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1 Introduction - Minimal Bounding Shapes

This document will discuss the estimation of several basic enclosing shapes
around sets of points in 2 and 3 dimensions.

But first, why would you wish to use these tools at all? A minimal
enclosing object of a well defined basic shape may be of use to roughly char-
acterize objects, perhaps in an image. Perhaps one needs simple estimates
of an area enclosed, or of the center of a roughly circular or elliptical object.
Some examples might be bacteria, crystals, granular particles, film grain,
etc.

The basic codes I'll discuss are:

Rectangles - MINBOUNDRECT

Circles - MINBOUNDCIRCLE

Spheres (3-d) - MINBOUNDSPHERE
e Ellipses - MINBOUNDELLIPSE

e Ellipsoids (3-d) - MINBOUNDELLIPSOID

One feature that all these codes have in common is the initial use of a
convex hull call. Since all of the shapes we will consider here are convex
objects, no point that is inside the convex hull of the data set need be
considered. Removal of those interior data points will often result in a
dramatic reduction in the time required otherwise.
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Figure 1: Example of a convex hull in 2-d
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2 Minimal Area Rectangles

Somewhat distinct from the other tools here is rectangle estimation. It is
simply done, especially when you start from the convex hull. If we assume
that the minimum bounding rectangle must have one (or more) edges parallel
to one of the edges of the convex hull, then the task is a simple one indeed.
Merely check every edge of the convex hull, effectively spreading a pair of
calipers around the object at that angle. One chooses that edge which
produces the minimum area from all the possible rectangles.

This scheme will generally be a quite efficient one, since most of the time
a convex hull is composed of relatively few edges. Even in the rare event
where every single point supplied is also found to be a part of the convex
hull itself, the rectangle computation is fast enough to be efficient.

3 Minimal Radius Circles and Spheres

Circular regions are slightly more complex than are rectangles, but still
simple enough. Again, we start with all of the points making up the convex
hull. Arbitrarily pick any three of those points. Find the unique minimum
radius enclosing circle that contains those three points. If every other point
is inside the above circle, then we are done. Pick that single point which
lies furthest outside of the circle, and find the enclosing circle of this set of
four points. That larger enclosing circle will have either 2 or three of those
points on its circumference. Repeat until no more points lie external to the
current enclosing circle.

The basic algorithm above is a simple iterative scheme which will gener-
ally terminate after only a few iterations. One aspect of this that is worth
further discussion is the computation of a circum-circle. Given any three
points in the (x,y) plane, (z1,y1), (z2,y2), (z3,y3), there are two distinct
possibilities. Either two of the three points lie on a diameter of a circle that
also contains the third point, or all three of the points must lie exactly on
the circumference of a circle.

In the latter event, that circle with unknown radius R and center (i, fty)
must satisfy (1), (2), and (3).

(21— p2)? + (Y1 — p1y)* = R® (1)
(2 — pta)® + (y2 — py)? = R? (2)
(23 — pa)? + (y3 — p1y)* = R® (3)

We can eliminate the quadratic terms in the unknowns simply by sub-
tracting pairs of those expressions to yield (4) and (5), linear in the unknowns

(s thy)-
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2(w1 — 22tz + 2(y1 — Y2)py = T3 — 25+ yi — v3 (4)
2wy — w3 e + 2(y1 — Y3y = T3 — 23 + 47 — 3 (5)

Solve that linear system of equations for (piz, f1y). then use (1) to obtain
R.

This basic scheme of differencing to drop out the nonlinear terms, then
solving a linear system for the center of the circle will also apply to compu-
tation of a circum-sphere in any number of dimensions.

4 Minimal Area Enclosing Ellipses and Minimum
Volume Enclosing Ellipsoids

Ellipses and ellipsoids are yet a step higher in complexity than are circles.
In a simple form, the equation (6) of an ellipse with center (y, 1), has axis
lengths of a, and a, along the x and y axes respectively. Clearly, if a, = ay,
then the ellipse is circular.

(R (= (6)

Of course, the form in (6) does not allow for any eccentricity. We can
allow for an eccentricity by writing the ellipse as the quadratic form in (7).

(ol = e [ 5] (il = e =1 (D)

The enclosing sphere parameters were derivable from the linear system
(4), (5). That approach will fail here though, since the quadratic terms do
not drop out. A partial solution arises from a technique called partitioned
least squares.



