
OpenGL-based 3D Java graphics in
MATLAB using jzy3d - a demo

Project Waterloo Scientific Graphics Package

Malcolm Lidierth
Wolfson Centre for Age-Related Diseases

http://sigtool.sourceforge.net/

Revised: 9th February 2012

http://sigtool.sourceforge.net/

Acknowlegements:

MATLAB code in this document was styled using Florian Knorn's
M-code LATEXPackage.

http://www.mathworks.com/matlabcentral/fileexchange/8015-m-code-
latex-package

The document was prepared using Pascal Brachet's TEXMaker
http://www.xm1math.net/texmaker/

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
MATLAB is a registered trademark of The MathWorks, Inc. Other names
may be trademarks of their respective owners.

2

Contents

About this demo . 4
Loading the demo jar file . 4
Plotting meshes and surfaces 5
Plotting meshes and surfaces on an orthonormal grid 5
Plotting meshes and surfaces using Delauney triangulation . 8
Limitations . 9

3

About this demo
This small package offers a few easy-to-use factory methods for construct-
ing 3D surface and mesh plots in MATLAB using jzy3d. It is for demon-
stration purposes only: programmers who find this useful, would do best
to call jzy3d directly.

jzy3d is an open-source Java package for 3D graphics. For full details
see the jzy3d website at http://www.jzy3d.org/.

jzy3d uses the Java Bindings for OpenGL (JOGL http://jogamp.org/
jogl/www/)which allow calls to theOpenGLAPI (http://www.opengl.org/)
form Java - and therefore from MATLAB.

This codewas developed as a preliminary test for using jzy3d in a Java2D-
based graphics package currently being developed as part of "Project Wa-
terloo". The code is a work-in-progress and will change in the future.

Loading the demo jar file
Step 1
To run the demo code you need to put "waterloo-jzy3d-demo.jar" file on
your MATLAB Java class path. At the MATLAB command line type:

javaaddpath (’ . . . \ d i s t \water loo−jzy3d−demo.jar ’) ;

where "..." is the path to the dist folder.
The jar files in the lib sub-folder will be added to your MATLAB Java class
path automatically and as required. Note that other dependent jar files
are included in the standard MATLAB distribution and will already be
available on the static Java class path.
Step 2
Next, import the required Java functions using

import k c l .wa t e r l o o . g r aph i c s 3D . j z y 3d .Fa c t o r y . *

4

http://www.jzy3d.org/
http://jogamp.org/jogl/www/
http://jogamp.org/jogl/www/
http://www.opengl.org/

Plotting meshes and surfaces
TheFactory package provides staticmethods to construct a surface ormesh
plot. These are

1. createSurface

2. createMesh

Surface andmesh plots are easily interchanged using the setFaceDisplayed
and setWireframeDisplayedmethods as described below.

Examples:

Create some data using

[X,Y] = meshgrid (−8: . 5 : 8) ;
R = sq r t (X.^2 + Y.^2) + eps ;
Z = s i n (R) . /R;

Plottingmeshes and surfaces on an orthonormal grid
To plot Z on an orthonormal grid call

gr=c r ea t eSu r f a c e (Z) ;

or

gr=createMesh (Z) ;

Next, we need simply to add the graphics to a MATLAB container.

% Create a f i g u r e
f i g u r e () ;
% Add the su r f a c e to the f i g u r e
[comp , conta ine r] = javacomponent (gr) ;
% F i l l the f i g u r e
s e t (conta iner , ’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , ...

[0 0 1 1]) ;

The result for a surface plot is shown in Fig. 1.

The plot in Fig. 1 could have been a mesh plot if createMesh had been
used instead of createSurface. To convert to a mesh simply call

5

Figure 1: A surface plot of the data above. The plot can be rotated us-
ing the left mouse-button (click-and-hold), moved on the z-axis with the
rightmouse button and scaled on the z-axis with themousewheel. Double
clicking causes the plot to rotate continuously.

6

Figure 2: The plot of Fig. 1 with setFaceDisplayed set false.

gr . s e tFaceDi sp l ayed (f a l s e) ;

Display of the mesh can similarly be controlled with setWireMeshDis-
played e.g.:

gr . s e tFaceDi sp l ayed (t rue) ;
g r . s e tWire f rameDisp layed (f a l s e) ;

To control the range of the x and y axes, specify x and y as vectors on
input e.g.

gr=c r ea t eSu r f a c e (−8:0 . 5 :8 ,−8:0 . 5 : 8 ,Z) ;
f i g u r e () ;
[comp , conta ine r] = javacomponent (gr) ;
s e t (conta iner , ’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , ...

[0 0 1 1]) ;

produces the same plot as Fig. 1 etc but with the x and y-axes scale -8 to 8.
Note that values x and y must increase evenly. For an orthonormal grid,
duplicate x,y values are not supported.

7

Figure 3: The plot of Fig. 1 with setWireframeDisplayed set false.

Plotting meshes and surfaces using Delauney trian-
gulation

If the inputs for each point are individually specified, createSurface and
createMesh will use jzy3d's Delauney triangulation to plot the data. The
data for x,y, and z can be specified either as vectors, or a matrices. Thus for
the X,Y, and Z data above,

gr=c r ea t eSu r f a c e (X,Y,Z) ;
>> f = f i g u r e ;
>> [comp , conta ine r] = javacomponent (gr) ;
>> se t (conta iner , ’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , ...

[0 0 1 1]) ;

will produce the result shown in 4
The Delauney triangulation method is applicable to data that are not

regularly spaced. Take a look at the data from the seamount.mat file dis-
tributed as standard in MATLAB

load seamount
gr=c r ea t eSu r f a c e (x , y , z)
f = f i g u r e ;

8

Figure 4: The plot of X,Y,Z using Delauney triangulation.

[comp , conta ine r] = javacomponent (gr) ;
s e t (conta iner , ’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , ...

[0 0 1 1]) ;

gives the plot shown in Fig. 5.

Limitations
The surface and mesh plotting routines here work differently to the surf
and mesh MATLAB functions. Notably, it is assumed that a single value
is supplied for each x,y coordinate pair - i.e. there are no duplicate points.
With the following code:

[x , y , z]= sphere (32) ;
gr=c r ea t eSu r f a c e (x , y , z) ;
f = f i g u r e ;
[comp , conta ine r] = javacomponent (gr) ;
s e t (conta iner , ’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , ...

[0 0 1 1]) ;

as the x,y coordinates are replicated, only one set will be used producing
half of a sphere as in Fig. 6.

9

Figure 5: The seamount.mat data plotted using Delauney triangulation.

Figure 6: Half of the required sphere.

10

In fact the demo code used here checks the first and last x,y coordinates
to see if theymatch. If they do, it plots the data to produce one half then re-
verses the coordinate order to plot the other half producing the full sphere
shown in Fig. 7.

Figure 7: The required sphere.

Note that while this works with the output of theMATLAB sphere func-
tion with an even input, it is not a general solution. Alsomatching requires
equality of the x and y coordinate's float values - so no tolerance for round-
ing errors - but this is just a demo after all.

11

	About this demo
	Loading the demo jar file
	Plotting meshes and surfaces
	Plotting meshes and surfaces on an orthonormal grid
	Plotting meshes and surfaces using Delauney triangulation
	Limitations

