58

5.2. Real-World Datasets

and verify for the human eye. Judging the quality of results is, in fact, a major
issue in cluster analysis.

A general idea of machine learning is to have a data set containing observa-
tions of some kind and train the algorithms so that it can predict or assign
labels to new data points based on our knowledge. In the case of cluster
analysis, we would check and see which cluster the new observation would
most likely belong to and use that as a prediction.

At this point we want to mention that our implementation of the algorithms is
not scale invariant. Therefore, all non-Vctional datasets have been normalized
before clustering, i. e. all dimensions take values on the same range, for
example [−1,1] or [0,1].

Abalone

The Abalone dataset16 contains data from a certain type of sea snails. The
attributes in this dataset are sex, length, diameter, height, whole weight,
shucked weight, viscera weight, shell weight and Vnally the number of rings
in the shell.

These rings can be used to determine the age of a snail, but it is a complicated
and time-consuming task to count them. By running a cluster analysis on all
attributes except the number of rings, we can obtain a way to predict the age
of a snail by determining which of these clusters the other measurements of a
snail are the closest to. However, the Abalone dataset is usually considered to
be a classiVcation problem rather than a standard clustering example, therefore
cluster analysis might not give very accurate results.

In Figure 16, we can see the results of spectral clustering, using a 20-nearest
similarity graph and looking for 10 clusters. Since the dataset consists of
many dimensions, we plot the clusters using star coordinates17. We can see
that it’s virtually impossible to make a statement about the accuracy by just
looking at the plot. The silhouette values suggest that most data points have
been assigned well, while some seem to have been assigned to a completely
wrong cluster. Considering that cluster analysis is not exactly the best choice
for this problem, an average silhouette value of 0.468 seems fairly accurate.

16 See [Blake98].
17 See appendix for an explanation on how star coordinates work.

59

5. Tests and Results

Lastly, Figure 16 also shows the average silhouette value in dependency of
the number of clusters. We get the best result for three clusters, but this
contradicts our goal because only looking for that few clusters makes it
impossible to give a useful prediction for the number of rings. This means that
even though the natural number of clusters for the Abalone dataset seems to
be ten clusters or less, since the values drastically drop for more clusters, we
Vnd ourself in the need of looking for more clusters than that. Furthermore,
we have already seen that the silhouette value doesn’t neccessarily have to
be a reliable measurement for accuracy and we would have to consider other
measurements to make a better statement on the quality of the results of
spectral clustering on this dataset.

Swiss Banknotes

The Banknotes dataset18 contains measurements of two hundred Swiss ban-
knotes, one hundred of which being real while the other one hundred are fake
banknotes.

Running a cluster analysis on this dataset, we can obtain two clusters that
hopefully allow us to predict whether a banknote is real or fake based on its
measurements.

To cluster this dataset, we used a normal 10-nearest neighbors similarity
graph and the normalized clustering algorithm according to Shi and Malik.
As we can see in the plots in Figure 17, the clustering result on this dataset is
extremely accurate. Moreover, since we know which of the samples were fake
banknotes, we can check that only two banknotes have been assigned to the
wrong cluster.

This shows that even a low amount of eUort can already result in accurate
clusterings which could easily be used for a quick determination, although,
of course, banknotes that are predicted to be fake would have to be checked
again by more accurate methods.

Parkinson’s Disease

Lastly, we want to take a look on a more high-dimensional dataset and see
how much of an eUect the curse of dimensionality19 takes. For that, we look at

18 See [Flury83].
19 The curse of dimensionality, in machine learning also called Hughes eUect, states that increasing

the number of dimensions requires exponentially more data to keep the result accurate. This

60

5.2. Real-World Datasets

−1 −0.5 0 0.5 1 1.5
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Clustered Data (clustered in 0.56s) − Star Coordinates

(a) Clustered Data

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3
4

5

6

7

8

9

10

Silhouette (Average: 0.468)

Silhouette Value

C
lu

s
te

r

(b) Silhouette

0 5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of clusters

S
il
h
o
u
e
tt
e
 v

a
lu

e

(c) Number of Clusters vs. Silhouette value

Figure 16: Abalone Dataset – The clustered data plot utilizes the star coordi-
nates. The silhouette plot shows that most points have good values,
but some seem to have been assigned to a completely wrong cluster.

61

5. Tests and Results

Clustered Data (clustered in 0.58s)

0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1
0

0.5

10

0.5

10

0.5

10

0.5

10

0.5

10

0.5

1

(a) Clustered Data

0 0.2 0.4 0.6 0.8 1

1

2

Silhouette (Average: 0.645)

Silhouette Value

C
lu

s
te

r

(b) Silhouette

Figure 17: Swiss Banknotes Dataset – The Vrst picture shows the plot of all
combinations of dimensions, while the second picture tells us that
all banknotes have a positive silhouette value.

62

5.2. Real-World Datasets

a dataset20 containing measurements of 195 voice recordings of 31 diUerent
people, 23 of which with Parkinson’s disease and with 23 attributes per datum.

For this dataset, we used a 12-nearest neighbors graph and naturally looked
for two clusters: people with and without Parkinsons’s disease. Of course we
didn’t take the attribute into account that tells us whether the sample is from
a person with Parkinson’s or not, but we used that attribute to verify how
well our predictions given by the cluster assignment match the actual status
of that person. A histogram plot can be seen in Figure 18.

Out of 195 samples, a total of 55 were matched wrong, which is about a little
less than a third of the samples (28.2% to be exact). Most of these wrong
predictions were false negatives, i. e. we would have predicted that the person
is healthy, although they have Parkinson’s disease. The rate for false positives,
on the other hand, is satisfactorily low and from probability theory we know
that false positive and false negative rates are correlated and can, in general,
not be minimized at the same time.

Due to the higher false negative rate, our clustering result would most likely
server better as a Vrst, quick test. If the test is positive, there is a high chance
of the patient actually having Parkinson’s disease. However, if the test is
negative, we shouldn’t conclude that the patient probably is healthy, but
rather go on with a maybe more complicated test. The easier it is to obtain the
measurements needed for a prediction, the more sense this procedure would
make. Since it is a prediction based on a voice recording, it is likely that the
needed information can be extracted automatically, which could make this an
useful test, although in-depth studies would certainly be needed to verify this
conjecture and to obtain better clustering results.

becomes a problem especially for creating k-nearest neighbor graphs. However, the eUects of
this problem are not fully understood yet.

20 See [Little07].

63

5. Tests and Results

False Negative Correct False Positive
0

10

20

30

40

50

60

70

Parkinson’s Disease
Histogram

N
u
m

b
e
r

o
f

S
a
m

p
le

s
 i
n
 %

Figure 18: Parkinson’s Disease Dataset – The histogram shows the percentage
of correct, false positive and false negative predictions.

64

5.3. Image Segmentation

5.3. Image Segmentation

After having tested spectral clustering methods both on toy examples and
real-world datasets we now want to test another typical application of cluster
analysis, which is image segmentation. In Section 3.5, we already explained
the basics of image segmentation.

As discussed in Section 3.5, we represent each pixel as a datum and use the RGB
channels as attributes. After clustering this dataset, the cluster membership of
each pixel is represented by coloring that pixel correspondingly, which makes
it comfortable to view the result in a visual way.

In Section 3.5 we already mentioned that even small pictures result in very
large datasets, i. e. a n-by-n pixels picture will result in n2 data points. Fur-
thermore, it quickly becomes apparent that a k-nearest neighbors approach
might not be a good choice: Having represented every pixel as a point in three
dimensions, there will be many duplicates of this point since color values are
usually far from being unique in a picture. Using the k-nearest neighbors
graph will therefore cause the similarity graph to consist of a large number
of connected components. This can be prevented by choosing k to be close
to the number of data points, but the idea of wanting sparse adjacency ma-
trices renders this method useless. Another way to deal with this is using
an ε-neighborhood graph instead. This will bycome the problem of having
countless connected components, but it would still leave us with relatively
full matrices and therefore drastically restrict the size of pictures we can use.

For those reasons, we chose a slightly more advanced way. Before constructing
the similarity graph, we remove all duplicate data points, while still memoriz-
ing how many duplicates were removed and their positions. This both reduces
the dataset size, allowing us to use bigger pictures, and bycomes the problem
of countless connected components. After running the clustering algorithm,
we simply copy the cluster membership of each pixel according to our record
of removed duplicates.

This method works fairly well, especially on pictures with a limited range
of colors. However, in arbitrary pictures, the colors might just vary slightly,
making them not completely unique. Therefore, we considered points with
approximately the same color as duplicates. In order to do so, we normalized
the RGB values to range from 0 to 1, rounded them to two digits and then
looked for duplicates. This decreases both computational time and the size of

65

5. Tests and Results

the duplicate-free dataset. In fact, one can easily check that the size n̂ of the
dataset with removed duplicates is bounded by n̂≤ 1013 < 1.1 ·106.

For all pictures, we used black and white if it was only two clusters, otherwise
we picked one pixel per cluster and used its original color. We chose to use
pictures from the TV show My Little Pony: Friendship is Magic produced by
Hasbro Inc.

Figure 19a shows a picture of a herd of ponies. Using a 10-nearest neigh-
bors graph, we Vrst cluster for two segments, giving us the black-and-white
segmentation we can see in Figure 19b. The raw structure of the picture is
visible, but most details are lost and there is no separation between ponies
and background. In Figure 19c we clustered for 35 segments and need to take
a closer look to spot diUerences from the original picture.

(a) Original

(b) Segmented (2 Clusters) (c) Segmented (35 Clusters)

Figure 19: All Ponies – This picture has been segmented with a 10-nearest
neighbors graph.

In Figure 20a, we see a picture of the pony called Pinkie Pie. Note that the
background consists of several colors, which, however, are all darker than the

66

5.3. Image Segmentation

pony itself. In Figure 20b, we can see a clear separation from the background.
As we increase the number of clusters in Figure 20c and Figure 20d, details
become more and more clear.

(a) Original (b) Segmented (2 Clusters)

(c) Segmented (5 Clusters) (d) Segmented (25 Clusters)

Figure 20: Pinkie Pie – Picture of a pony smiling and carrying a tuba. Here,
too, we used a 10-nearest neighbors graph.

67

6. Conclusion

After having seen how spectral clustering methods work, perform and how
accurate they are, let us take a moment to recap those results.

Section 5.1 showed that spectral methods can accurately separate clusters that
are not linearly separable, which many algorithms like k-means would have
problems with. Spectral clustering is able to cluster geometrically non-trivial
shapes very accurately, which gives it an advantage useful in many of the
applications.

In Section 5.2, we took a vague look on such applications and saw that even
without too much eUort, the results can be fairly satisfying. Despite these
qualities, spectral methods convince with their simplicity and with how easy
they are to understand and implement, using only basic mathematical concepts.
In a way, we could look at the spectral methods as an improvement of the
k-means algorithm because the basic idea was to transform the data in a way
such that k-means can easily separate the clusters. However, this wouldn’t
quite do spectral clustering justice since it involves a whole theory on its own.

Another advantage to spectral clustering is its ability to try looking for diUer-
ent numbers of clusters without having to restart the whole algorithm because
we can use the same similarity graph over and over again. Only in case we
want to use a diUerent similarity graph, we are forced to start the algorithm
over.

In fact, as we have seen in Section 3.3, the computational complexity for
creating similarity graphs and therefore for the whole algorithm is a bottle-
neck, especially if we compare it to extremely fast algorithms like k-means.
Other popular algorithms like DBSCAN or its derivative OPTICS show similar
advantages, while also having a better complexity.

Furthermore, spectral methods require us to work with even more parameters
than just the number of clusters and eXcient ways to estimate those param-
eters are yet to be found. However, we should note that many clustering
algorithms have to deal with this problem.

Summarizing these thoughts, we come to conclude that spectral clustering
is one of several good methods, having not entirely unique advantages, but
a useful combination of such nevertheless and depending on the situation,
choosing spectral clustering can be a good way to go. However, it is probably

69

6. Conclusion

a good idea to combine spectral clustering methods with other methods to
Vnd estimates for the parameters or to improve the overall eXciency.

70

A. Appendix

A.1. Silhouette

Judging the quality of a clustering objectively is a non-trivial task, especially
in higher dimensions when we’re not able to look at a simple plot anymore.
An easy and yet useful way to do this is utilizing the so-called silhouette value
of the data. This quantity describes how well the datum Vts into the assigned
cluster.

Let A1, . . . ,Ak be a partition of V = {x1, . . . ,xn} into k clusters and, without
loss of generality, let xi ∈ A1 be a datum for some i∈ {1, . . . ,n}. Then, λ1(x) =

1
|A1|−1 ∑

n
j=1

∥∥xi− x j
∥∥1A1(x j) describes the average dissimilarity of xi with all

other points of the same cluster. Similarly, let λ j(x) denote the average
dissimilarity of xi with all points in A j and choose λ ∗(x) = min j 6=1 λ j(x) to be
the smallest average dissimilarity to another cluster. Then, we deVne

s(i) =
λ ∗(x)−λ1(x)

max{λ1(x),λ ∗(x)}
=


1− λ1(x)

λ ∗(x) if λ1(x)< λ ∗(x)

0 if λ1(x) = λ ∗(x)
λ ∗(x)
λ1(x)
−1 otherwise

.

Obviously, we have s(i) ∈ [−1,1] and we can easily see that s(i) ≈ 1 if xi is
well matched and s(i) ≈ −1 if it is badly matched. We can now calculate
this value for all data and plot them to have a visual – but also numerical –
method to judge the clustering quality. For further explanations we reference
to [Rouss87].

A.2. Star Coordinates

In this section we want to give a brief explanation on how star coordinates21

work. With d being the number of dimensions, the idea of star coordinates
is to divide the Euclidean plane into d sectors representing axes, each one
starting in the origin. Next, we deVne z0 = e

2πi
d and look at the Vnite series

z0,z2
0, . . . ,z

d
0 . It is a well-known fact that zd

0 = 1. After normalizing the data

21 See [Kandogan01].

71

A. Appendix

such that the range of the values in each dimension is [0,1], we calculate the
position pk of the k-th datum (x1, . . . ,xd) by

pk =
d

∑
i=1

xizi
0.

Note that pk is a complex number, which therefore can be represented as a
point in R2. Doing this for all data points, we obtain the star coordinates visu-
alization of the data. This is a very simple way to represent high-dimensional
data in the Euclidean plane, but, of course, there are disadvantages. For exam-
ple, points with completely diUerent values could happen to be represented as
approximately the same point in the star coordinates visualization.

A.3. German Summary

In der Clusteranalyse versucht man, die Punkte eines vorgegebenen Daten-
satzes in Teilmengen aufzuteilen, so dass die Punkte innerhalb der selben
Gruppe in einem geeigneten Sinn ähnlich und Punkte verschiedener Grup-
pen weniger ähnlich zueinander sind. Man kennt für diese Problematik viele
Algorithmen unterschiedlicher Komplexität und es stellt sich heraus, dass
das Spektralclustering, mit dem wir uns in dieser Arbeit beschäftigen, häuVg
eXzient zufriedenstellende Ergebnisse liefert.

Wir stellen zunächst einige grundlegende DeVnitionen und Eigenschaften
der Graph-Theorie vor, führen den BegriU des Ähnlichkeitsgraphen ein und
diskutieren verschiedene Möglichkeiten, solche Graphen trotz ihrer Größe
auch auf Computern handzuhaben. Danach studieren wir Eigenschaften
gewisser Matrizen, die solche Graphen beschreiben und werden dabei sehen,
dass insbesondere die Eigenwerte und -vektoren dieser Matrizen wertvolle
Informationen über die Graphen bereitstellen, die sie beschreiben. Außerdem
stellen wir eine äquivalente Formulierung des Clusteringproblems vor, indem
wir es auf Graphen übertragen.

Der nächste Schritt besteht darin, diese Optimierungsprobleme zu lösen. Da
dies im Allgemeinen nicht exakt möglich ist, approximieren wir die Lösungen,
indem wir von einem diskreten in ein stetiges Problem übergehen und die
Ergebnisse mittels des besonders einfachen k-means-Verfahrens in diskrete
Lösungen zurücktransformieren. Dabei sehen wir, dass k-means ein nahezu
triviales Problem lösen muss, wodurch die Schwächen dieses Verfahrens

72

A.3. German Summary

nicht zu tragen kommen. Im Anschluss studieren wir die Rechenkomplexität
der spektralen Clusteringverfahren und stellen einige Anwendungen dieser
Methoden skizzenhaft vor.

Der nächste Teil beschäftigt sich mit der Implementierung der Spektralcluster-
ingverfahren am Computer. Wir erklären, wie man zu einem vorgegebenen
Datensatz einen Ähnlichkeitsgraphen erstellt und dann schließlich auch die
vorgestellten Algorithmen durchführt.

Im letzten Teil führen wir intensive Tests der entwickelten Software auf ver-
schiedenen Datensätzen durch, testen Qualität und Grenzen der vorgestellten
Verfahren und gehen auf Stärken und Schwächen der Algorithmen ein.

73

References

[Atkin86] M. D. Atkinson, J.-R. Sack, N. Santoro and T. Strothotte, Min-
max heaps and generalized priority queues, Communications
of the ACM Volume 29 Issue 10, pp. 996–1000, October 1986

[Bach09] F. R. Bach and M. I. Jordan, Spectral clustering for speech sep-
aration, in Automatic Speech and Speaker Recognition: Large
Margin and Kernel Methods, John Wiley & Sons, Chichester,
2009

[Blake98] C. Blake, E. Keogh and C. J. Merz, UCI repository of machine
learning databases, University of California, Department of
Information and Computer Science, Irvine, CA, 1998

[Flury83] B. Flury and H. Riedwyl, Angewandte multivariate Statistik,
Stuttgart, Fischer, 1983

[Golub96] G. H. Golub, C. F. Van Loan, Matrix computations, JHU Press,
1996

[Horn85] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, 1985

[Kandogan01] E. Kandogan, Visualizing multi-dimensional clusters, trends,
and outliers using star coordinates, In the proceedings of ACM
SIGKDD’2001, 107-116, 2001

[Little07] M. A. Little, P. E. McSharry, S. J. Roberts, D. Costello and I.
M. Moroz, Exploiting Nonlinear Recurrence and Fractal Scaling
Properties for Voice Disorder Detection, BioMedical Engineer-
ing OnLine, 2007

[Luxburg07] Ulrike von Luxburg, A Tutorial on Spectral Clustering, Statis-
tics and Computing 17 (4), 2007

[MacKay03] D. MacKay, Information Theory, Inference and Learning Algo-
rithms, Cambridge University Press, 2003

[Mahajan09] M. Mahajan, P. Nimbhorkar and K. R. Varadarajan, The Planar
k-Means Problem is NP-Hard, WALCOM, 2009

[RaVque12] A. RaVque, N. Kapre, G. A. Constantinides, A High Through-
put FPGA-Based Implementation of the Lanczos Method for

75

References

the Symmetric Extremal Eigenvalue Problem, ARC 2012, LNCS
7199, pp. 239–250, 2012

[Rouss87] P. J. Rousseeuw, Silhouettes: a Graphical Aid to the Interpre-
tation and Validation of Cluster Analysis, Computational and
Applied Mathematics 20, pp. 53–65, 1987

[Saad11] Y. Saad, Numerical Methods for Large Eigenvalue Problems,
Manchester University Press, No. Second Edition, 2011

[ShiMalik00] J. Shi and J. Malik, Normalized Cuts and Image Segmentation,
IEEE Transaction on Pattern Analysis and Machine Intelli-
gence Vol. 22 No. 8, 2000

[Song11] Y. Song, W.-Y. Chen, H. Bai, C.-J. Lin and E. Y. Chang, Parallel
Spectral Clustering, IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 568–586, Vol. 33, No. 3, March
2011

[Sugar03] C. A. Sugar and G. M. James, Finding the number of clusters in
a data set: An information theoretic approach, Journal of the
American Statistical Association 98 (January), pp. 750–763,
2003

[Tung10] F. Tung, A. Wong and D. A. Clausi, Enabling scalable spectral
clustering for image segmentation, Pattern Recognition 43,
Elsevier Ltd., 2010

[Ultsch05] Ultsch A., Clustering with SOM: U*C, In Proc. Workshop on
Self-Organizing Maps, pp. 75–82, Paris, France, 2005

[Wagner93] D. Wagner and F. Wagner, Between mincut and graph bisec-
tion, Proceedings of the 18th International Symposium on
Mathematical Foundations of Computer Science (MFCS), pp.
744–750, Springer, 1993

[Yan09] D. Yan, L. Huang and M. I. Jordan, Fast Approximate Spectral
Clustering, 15th ACM Conference on Knowledge Discovery
and Data Mining (SIGKDD), 2009

76

	List of Figures
	1 Introduction
	1.1 Preface
	1.2 Honesty Declaration

	2 Preparation and Terminology
	2.1 Eigenvalues and Eigenvectors
	2.2 Basic Clustering Algorithms
	2.2.1 k-Means Algorithm

	2.3 Graphs
	2.3.1 Notation
	2.3.2 Similarity Graphs
	2.3.3 Graph Laplacians
	2.3.4 Graph Cuts

	3 Spectral Clustering
	3.1 Unnormalized Algorithm
	3.1.1 Derivation for Two Clusters
	3.1.2 Derivation for Arbitrary Number of Clusters
	3.1.3 The Algorithm

	3.2 Normalized Algorithms
	3.2.1 Derivation for Two Clusters
	3.2.2 Derivation for Arbitrary Number of Clusters
	3.2.3 The Algorithms

	3.3 Complexity
	3.4 Comments
	3.5 Applications

	4 Programming
	4.1 MATLAB
	4.1.1 Constructing Similarity Graphs
	4.1.2 Performing Spectral Clustering

	4.2 Comments

	5 Tests and Results
	5.1 Toy Examples
	5.2 Real-World Datasets
	5.3 Image Segmentation

	6 Conclusion
	A Appendix
	A.1 Silhouette
	A.2 Star Coordinates
	A.3 German Summary

	References

