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1.  Forward
Over the years, I’ve written various random number generators over for my work in acoustics, wireless communications, radar, optics, network traffic simulations and even astronomy. More recently, I’ve continued to collect information on distribution functions for use within the framework of a unified random-noise generation program.  Lacking reference texts on the statistics of univariate distributions, and being too poor/cheap to purchase the standards like Johnson & Kotz, I’ve scoured the web for descriptions of widely-used distributions.  Thanks to many web-publishing authors, particularly to Luc Devroye of McGill University, to the composers of statistical packages like “gamlss” for R, and to the Dataplot composers at NIST, I’ve amassed nearly a thousand references to useful univariate distributions.
Eventually, I broke down and purchased the text, “Univariate Discrete Distributions”, which, along with its continuous partner, is probably the best source of distribution functions in print. After raiding the County Library for various additional texts on Beta, Lagrangian, Poisson and exponential distributions, I expanded my list of distributions to over 870
.  And I still have papers describing more than 140 additional distributions waiting to be coded.

I’d like to thank all those authors for so kindly publishing their materials on the web. I’d like to apologize to many of them, particularly if I’ve abused their works in any way.  I’m not a statistician or even a mathematician.  Not only have I abducted many otherwise well-directed distributions for my own purposes, but I may not have been entirely faithful to their efforts – sometimes by accident and sometime by design.  I have referenced each of the source papers within my noise generator code as well as in the distribution database.  
On the other hand, I offer negative kudos to those authors of papers who publish only with Springer, Wiley, AIP and the like – especially since their research was probably publically funded to begin with.  At $25 or more a paper, I’d be a poor man if I had to purchase all my own source material.  Without the availability of that source material, I’d have never even started this task.  So this work is really a tribute to freedom of information on the web.  In addition, hisses and boos to the Mathworks for moving the routine, hypergeom.m, to the Symbolic Toolbox where it is no longer available to me.
 Next, my sincerest wishes that many of the authors I’ve referenced, particularly NIST and Wiley, would hire copy editors to catch and fix the many typos in their publications.
Finally, a single but emphatic raspberry to the mathematical/statistical/scientific/engineering/ financial communities who can’t seem to agree on standard nomenclature for many of the distributions I’ve encountered.  Most of these differences are almost trivial.  But a few are quite significant.  Perhaps the statisticians should start a registry or “wiki” of standard distributions.  However, I doubt that such a registry would ever be widely adopted. In this regard, the technical community is unlikely to be better than the US Congress in reaching and maintaining agreements.  It might also be nice if NIST undertook this task.  But given the time required to update/replace Abramowitz & Stegen, I doubt I’d live to see its conclusion.
2.  Introduction

The code described in these Notes provides the capability for generating a user-specified number of random noise samples from a wide variety of univariate distributions.  A wealth of techniques for generating non-uniform random numbers can be found in the literature.   These techniques are often as clever as they are varied. However, the present Matlab code by-passes most of these elegant random-number generating techniques in favor of coding simplicity and maintainability.  That is, the code described here uses a minimal number of different noise-generating techniques.  For discrete (integer) distributions, hypothesis testing on the Cumulative Distribution Function (CDF) is used.  For real distributions, direct inversion of the CDF is the preferred method.  If the CDF is not available in closed form, then it is estimated by numerically integrating the Probability Density Function or PDF.
More recent versions of this program have added the generation of random numbers for continuous distributions from CDF-inverses or Point Percent Functions (PPFs).  Finally, when no CDF, PDF (PMFs in the discrete case), or PPF is available, then some distributions of random numbers can be generated from combinations of simpler distributions.  While this technique is probably the most mathematically elegant, each of these combination distributions is computationally unique and may require repeated calls to the generation code.  In theory, each combined distribution can generate random numbers more efficiently than CDF-inversion.  However, in practice, I have not yet built a code flexible enough to support such efficiency for many different combined distributions.
The purpose of these Notes is to show how the present Matlab(  code can be used to sample and/or analyze the behavior of these distributions.  This code will be described in the following sections of these Notes.  Note that the sample distributions generated via this code are intended to be noise distributions.  That is, the distributions are approximated by a finite number of samples.  In some case, mathematical rigor was sacrificed for speed or simplicity.  In other cases, shortcomings in Matlab’s own routines (e.g. hypergeom.m) or sometimes just dynamic range (e.g. gamma.m) can limit the accuracy or the domain of the computed or sampled distributions, though most instances of gamma.m have been recoded using the gammaln.m function to prevent overflow.
The user should also be warned that, due to their complexity, a few of these distributions generate noise samples very slowly.  If more than a few thousand samples are desired from these slow distributions, then the user should probably excise the required routines, vectorize if possible, and run or even compile the Matlab code separately for each distribution.  In addition, the user is warned that the current version of the noise generator uses Matlab constructions such that may hinder simple compilation.  These constructions were used deliberately to ensure that the code could be easily expanded to include new distributions. 
3.  Noise Generator

Figure 1 illustrates a top-level view of the Matlab code.  As this Figure shows, noise sample or distribution generation depends on two inputs plus an input handler, the core generation code, and two output or distribution processes.  These six processes will be described in the following sub-sections.
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Figure 1: Matlab Noise Generation Logical Flow

3.1.  Distribution Database
The Distribution database was constructed in the Microsoft Excel( file, noise_distribs31.xls.  Each record (row) in this database/spreadsheet has17 fields.  The first two fields (columns) in each record contain the distribution Designator (short name) and Full Name respectively.  The next five fields contain up to five Parameter Values needed to specify this distribution.  The eighth and ninth fields list the Formal Minimum and Maximum values of the independent variable, while fields ten and eleven list default minimum and maximum values of the sampled distribution.  
Fields 12 – 16 of noise_distribs16.xls contain switches that indicate:

12.  Distribution/Solution Type:  
1 – Discrete or Integer Distribution,





2 – Special Distributions having only analytical point-%
                                                 function (PPF),





3 – Continuous Distributions having analytical PDF only,





4 – Continuous Distributions having analytical PDF & CDF,
                                       
5x– Combined Distributions where ‘x’ indicates the number
                                                             of passes requires throught the generator code.
13.  Normalization:
0 – requires no normalization;



1 – discrete distribution that requires normalization (largely obsolete).
14.  Special Minimum:
indicates the input parameter that specifies the function minimum.

15.  Special Maximum:
indicates the input parameter that specifies the function maximum.

16.  Time Warning:
0 – no warning;



1 – warn the user that the given distribution takes a long time to compute.





In particular, the user is warned whenever a distribution is
                                           expected to take more than about 1 minute per 1000 samples (on 
a Dell Optiplex GX620 PC running @.3.4 GHz (obsolete).
17. Field 17 contains the source reference for each distribution.
3.2.  User Inputs and Input Handler
Due to the tediousness of constructing GUIs with early versions of Matlab, the original Matlab code only provided the user with a simple ASCII text interface. The user was asked to specify:

1. which distribution to sample,

2. up to 5 parameter values for that distribution (additional parameters for the NC Chi-Square, Crommelin, Multinomial and other select distributions),
3. values for those additional parameters (within square brackets separated by spaces) as necessary,
4. values of the sample maximum and minimum of the independent variable (‘x’),

5. the number of samples to be generated, 
6. the seed value for the Uniform Random Number Generator, and

7. completion options (exit, save, rerun). 
The original User Interface (UI) is part of the principal Matlab code module, distribs22.m.  The reader is warned that a few of the distributions may not run with distribs22.m due to interface changes made when the the GUI code was added.  
In order to avoid looking like an old nerd, I recently completed my first GUI for this program, distributions31.m. This GUI runs somewhat slower than the earlier versions of the code and may still be “quirky’ – since it is my first attempt at any but the simplest of Matlab GUIs. And it should be noted here that Matlab’s GUI-building tools are still relatively primitive compared with those in other engineering development tools such as National Instrument’s Labview.
Note that, for many of the distributions, the distribution parameters are related to the values of the sample maximum and minimum.  For each of these distributions, the Input Handler uses the parameter values to override any user input to the sample maximum or minimum.

Specifying the minimum and maximum of any particular sample distribution can be something of an art.  The noise generator program provides formal min and max values to guide the user.  But, even then, the process can still resemble the selection of a Wireless Service Plan.  For example, if the minimum is too large or the maximum is too small, then a number of samples will be pinned to either boundary and the distribution will be distorted.  However, if the minimum is too small and/or the maximum too large, the user is simply wasting computing cycles (iterations of the solver) when generating each sample.  In the former case, the “cost” (distortion of the output sample distribution) may be too high; in the latter case, the computation may take too long.

3.3.  Distribution Generation

The noise sample generation code lies at the heart of the Noise Generator.  This code is found in the file, gen_distrib2.m.  A logical flow for this routine can be found in Figure 2.
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Figure 2: Structure/Flow of Distribution Generation
The dashed arrows in this Figure indicate that only one of the five solution techniques is used, depending on the nature of the distribution (discrete or continuous) and the availability of closed-form solutions for its CDF, PPF and/or PDF.  
As noted previously, for discrete distributions, the code uses hypothesis testing on the CDF to obtain valid samples of the distribution.  The CDF for these discrete distributions is usually obtained as the sum from –inf to x of the PMF.  The user should note that this technique is implemented as a scalar function, i.e. each sample is generated after a separate call to scalar PDF (actually PMF) and corresponding CDF functions.
Also note that the routine, process_string.m, indicated in Figure 2 has been replaced with a waitbar in the most recent version of this code.
For PPF-based distributions, the code uses a Modified False Position (MFP) algorithm to perform numerical inversion, i.e. find the zero of the function: CDF – URD, where URD stands for Uniform Random Deviate.  In this case, CDF is already tabulated.  The code performs a 1000-point linear interpolation of the tabulated CDF values to provide the functional values needed to support each iteration of the MFP algorithm.  Changing either the granularity or the form of the interpolation presently requires a simple code change.  A linear form of the interpolation is used instead of the more accurate cubic form in order to avoid occasional extrapolation problems near the endpoints of the interval. The user should note that this technique is implemented as a scalar function, i.e. each sample is generated after a separate call to scalar PDF and CDF functions. The user should also note that, though the CDF is tabulated prior to sample estimation (as in the case 3 where PDF estimates are available), the "Graphical Inversion" technique used for PDF-based distributions (see below) should not be used here. CDF estimates made from PPFs, while sufficient for supporting MFP, are too noisy to support interpolated graphical inversion or to estimate smooth-derivatives.
For PDF-based distributions, the code numerically integrates the PDF to obtain the CDF and finds the last CDF function value < URD, taking the corresponding linearly-interpolated "x-value" as the sample. This is a "Graphical Inversion" method that uses interpolation to estimate CDF-inverse values. Interpolation may fail if multiple values of the function become too small, i. e. more than one function value is assigned a value of zero.  If this error occurs, the user should tighten the domain limits so that value of the function always remains > eps.  The user should note that this technique is implemented as a vector function, i.e. all the desired samples are generated after a single call to a vector CDF function.
For CDF-based continuous distributions (those with analytical CDFs), the code samples the distribution by using MFP to perform numerical inversion, i.e. it finds the zero of the function: CDF – URD within the solution interval.  The CDF is evaluated explicitly for each iteration of the MFP algorithm. The user should note that this technique is implemented as a scalar function, i.e. each sample is generated after a separate call or multiple calls to scalar PDF and CDF functions.
Finally, the combined distributions are evaluated by performing loopbacks through other selected distributions. The user should note that this technique is implemented as a vector function, i.e. all the desired samples are generated after a single call to a vector .rnd function.

3.4  Special Distributions
3.4.1 Partitions

Several of the distributions (e.g. distributions of order k) require sums over partitions of a discrete variable.  Routines are provided that have pre-calculated and stored partitions for N = 1 to N = 50 for rapid evaluation of these summations.  Partitions can be calculated for even larger values of N.  However, the user is warned that the N = 50 partition required hours to evaluate on a PC with an i5-2500k Intel processor. 

3.4.2 Findcmax

Other distributions (e.g. binchi and other compound binomial distributions proposed by Gerstenkorn) can be normalized only within an unspecified range of values for the parameter, c. A special routine, findcmax.m, is provided that automatically determines the bounds on this parameter and warns the user if their input value for c exceeds this bound.
3.4.3 Chernoff

The Chernoff distribution requires several quantities that have been pre-calculated and stored by the routine, generate_chernoff_pdf.m.

3.4.4 Others

The user may also find other interesting utility code in the Cantor distribution, in the extstirxx family of distributions as well as routines associated with the evaluation of several other distribution functions.

3.5 Additional Coding Notes  
The user should be aware that it is relatively straightforward to add new distributions to the Noise Generator.  For each new distribution, the user must first add a line to the Excel Distribution Database and then provide the CDF and PDF routines, if available, for the distribution.  See Section 3.1 for details.  Next, if the limits of the new distribution depend on the parameter values in some way other than a simple identity, then the user must also add conditionals to the limit generation code to the Input Handler routine (distribs31.m).
Since I’m an engineer and not a coder, much of the Matlab code I’ve written resembles old FORTRAN code.  Some was even taken from old FORTRAN (Burkhardt).  In addition, changes to the distribution code have been made by the poor coding practice of simply commenting out the previous code – particularly those changes related to preventing overflow or eliminating persistent variables so that the code could be readily re-run without re-starting the entire program.  Commenting this obsolete code is my way of making sure that previous valid (tho less desirable features aren’t entirely lost.  If I had a code control utility for managing the thousands of routines that make up this program, I might be more careful or rigorous in my coding practices.  But then again I might not.  I’m simply more interested in the distributions than in their coding.
3.6.  Distribution Output Plots 

In general (i.e. except for the combined distributions), the code outputs four plots to the user.  See Figure 3.  The first is a plot of raw sample value vs. sample number.  The second is a plot of the value of the CDF at the sample points.  Note that, if there is a spike in the values at either end point of the CDF, then the user should expand the limits (or change the parameters) and re-run the generator.  The third plot is the value of the PDF (for discrete distributions actually the Probability Mass Function or PMF) at the sample points.  The PDF plot is provided for direct comparison with the sample histogram in the fourth plot.  Apart from a scale factor, the PDF plot should outline the extent of the sample histogram in order to guarantee that the sample distribution is in fact derived from the user-specified model distribution.
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Figure 3: Sample Output Plots for the Burr IX Distribution
3.5.  Distribution Output Files
If the plots shown above indicate that the sample distribution function is not satisfactory, then the user is provided with the option of re-generating the same or different sample distributions without quitting the program (use the CLEAR button on the GUI).  If the sample distribution is OK, then the user may SAVE the sample distribution values to the local directory in a user-named ASCII data file (“XXX.dat”).  The use may also STOP the calculations at any convenient point and restart the GUI.
3.6  Quick Start
To use this program, follow these steps:

1. Unzip the program into a single, otherwise unused directory.

2. Open Matlab’s "GUIDE" function and move to the directory used in step 1.

3. From GUIDE, select "Open Existing GUI" (or some such). You should see "distributions31".

4. Select "distributions31" and the GUI template should open.

5. Run the GUI template (hit the green arrow in the toolbar) and the actual GUI should appear.

6. Select a Discrete or Continuous distribution from either listbox. As soon as you highlight your choice, a "Select" button will appear below the listbox.

7. Hit the "Select" button. Other buttons ("Start", "Clear" and "Save) will appear along with boxes for you to input the parameter values required for your selected distribution.

8. Put numerical values in the parameter boxes. Be sure to note allowed parameter ranges if indicated.

9. If desired, you can change the default seed-number, number-of-samples (to be generated) and/or the max & min of the distribution by simply typing over the default values.

10. Hit the "Start Button". A waitbar should appear to track the progress of the calculations. When the waitbar is complete, (as many as) four output plots will appear on the right-hand-side of the GUI. If, instead of a waitbar, a message appears demanding additional parameters, just follow directions and add these parameters WITHIN SQUARE BRACKETS & SEPARATED BY SPACES to the textbox that suddenly becomes active at the bottom of the page. The calculations should then proceed normally.

11. To save the results, hit the "Save" Button and type a filename (without extension) in the text box that will appear.

12. To try another distribution or the same distribution with different parameters, hit the "Clear" button & proceed as from step 6.

13. To exit, hit the "Stop" button and the GUI will disappear. 
Of course, this procedure assumes that you don't encounter an error - which I'm sure you will (sooner or later) since I can't hope to keep the 870+ current distributions bug free every time I make a change as significant as adding a GUI. If you find a bug, just send me the inputs so I can reproduce and fix it.
3.6  Test Scripts

Unless otherwise noted, each of the distribution algorithms in this code has been tested to ensure that the PDFs and CDFs are well behaved and that the sum or integral of the PDF equals unity.  Separate test scripts were written for each distribution in order to assure that the distribution is properly normalized and that the PDF and CDF computations are somewhat efficient (though vectorization of some routines may still be useful).  Note that the parameter-ranges for all the distributions have not been tested rigorously and some of the allowed ranges indicated for the parameters may still be missing or incorrect.
This process of testing normalization uncovered a surprising number of errors in the source material. For example, roughly 1 in 3 of the distributions taken from NIST’s Dataplot write-ups on the web were found to contain significant errors/typos. In addition, the source text for “Univariate Discrete Distributions” also contains a significant number of typos and omissions.  Papers from the web also had errors or simply failed to normalize (e.g. several distributions from Nadarajah), though refereed papers contained the fewest errors. Wikipedia appeared to be error free.  Often these errors/typos were obvious.  But in some cases, I contacted the authors to verify my “discoveries”.
Note that these test scripts do not call the actual code written for random number generation.  The test scripts were written primarily to test algorithm variations and were vectorized whenever possible for speed.  As a result, bugs may still appear in some relatively untested PDF or CDF routines from the actual random number generation code.  Following the Microsoft business model, bug-testing of the final code is left as an exercise for the user.  After all, you get what you pay for.  Or, in other words, I’m simply too tired (or lazy) to build a script large enough to regression test almost 2000 PDF, CDF and related routines every time I make a significant code change.  This code has gotten entirely out-of-hand and I’d appreciate any help I can get in keeping it together.
� It is likely that several of these distributions are duplicates, being listed in the literature under different names.

� In place of this routine, I’ve used genHyper.m, pfq.m and various versions of the Kummer function from Matlab Central in some 30 or more distribution functions.
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