
1

Algorithmic Manipulation of
Fibonacci Identities

Stanley Rabinowitz
12 Vine Brook Road

Westford, MA 01886 USA

1. Introduction.
Methods for manipulating trigonometric expressions, such as changing sums to prod-

ucts, changing products to sums, expanding functions of multiple angles, etc., are well-
known [1]. In fact, the process of verifying trigonometric identities is algorithmic (see [2] or
[5]). Roughly speaking, all trigonometric identities can be derived from the basic identity
sin2 x + cos2 x = 1.

Methods for manipulating expressions involving Fibonacci and Lucas numbers are also
known; however, they do not seem to be systematically collected in one place. The fact
that verifying Fibonacci identities is algorithmic seems to be less well-known, especially
considering the strong relationship there is between Fibonacci numbers and trigonometric
functions (see equation (7) below).

For example, the problem of establishing the identity

F14r(F 7
n+4r + F 7

n) − 7F10r(F 6
n+4rFn + Fn+4rF

6
n) + 21F6r(F 5

n+4rF
2
n + F 2

n+4rF
5
n)

− 35F2r(F 4
n+4rF

3
n + F 3

n+4rF
4
n) = F 7

4rF7n+14

(1)

is still considered “hard” as witnessed by the fact that this problem appeared in the
advanced problem section of The Fibonacci Quarterly [10]. Yet this identity (and all
such identities) can be proven using a straighforward algorithm that we shall describe
below. Roughly speaking, all Fibonacci identities can be derived from the basic identity
L2

n − 5F 2
n = 4(−1)n.

2. The Basic Algorithms.
The key idea to algorithmically proving identities involving polynomials in Fan+b and

Lan+b is to first reduce them to polynomials in Fn and Ln. To do that, we need reduction
formulas for Fm+n and Lm+n. These are well-known. In fact, all the formulas presented
in this paper can be found in the literature (see, for example, [9]). Most of these formulas
were known to Lucas in the 19th century [6].

ALGORITHM “FibEvaluate” TO NUMERICALLY EVALUATE Fk AND Lk:
Given an integer constant k, to evaluate Fk or Lk numerically, apply the following algo-
rithm:
STEP 1: [Make subscript positive]. If k < 0, apply algorithm “FibNegate” (given below).
STEP 2: [Recurse]. If k > 1, apply the recursion:

Fn = Fn−1 + Fn−2

Ln = Ln−1 + Ln−2.
(2)

Reprinted from Applications of Fibonacci Numbers, volume 6 (edited by G. E. Bergum, et al.),

Kluwer Academic Publishers, Dordrecht, The Netherlands: 1996, pp. 389–408



2

Repeat step 2 until k < 2. Step 2 reduces the subscript by 1, so the recursion must
eventually terminate.
STEP 3: [Initial values]. If k is 0 or 1, then use the following initial values:

F0 = 0, F1 = 1; L0 = 2, L1 = 1. (3)

Reprinted from “Applications of Fibonacci Numbers, volume 6, (edited by G. E. Bergum,
et al.), pp. 389–408
Corrected 6/98
NOTE: While this may not be the fastest way to evaluate Fk and Lk, it is nevertheless
an effective algorithm. It is our purpose here to present effective methods to show that
the manipulations described are all algorithmic and it is not our purpose to find the
most efficient algorithms possible. Faster algorithms can be obtained by using the double
argument formulas given below in display (12). For a description and analysis of fast
methods of numerically evaluating Fk and Lk, see chapter 7 of [7].

ALGORITHM “FibNegate” TO REMOVE NEGATIVE SUBSCRIPTS:
Use the identities:

F−n = (−1)n+1Fn

L−n = (−1)nLn.
(4)

ALGORITHM “FibReduce” TO REMOVE SUMS IN SUBSCRIPTS:
Use the identities:

Fm+n =
FmLn + LmFn

2

Lm+n =
5FmFn + LmLn

2
.

(5)

These are also called the “addition formulas”.
3. The Fundamental Identity Connecting F and L.

The Fibonacci and Lucas numbers are connected by the well-known identity:

L2
n − 5F 2

n = 4(−1)n. (6)

In the same way that all trigonometric identities are consequences of the fundamental
identity sin2 x + cos2 x = 1, all Fibonacci/Lucas identities are consequences of the fun-
damental identity (6). That is, equation (6) is the unique identity connecting Fn and
Ln.

The proof is a consequence of the fact that

Fn =
2√
5
in+1 sin(− in

2
ln

1 +
√

5
1 −

√
5
)

Ln = 2in cos(− in

2
ln

1 +
√

5
1 −

√
5
).

or
Fn =

2√
5
in sinh

(n

2
ln

1 +
√

5
1 −

√
5

)

Ln = 2in cosh
(n

2
ln

1 +
√

5
1 −

√
5

) (7)



3

so that the result is equivalent to the result for trigonometric polynomials, whose proof
can be found in [2].

The fundamental identity allows us to take any polynomial in Fn and Ln and remove
all powers of Ln (of degree 2 or higher) by using the following algorithm.

ALGORITHM “RemovePowersOfL”:

Use the identity:
L2

n = 5F 2
n + 4(−1)n. (8)

Continue applying this substitution until no Ln term has an exponent larger than 1.

Similarly, we could remove powers of Fn instead.

ALGORITHM “RemovePowersOfF”:

Use the identity:

F 2
n =

L2
n − 4(−1)n

5
. (9)

Continue applying this substitution until no Fn term has an exponent larger than 1.
4. The Simplification Algorithm.
Let us be given a polynomial function of elements of the form Fx and Lx, where the
subscripts of F and L are of the form a1n1 + a2n2 + · · ·+ aknk + b where b and the ai are
integer constants and the ni are variables. To put this expression in “canonical form”, we
apply the following algorithm:
ALGORITHM “FibSimplify” TO TRANSFORM AN EXPRESSION TO CANON-
ICAL FORM.
STEP 1: [Remove sums in subscripts]. Apply algorithm “FibReduce” to remove any sums
(or differences) in subscripts.
STEP 2: [Make multipliers positive]. All subscripts are now of the form cx where c is an
integer. For any term in which the multiplier c is negative, apply algorithm “FibNegate”.
After performing this step, you must take care to replace any expressions of the form
(−1)an+b where a and b are constants by a properly evaluated [(−1)a]n(−1)b, to avoid
winding up with expressions like (−1)2n in your final canonical form.
STEP 3: [Remove multipliers]. All subscripts are now of the form cx where c is a positive
integer. For any term in which the multiplier c is not 1, apply algorithm “FibReduce”
successively until all subscripts are variables.
STEP 4: [Evaluate constants]. If any term involves an expression of the form F k

c or Lk
c

where c is an integer constant, use algorithm “FibEvaluate” to replace Fc and Lc by their
numerical equivalents.
STEP 5: [Remove Fibonacci Powers]. If any term involves an expression of the form F k

n

where k > 1 and n is a variable, apply algorithm “RemovePowersOfF” to leave only linear
terms in Fn.
PROVING IDENTITIES.

To prove that an expression is identically 0, apply algorithm “FibSimplify”. The
expression is identically 0 if and only if algorithm “FibSimplify” transforms it to 0.



4

This is because algorithm “FibSimplify” leaves us with a polynomial in variables of
the form Fn and Ln with the degree of Fn being 0 or 1. Converting to trigonometric
form using formula (7), we get a polynomial in variables of the form sin cx and cos cx
with the sine terms having degree 0 or 1. Such polynomials cannot be identically 0 since
it is known that all trigonometric identities are consequences of the fundamental identity
sin2 θ+cos2 θ = 1 (see, for example, [5]) and so some sine term would have to have degree 2
or more.
Example. Let us see how to prove

Fn+2wFn+w − 2LwFn+wFn−w − Fn−wFn−2w = (L3w − 2Lw)F 2
n

with w odd, an identity that comes from [11].
Algorithmic proof.

Since we are given that w is odd, we make the substitution w = 2m+1 before we be-
gin. We must show that Fn+4m+2Fn+2m+1−2L2m+1Fn+2m+1Fn−2m−1−Fn−2m−1Fn−4m−2−
F 2

n(L6m+3 − 2L2m+1) is identically 0.
First we apply algorithm “FibReduce” (step 1) to get: (F 2

n(80F2m+16L2m−80F6m−
32L6m)−((Fn(−5F−4m +3L−4m)+(3F−4m−L−4m)Ln)(5F−2mFn−FnL−2m−F−2mLn +
L−2mLn)− (5F2m +L2m)(5F−2mFn −FnL−2m −F−2mLn +L−2mLn)(5F2mFn +FnL2m +
F2mLn + L2mLn) + (5F2mFn + FnL2m + F2mLn + L2mLn)(Fn(5F4m + 3L4m) + (3F4m +
L4m)Ln))/16.

Then we apply algorithm “FibNegate” (step 2) to get: (80F2mF 2
n + 125F 3

2mF 2
n +

50F2mF4mF 2
n − 80F6mF 2

n + 16F 2
nL2m + 75F 2

2mF 2
nL2m + 10F4mF 2

nL2m + 15F2mF 2
nL2

2m +
F 2

nL3
2m+30F2mF 2

nL4m+6F 2
nL2mL4m−32F 2

nL6m−5F 3
2mL2

n+6F2mF4mL2
n−11F 2

2mL2mL2
n+

6F4mL2mL2
n − 7F2mL2

2mL2
n − L3

2mL2
n + 2F2mL4mL2

n + 2L2mL4mL2
n)/16.

Applying algorithm “FibReduce” again (step 3) to get rid of scalar multiples in
subscripts yields: (80F 2

mF 2
n − 125F 6

mF 2
n + 160FmF 2

nLm − 250F 5
mF 2

nLm + 16F 2
nL2

m +
25F 4

mF 2
nL2

m + 100F 3
mF 2

nL3
m + 5F 2

mF 2
nL4

m − 10FmF 2
nL5

m − F 2
nL6

m)/32.
Having evaluated constants like F1 all along, we proceed to step 5 and apply algorithm

“RemovePowersOfF”. Upon expanding and gathering like terms together, we find that the
result is 0. Thus our example is in fact an identity.
5. Other Algorithms.

Sometimes we want to transform an expression from one form to another, rather than
put it in canonical form. The following algorithms can be used for such purposes.

ALGORITHM “ConvertToF” TO REMOVE LUCAS NUMBERS:
Use the identity:

Ln = Fn−1 + Fn+1. (10)

ALGORITHM “ConvertToL” TO REMOVE FIBONACCI NUMBERS:
Use the identity:

Fn =
Ln−1 + Ln+1

5
. (11)



5

THE DOUBLE ARGUMENT FORMULAS.
Letting m = n in formula (5) gives us the following formulas.

F2n = FnLn

L2n =
5F 2

n + L2
n

2
.

(12)

These correspond to the “double angle” formulas in trigonometry.

TO REMOVE SCALAR MULTIPLES OF ARGUMENTS IN SUBSCRIPTS:
Repeatedly apply the reduction formulas successively. In this manner, we obtain the
identities:

F3n =
3FnL2

n + 5F 3
n

4

L3n =
L3

n + 15F 2
nLn

4

F4n =
FnLn(5F 2

n + L2
n)

2

L4n =
25F 4

n + 30F 2
nL2

n + L4
n

8

F5n =
5Fn(5F 4

n + 10F 2
nL2

n + L4
n)

16

L5n =
125F 4

nLn + 50F 2
nL3

n + L5
n

16
.

(13)

SHORTCUT:
Apply the following recurrences:

Fkn =
F(k−1)nLn + L(k−1)nFn

2

Lkn =
5F(k−1)nLn + L(k−1)nFn

2
.

(14)

Even more straightforward is to use a direct formula:

Fkn =
1

2k−1

� k−1
2 �∑

i=0

(
k

2i + 1

)
5iF 2i+1

n Lk−1−2i
n

Lkn =
1

2k−1

�k/2�∑
i=0

(
k

2i

)
5iF 2i

n Lk−2i
n .

(15)

Example:

256F9n = 625F 9
n + 4500F 7

nL2
n + 3150F 5

nL4
n + 420F 3

nL6
n + 9FnL8

n

256L9n = 5625F 8
nLn + 10500F 6

nL3
n + 3150F 4

nL5
n + 180F 2

nL7
n + L9

n.



6

Because of the fundamental identity, these can also be put in other forms, such as the
following, which converts directly to our canonical form.

Fkn = Fn

� k−1
2 �∑

i=0

(
k − 1 − i

i

)
(−1)i(n+1)Lk−1−2i

n

Lkn =
�k/2�∑
i=0

k

k − i

(
k − i

i

)
(−1)i(n+1)Lk−2i

n .

(16)

In general, Fkn cannot be replaced by sums of powers of Fn alone, so no formula of
this type is given.

Also of interest are the following compact formulas.

Fkn =
k∑

i=0

(
k

i

)
F i

nF k−i
n−1Fi

Lkn =
k∑

i=0

(
k

i

)
F i

nF k−i
n−1Li.

(17)

ALGORITHM “FibExpand” TO TURN PRODUCTS INTO SUMS:

Use the identities:

FmFn =
Lm+n − (−1)nLm−n

5
LmLn = Lm+n + (−1)nLm−n

FmLn = Fm+n + (−1)nFm−n.

(18)

To remove products of more than two terms, the above expansion formulas can be
used repeatedly, expanding out the results after each step.

Removing powers is the same as removing products. For example,

L2
n = Ln · Ln = L2n + (−1)nL0.

Similarly for F 2
n . So we have

F 2
n =

L2n − 2(−1)n

5
L2

n = L2n + 2(−1)n.

(19)



7

Continuing in this way, we find:

F 3
n =

F3n − 3(−1)nFn

5
L3

n = L3n + 3(−1)nLn

F 4
n =

L4n − 4(−1)nL2n + 6
25

L4
n = L4n + 4(−1)nL2n + 6

F 5
n =

F5n − 5(−1)nF3n + 10Fn

25
L5

n = L5n + 5(−1)nL3n + 10Ln

F 6
n =

L6n − 6(−1)nL4n + 15L2n − 20(−1)n

125
L6

n = L6n + 6(−1)nL4n + 15L2n + 20(−1)n

(20)

To remove higher powers, the expansion formulas (18) can be used repeatedly, ex-
panding out the results after each step.

CHANGE OF BASIS (Shift Formulas)

ALGORITHM “FibShift” TO TRANSFORM AN EXPRESSION INVOLV-
ING Fn, Ln INTO ONE INVOLVING Fn+a, Ln+b:
Use the identities:

(
Fn

Ln

)
=

2
LaLb − 5FaFb

(
Lb −Fa

−5Fb La

) (
Fn+a

Ln+b

)
. (21)

Proof. Solve the linear equations

Fn+a =
1
2
(FaLn + LaFn)

Ln+b =
1
2
(5FbFn + LbLn)

for Fn and Ln.
In a similar manner, we find

(
Fn

Ln

)
=

2
FaLb − LaFb

(
−Fb Fa

Lb −La

) (
Fn+a

Fn+b

)
(22)

(
Fn

Ln

)
=

2
5(LaFb − FaLb)

(
−Lb La

5Fb −5Fa

) (
Ln+a

Ln+b

)
. (23)

To change from an arbitrary basis to another, apply algorithm “FibReduce” to trans-
form the given expression to the basis (Fn, Ln). Then use one of the above shift formulas.



8

ALGORITHM “ConvertToAlphaBeta” TO EXPRESS Fn AND Ln IN TERMS
OF α AND β:

Use the well-known Binet forms:

Fn =
αn − βn

√
5

Ln = αn + βn

(24)

to express Fn and Ln in terms of α and β, the roots of the characteristic equation x2 = x+1.

ALGORITHM “RemoveAlphaBeta” TO REMOVE α’s AND β’s:

Sometimes a formula involves the quantities α and β. To transform such expressions into
“canonical” form, apply the identites:

αn =
Ln + Fn

√
5

2

βn =
Ln − Fn

√
5

2
.

(25)

Expand out the resulting polynomial and express it in the form x + y
√

5. If y is not
identically 0, then the resulting expression cannot be expressed in terms of Fibonacci and
Lucas numbers alone. The quantities α and β can be reintroduced into the resulting
expression by means of the formula

√
5 = α − β (26)

and either α or β may be removed by use of one of the identities

α + β = 1 or αβ = −1 (27)

whichever is preferred.

TO REMOVE POWERS OF α AND β:

The following identities are frequently useful:

αn = αFn + Fn−1

βn = βFn + Fn−1.
(28)

THE SUBTRACTION FORMULAS:

Combining the reduction and negation formulas gives us the following:

Fm−n = (−1)n · FmLn − FnLm

2

Lm−n = (−1)n · LmLn − 5FmFn

2
.



9

6. Arbitrary Starting Conditions.

Let {Hn} be a sequence that satisfies

Hn+2 = Hn+1 + Hn (29)

with initial conditions H0 = a and H1 = b.
We can formally manipulate this sequence by first converting to Fibonacci numbers

and then converting back.

ALGORITHM “ConvertHToF” TO EXPRESS Hn IN TERMS OF Fn AND
Fn−1:

Use the identity:
Hn = aFn−1 + bFn. (30)

To prove an identity involving Hn, use equation (30) to convert H’s to F ’s, and then
apply algorithm “FibSimplify”.

After applying algorithms “ConvertHToF” and “FibSimplify” to obtain a canonical
form, use the following algorithm to transform the result (expressed with F ’s and L’s)
back to an expression involving H’s.

ALGORITHM “ConvertToH” TO EXPRESS Fn and Ln IN TERMS OF Hn

AND Hn+1:

Use the identities:

Fn =
1
e
(bHn − aHn+1)

Ln =
1
e

[(2b − a)Hn − (2a − b)Hn+1]
(31)

where e = b2 − a2 − ab.

ALGORITHM “HExpand” TO EXPRESS Hn+m IN TERMS OF Hn AND
Hn+1:

Hn+m = Fm−1Hn + FmHn+1. (32)

A more symmetrical form is:

Hn+m =
1
2
(FmGn + LmHn)

where Gn = Hn−1 + Hn+1.



10

CHANGE OF BASIS

ALGORITHM “HShift” TO TRANSFORM AN EXPRESSION INVOLVING
Hn, Hn+1 INTO ONE INVOLVING Hn+c, Hn+d:
Use the identities:

(
Hn

Hn+1

)
=

1
Fc−1Fd − FcFd−1

(
Fd −Fc

−Fd−1 Fc−1

) (
Hn+c

Hn+d

)
. (33)

To convert expressions involving arbitrary subscripts of H to expressions involving
Hn+c and Hn+d, apply algorithm “ConvertHToF” to put everything in terms of F . Then
apply algorithm “FibReduce” to get everything in terms of Fn and Ln. Use algorithm
“ConvertToH” to get the expression in terms of Hn and Hn+1; and then perform an
“HShift” to transform to the desired basis.
7. Generalized Fibonacci Numbers.

We may consider the sequences {un} and {vn} defined by the recurrences:

u0 = 0, u1 = 1, un+2 = Pun+1 − Qun

v0 = 2, v1 = P, vn+2 = Pvn+1 − Qvn

(34)

where P and Q are given constants (usually integers) with Q �= 0. Let r1 and r2 be the
roots of the characteristic equation

x2 = Px − Q (35)

so that
r1 + r2 = P and r1r2 = Q, (36)

and let
D = P 2 − 4Q (37)

so that

r1 =
P +

√
D

2
and r2 =

P −
√

D

2
. (38)

We will also assume that P and Q are chosen so that D �= 0. This assures that the
roots are distinct. The Binet form for un and vn is

un =
rn
1 − rn

2

r1 − r2
, vn = rn

1 + rn
2 . (39)

Powers of r1 and r2 can be removed from an expression by means of the formulas:

rn
1 =

vn + un

√
D

2

rn
2 =

vn − un

√
D

2
.

(40)



11

If a term of the form
√

D is present, r1 and r2 can be reintroduced, if desired, by the
formula

r1 − r2 =
√

D . (41)

Also of interest are the identities:

r2
1 = Pr1 − Q

r2
2 = Pr2 − Q

(42)

and
rn
1 = r1un − Qun−1

rn
2 = r2un − Qun−1.

For these sequences, we have the following algorithms (from [6]):

ALGORITHM “LucasNegate” TO REMOVE NEGATIVE SUBSCRIPTS:

Use the identities:
u−n = − un

Qn

v−n =
vn

Qn
.

(43)

ALGORITHM “LucasReduce” TO REMOVE SUMS IN SUBSCRIPTS:

Use the identities:
um+n =

umvn + unvm

2

vm+n =
vmvn + Dumun

2
.

(44)

We also have the “subtraction formulas”:

um−n =
umvn − unvm

2Qn

vm−n =
vmvn − Dumun

2Qn
.

(45)

THE FUNDAMENTAL IDENTITY:

The fundamental identity that connects un and vn is:

v2
n − Du2

n = 4Qn. (46)

This can be used to give us the following three algorithms.

ALGORITHM “RemovePowersOfV”:

Apply the substitution
v2

n = Du2
n + 4Qn (47)



12

repeatedly until the exponent of all vn terms is less than 2.

ALGORITHM “RemovePowersOfU”:

Apply the substitution

u2
n =

v2
n − 4Qn

D
(48)

repeatedly until the exponent of all un terms is less than 2.

ALGORITHM “RemovePowersOfQ”:

Apply the substitution

Qn =
v2

n − Du2
n

4
. (49)

ALGORITHM “LucasExpand” TO TURN PRODUCTS INTO SUMS:

Use the identities:

umun =
vm+n − Qnvm−n

D
vmvn = vm+n + Qnvm−n

umvn = um+n + Qnum−n.

(50)

This algorithm can be repeated to turn products of any number of u and v terms into
simple sums of such terms.

ALGORITHM “ConvertToU” TO REMOVE ALL v’s:

Use the identity:
vn = un+1 − Qun−1. (51)

ALGORITHM “ConvertToV” TO REMOVE ALL u’s:

Use the identity:

un =
vn+1 − Qvn−1

D
. (52)

RELATIONSHIP TO TRIGONOMETRIC EXPRESSIONS:

To convert to trigonometric form, use the identities:

un = 2Qn/2 sin
(

ni

2
log

r1

r2

)
/
√
−D

vn = 2Qn/2 cos
(

ni

2
log

r1

r2

)
.

(53)



13

TO REMOVE SCALAR MULTIPLES IN SUBSCRIPTS:

Repeatedly apply algorithm “LucasReduce” or use the identities:

ukn = un

� k−1
2 �∑

i=0

(
k − 1 − i

i

)
(−1)iQinvk−1−2i

n

vkn =
�k/2�∑
i=0

k

k − i

(
k − i

i

)
(−1)iQinvk−2i

n .

(54)

These formulas convert directly to our canonical form.
In particular, the double argument formulas are:

u2n = unvn

v2n = v2
n − 2Qn.

(55)

Other formulas of interest:

ukn =
1

2k−1

� k−1
2 �∑

i=0

(
k

2i + 1

)
Diu2i+1

n vk−1−2i
n

vkn =
1

2k−1

�k/2�∑
i=0

(
k

2i

)
Diu2i

n vk−2i
n

ukn+s =
k∑

i=0

(
k

i

)
ui

n(−Qun−1)k−iui+s

vkn+s =
k∑

i=0

(
k

i

)
ui

n(−Qun−1)k−ivi+s.

TO REMOVE POWERS:

Repeatedly apply algorithm “LucasExpand” or use the identities:

uk
n =

1
2

1
D�k/2�

k∑
i=0

(
k

i

)
(−1)iQin ×

{
u(k−2i)n, if k is odd,
v(k−2i)n, if k is even;

vk
n =

1
2

k∑
i=0

(
k

i

)
Qinv(k−2i)n.

(56)

Any negative subscripts introduced can be removed by using algorithm “LucasNegate”, if
desired.



14

CHANGE OF BASIS (Shift Formulas)

ALGORITHM “LucasShift” TO TRANSFORM AN EXPRESSION INVOLV-
ING un, vn INTO ONE INVOLVING un+a, vn+b:

Use the identities:
(

un

vn

)
=

2
vavb − Duaub

(
vb −ua

−Dub va

) (
un+a

vn+b

)
. (57)

PROVING IDENTITIES.

To effectively prove an identity involving u’s and v’s, perform the following algorithm
which is analogous to algorithm “FibSimplify”.

ALGORITHM “LucasSimplify”:

Use algorithm “LucasReduce” to remove any sums in subscripts. Make all the multi-
pliers in subscripts positive by using algorithm “LucasNegate”. Use “LucasReduce” again
to remove any constant multipliers in the subscripts. Evaluate any numerical terms using
the recurrence (34) and its initial values (applying algorithm “LucasNegate” first for neg-
ative subscripts). Finally, use algorithm “RemovePowersOfU” and collect terms to arrive
at a canonical form.

Note that if the variables P , Q, and D all occur in the final expression, you should
replace D by its equivalent value, P 2 − 4Q, from formula (37).

The expression is identically 0 if and only if this canonical form is 0.
8. Arbitrary Second-Order Linear Recurrences.

Let wn be an arbitrary second-order linear recurrence with constant coefficients. That
is,

wn = Pwn−1 − Qwn−2, n ≥ 2 (58)

with arbitrary initial values w0 and w1, not both 0. Again we require that Q �= 0 and
P 2 �= 4Q. Since un and vn form a basis among all such sequences, wn can be expressed in
terms of un and vn. This can be accomplished by the following formula:

wn = (w1 − P
w0

2
)un +

w0

2
vn. (59)

Thus, to prove any identity involving w’s, first convert the w’s to u’s and v’s and then
apply algorithm “LucasSimplify”. An equivalent formula is

wn = (w1 − Pw0)un + w0un+1 = −Qw−1un + w0un+1.

The reduction formula takes the form

wn+m = −Qwm−1un + wmun+1 = −Qwmun−1 + wm+1un.



15

9. Summations.
We can perform indefinite summations of expressions involving un and vn any time

we can perform such summations with xn instead, since from the Binet forms, these terms
are actually exponentials with bases r1 and r2.

ALGORITHM “LucasSum”:

First, the expression is converted to exponential form using equation (39). Then it is
summed. The result is converted back to u’s and v’s by using equation (40). Then r1 and
r2 are converted to expressions involving P and Q using equations (38) and (36).

The reader who has not kept abreast of developments in the area of symbolic algebra
may be surprised at the large class of functions that can now be automatically summed.
Gosper’s algorithm [3] can be used to sum complicated expressions involving hypergeomet-
ric series. This includes most of the common elementary functions. See [4] pp. 224–230
for an elementary exposition.

Example. Let us see how to sum
∑n

k=1 Lk cos kx algorithmically. Expanding Lk by
the Binet form (24), and expanding cos kx by the formula cosx = (eix + e−ix)/2, turns
the sum into four terms each of which is a simple geometric progression. These are easily
summed. The result is turned back into a nice form by using formula (25) and the formula
eix = cos x + i sinx. The result is the following, which we believe to be new.

n∑
k=1

Lk cos kx =
1

2 cos 2x − 3

[
5 + 2 cos x − 4 cos2 x − Fn(2 cos x − 5) cos(n + 1)x

+ Fn+1((2 cos x − 3) cos nx + 2 cos(n + 2)x) − 4Fn+2 cos x cos nx
]
.

(60)

10. Discovering Identities.
For the most part, the algorithms described in this paper can only be used to prove

an identity once the identity is known or suspected. It still requires human ingenuity to
discover new and interesting identities.

There are, however, several ways these algorithms can be used to aid in discovering
new identities.

Algorithm “LucasSum” and its Fibonacci counterpart, algorithm “FibSum”, are ef-
fective algorithms for summing expressions. Thus, they can be used, as in the previous
example, to discover new results.

If the form of an identity is suspected, algorithm “FibSimplify” may frequently be
used to advantage to discover a new result. For example, suppose that you suspect that
F 2

n+3 can be written as a linear combination of F 2
n+2, F 2

n+1, and F 2
n . In that case, you can

use algorithm “FibSimplify” to convert F 2
n+3 − aF 2

n+2 − bF 2
n+1 − cF 2

n into canonical form.
The result is

(−1)n(−16 + 9a + b + 4c)/5 + L2
n(18 − 7a − 3b − 2c)/10 + FnLn(8 − 3a − b)/2.



16

Since the original expression is an identity if and only if this canonical form is identically
0, we must have the three equations

9a + b + 4c = 16
7a + 3b + 2c = 18

3a + b = 8.

Solving these equations yields a = 2, b = 2, and c = −1. This reveals the identity

F 2
n+3 − 2F 2

n+2 − 2F 2
n+1 + F 2

n = 0. (61)

11. Implementation of the Algorithms.

All the algorithms described in this paper have been implemented in MathematicaTM.
They are available from the author by email. Similar algorithms exist for third-order linear
recurrences [8] and higher-order recurrences.
12. Philosophical Implications.

Now that these effective algorithms for proving Fibonacci identities are known, the
philosophical question arises as to whether one should study and/or publish newly dis-
covered identities. The answer is “yes”. Although formula (1) can now be proven by
computer, the computer proof gives no insight into how the formula came about. What
is the significance of the binomial coefficients appearing in the formula? Does the formula
generalize? Can a similar proof be used to discover new results?

Should one stop submitting pretty new identities to problem columns? The answer is
“no”. There is always the challenge involved in finding an elegant proof. For example, an
algorithmic proof of the trigonometric identity sin2 17x+cos2 17x = 1 would not recognize
that it follows from the Pythagorean Theorem. Instead, it would expand out by the
multiple angle formula and get a horrendous mess which it would then attempt to show is
divisible by (sin2 x + cos2 x − 1).

Elegant new identities will always be welcome to journals such as The Fibonacci Quar-
terly. Discovering new identities is still important. Ingenious proofs are always appreciated.
What these algorithms imply, is that the next time you need a complicated identity as a
lemma in the middle of a research paper, you can safely state the identity and say that
“This identity is straightforward to prove.”

References

[1] David E. Dobbs, “Proving Trig. Identities to Freshpersons”, The MATYC Journal. 14
(1980):39–42.

[2] David E. Dobbs and Robert Hanks, A Modern Course on the Theory of Equations.
Passaic, NJ: Polygonal Publishing House, 1980.

[3] R. William Gosper, Jr., “Decision Procedure for Indefinite Hypergeometric Summa-
tion”, Proceedings of the National Academy of Sciences of the United States of
America. 75 (1978):40–42.



17

[4] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics.
Reading, MA: Addison-Wesley Publishing Company, 1989.

[5] M. S. Klamkin, “On Proving Trigonometric Identities”, Mathematics Magazine. 56
(1983):215–220.

[6] Edouard Lucas, “Théorie des Fonctions Numériques Simplement Périodiques”, Ameri-
can Journal of Mathematics. 1 (1878):184–240, 289–321; reprinted as “The Theory
of Simply Periodic Numerical Functions”, Santa Clara, CA: The Fibonacci Associ-
ation, 1969.

[7] Roman Maeder, The Mathematica Programmer. Boston, MA: Academic Press, 1994.
[8] Stanley Rabinowitz, “Algorithmic Manipulation of Third-Order Linear Recurrences”,

The Fibonacci Quarterly. 34 (1996):447–464.
[9] S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section. West Sussex, England:

Ellis Horwood Limited, 1989.
[10] Gregory Wulczyn, “Problem H-324”, The Fibonacci Quarterly. 19 (1981):93.
[11] Gregory Wulczyn, “Problem B-464”, The Fibonacci Quarterly. 20 (1982):370.

AMS Classification Numbers: 11Y16, 11B39, 11B37


