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Abstract:   Support Vector Machines (SVM) are used for fault detection and isolation in a variable speed 

horizontal-axis wind turbine composed of three blades and a full converter. The SVM approach is data 

based and is therefore robust to process knowledge. Moreover, it is based on structural risk minimization 

which enhances generalization and it allows accounting for process non linearity by using flexible 

Kernels. In this work, the radial basis function was used as Kernel. Different parts of the process were 

investigated including actuators, sensors and process faults. With duplicated sensors, we could detect 

sensor faults in blade pitch positions, generator and rotor speeds rapidly (2 sample periods for fixed value 

fault) but under specific constraints on the fault magnitude. The converter torque fault (an actuator) could 

be detected within two sample periods. Faults in the actuators of the pitch systems could not be detected. 

Process faults mainly concerned friction in the drive train which might cause its damage. Its fault could 

be detected under constraints of high magnitude error. 
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1. INTRODUCTION 

Methods used for fault diagnosis can be classified as model 

based or data based. Model based methods require a 

comprehensive model of the system. Success of data based 

methods is conditioned by the significance of historical data 

and the mathematical method used to detect the patterns in 

data. For industrial systems where an important amount of 

data is stored regularly and process model is not available, 

the use of statistical methods is preferred. 

Among statistical methods for fault detection and diagnosis 

appear artificial neural networks, principal component 

analysis and more recently support vector machines (SVM). 

SVM are based on structural risk minimization principle 

based on the statistical learning theory introduced in 1964 by 

Vapnik and Chervonenkis. Only recently, SVM were 

introduced as machine learning algorithms for classifying 

data from two different classes by (Boser et al. 1992, Vapnik 

in 1995). Basically, a binary support vector classifier 

constructs a separating hyperplane. The hyperplane should 

have the maximum margin which is the width up to which 

the boundary can be extended on both sides before it hits any 

data point. These contact points are called the support 

vectors. In order to allow classifying non linearly separable 

sets, a nonlinear Kernel function can be used. The main 

differences between SVM and many other statistical methods 

are therefore: first, the structural risk minimization (training 

by traditional classifiers usually minimizes only the empirical 

risk) that improves the ability of generalization even with a 

reduced number of samples and avoids over-fitting in view of 

good parameter tuning. Second, SVM use nonlinear Kernels 

which allows separation of non linearly separable data. 

SVM have been extensively used to solve classification 

problems in many domains ranging from face, object and text 

detection and categorization, information and image retrieval 

and so on. Their use for fault detection started in 1999 and 

was found to improve the detection accuracy. Widodo and 

Yang (2007) presented a review about the use of SVM for 

fault detection. They reported 37 papers in academic journals 

on this subject. Nowadays, the number of journal papers 

using SVM for fault detection has almost doubled. The 

concerned domains are in majority restricted to mechanical 

machinery as for instance roller bearings, gear box, power 

transmission system, induction motors, turbo pump rotor but 

are also extended to other domains such as electro-

mechanical machinery, semi-conductors, refrigeration 

system, sheet metal stamping, air conditioning systems, and 

few chemical processes such as the Tennessee Eastman 

benchmark. 

In this work, SVM are used for fault detection in a wind 

turbine that is used to generate electrical energy from the 

wind energy. A specific kind of turbines was simulated and 

controlled by Odgaard et al. (2009). The proposed 

benchmark is used for fault detection in this work. Even 

though the wind turbine functionality might be similar to 

rotating machinery, it encloses a number of difficulties 

ranging from a high variability of the wind speed, aggression 

by the environment, measurement difficulties besides the fact 

that wind turbines are supposed to run continuously for 

several years. 

With the widespread use of wind turbines as renewable 

energy systems, control and supervision should be included 

in the system design. Fault detection of wind turbines allows 

reducing of maintenance costs. Indeed, online supervision of 

all parts of the system allows early detection of faults which 

avoids degradation of the material and other side effects. 

Also, online supervision suggests the best maintenance time 



 

 

     

 

as a function of the wind speed in order to ensure high 

performance. Fault detection is also interesting for control 

reconfiguration in order to ensure optimal power in case of 

partial fault. Note however that only few works treat this 

subject (Amirat et al. 2009, Hameed et al. 2009). 

In the first part of this work, basic hints about SVM 

classification are given. Thereafter, the wind turbine is 

described and the locations and types of faults are defined. 

Then SVM learning is presented showing the different tuning 

levels. Finally, SVM validation is considered through 

simulation results. 

2. SVM Classification 

Consider N training vectors p

ix   characterized by a set 

of p descriptive variables  ipiii Xxxx ,,, 21   and by the 

class label  1,1iy . For nonlinearly separable data x, the 

data can be mapped by some nonlinear function (x) into a 

high-dimensional feature space where linear classification 

becomes possible. Rather than fitting nonlinear curves to the 

data, SVM handle this by using a kernel function 

)(),(),( xxxxK ii   to map the data into a different 

space where a hyperplane can be used to do the separation. 

The optimization problem is solved using the Lagrange 

function. The obtained decision function is then: 
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With the properties: 
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Where b is the bias term (a scalar) and αi0 are the Lagrange 

multipliers. The residual is obtained from equation 1 without 

the sign function (sgn): 
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Radial Basis Function (or Gaussian kernel) with the variance 

σ was used in this work: 
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3. Wind turbine description 

A horizontal axis variable speed turbine composed of three 

blades is considered in this work (Odgaard et al. 2009). The 

system contains a full converter coupled to a generator that 

allows converting the mechanical energy to electrical energy. 

A drive train is used to increase the rotational speed from the 

rotor to the generator. 

The system is equipped with duplicated sensors to measure 

the three pitch positions (
mik , , k=1, 2, 3, i=1, 2) and the 

speeds of the generator and rotor (
mig , , 

mir , , i=1, 2). This 

gives a total of ten sensors all subject to two kinds of faults: 

fixed value and gain factor (see table 1). Twenty faults are 

therefore to be detected with a detection time (TD) that is less 

than 10 times the sampling time (Ts=0.01s). 

As a function of the wind speed, a control system allows 

controlling the aerodynamics of the turbine to get the optimal 

power. The control actuators are the three pitch systems and 

the convertor. They allow respectively pitching the blades 

and setting the generator torque to control the rotational 

speed of the generator and the rotor. These actuators are also 

subject to fault. The converter system that sets the generator 

torque might have an offset that should be detected rapidly 

(TD<5Ts). The three pitching systems might have a change in 

the dynamics that can be due to abrupt change in the 

hydraulic system (5a) or to high air content in the oil at a 

slower rate (5b). In this case, the total number of actuator 

faults is seven. Finally, a system fault might occur in the 

driving train due to friction changes with time that might 

break down the train. The total number of faults to be 

supervised is therefore 28. However, it can be seen that some 

faults are similar. For instance, if one is able to detect a fault 

of the sensor measuring blade position 
mi,1 , then under the 

same conditions, we would be able to detect faults on sensor 

measuring positions of blades 2 and 3. By this way, it can be 

seen that we have ten different kinds of faults to be 

considered distinctly as classified in table 1. The process has 

other sensors, measuring for instance the wind speed, that are 

not supervised for the moment. 

Table 1.  Wind turbine faults 

Fault 

No. 
Fault type Fault site symbols desired

DT  

1a) Fixed value 
Sensor fault 

blade 

positions 

1,1 m ,
2,1 m , 

1,2 m ,
2,2 m , 

1,3 m ,
2,3 m  

<10Ts 

1b) Gain factor 

2a) Fixed value Sensor fault  

rotor speed 1,mr ,
2,mr  

2b) Gain factor 

3a) Fixed value Sensor fault 

generator 

speed 
1,mg ,

2,mg  
3b) Gain factor 

4a) Offset 

Actuator fault, 

convertor 

system 
g  <5Ts 

5a) 

Abrupt 

changed 

dynamics 
Actuator fault, 

pitch systems 1 ,
2 ,

3  
<8Ts 

5b) 
Slow changed 

dynamics 
<600Ts 

6) 
Changed 

dynamics 

System fault, 

drive train 
r ,

g  free 

The benchmark allows simulating the wind turbine control 

under normal operation (zone II: power optimization and 



 

 

     

 

zone III: constant power production). Fault detection will be 

studied using the closed-loop simulation in these zones with a 

real measured sequence of wind of 4400s. 

The model of the turbine is given in Odgaard et al. (2009). It 

is nonlinear and the measurements are noisy. Note also the 

switching control structure. Let us recall the pitch system and 

converter models that will explicitly be referred to in the fault 

scenarios. The pitch system is hydraulic and can be modelled 

by a second order transfer function: 
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Where )(, smk  and )(sd

k  are the measured and desired 

positions of pitch k=1, 2, 3 and [wn ,  ]=[11.11, 0.6] are the 

model parameters. 

The converter dynamics can be modeled by a first order 

transfer function: 
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Where m

g  and d

g  are the real and desired generator torques, 

and =0.02s. The real torque being non measured, it is 

calculated from the measured generator speed 
mig , . 

4. SVM for fault detection in wind turbines 

Fault detection by SVM is developed in two parts. First of 

all, a set of measurement data with and without fault is used 

to learn models for detection of each fault (using the given 

wind sequence as an input). The obtained models are then 

validated in a new fault scenario. 

4.1 SVM Learning 

The key step in learning a new model for fault detection by 

SVM is the definition of the vector x to be used for 

classification. This vector should contain the most pertinent 

information on the behavior of the system. It should not be 

limited to the measurement output. It can include the inputs, 

the set-points, combination of those or variation of the 

outputs with time. In order to build a useful vector, one 

should carefully observe the process outputs for each fault 

and propose a combination that ensures a sufficiently high 

impact of the considered fault in x. 

Different vectors were proposed for the different kinds of 

faults. For the 6 sensors measuring the pitch positions (
mik , , 

k=1, 2, 3, i=1, 2), the following vector was used (faults 1a 

and 1b in table 1): 
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Where tj and tj-1 are the time instance j and j-1 respectively. 

The first line in x at time tj detects differences between two 

sensors of the same location and the second and third lines 

show the variation with time for the two sensors 

measurement. Note that absolute values are used in x in all 

cases. When 0)()( 1,,  jmikjmik tt  , this term is 

replaced by  a large constant value (5000) in order to enhance 

distinguishability  between the fixed value fault and normal 

case (no fault) where these values oscillate between 1×10
-2

 

and 2. The measured values 
mik ,  were filtered using a first 

order filter with a time constant =0.06s in order to reduce 

the sensitivity to process disturbances or measurement noise. 

The Kernel used for all of the faults was Gaussian. The 

variance corresponding to x in equation 6 is =10. 

Sensor faults of the speeds of the generator and rotor (
mig , , 

mir , , i=1, 2), the following vector was used for learning 

(faults 2a, 2b, 3a and 3b): 

 

rgp

tt

tt

tt

x

jmpjmp

jmpjmp

jmpjmp

,,

)()(

)()(

)()(

12,2,

11,1,

2,1,




































 (7) 

 

The measurements 
g  where filtered with =0.02s and 

r  

with =0.06s before use in equation 7. The Gaussian variance 

is tuned at =15 in order to increase the ability of detection. 

Note however that very high variance values might lead to 

false alarms. For faults (4a and 6), the following vector was 

used:      
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Where d

g  is the desired generator speed, calculated from the 

desired generator torque d

g  obtained by the controller (

d

grP / , with Pr the desired power). The factor 

610

2 10 wind    in the 3
rd

 component of x was used to take 

into account the wind speed and for normalization. The used 

values 
mik ,  are the filtered ones (as in eq. 6). Note that d

g  

was also filtered using a first order filter with a time constant 

=0.02s. The objective of this filter was to take into account 

the dynamic of the control system (time necessary for m

g  to 

attain d

g , see (5) and not to reject measurement noise or 

disturbances. The variance corresponding to x in (8) is =10 

for fault type 4a and =200 for 6. 

For the detection of faults 5a and 5b, the following vector 

was used: 
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The variance corresponding to x in (9) is =10. 

Once the learning vectors are defined for each fault, different 

fault scenarios are then simulated and attributed the ticket 

y=+/-1 (with or without fault). About six scenarios are 

considered for each fault with different amplitudes. The SVM 

learning algorithm uses the outputs (x) and the corresponding 

y values to identify a model as a function of the given options 

(ex. Kernel type and tuning parameters). Note that the same 

model is used for all faults of type 1a, another model for all 

faults of type 1b and so on. Ten models were therefore 

developed. 

4.2 SVM validation 

Let us consider the following scenario that we simulate using 

the wind sequence given in Odgaard et al. (2009): 

1. Fault type 1a,  31,1 m  occurring between 100s 

and 200s. 

2. Fault type 1b, 
2,22,2 5 mm    on 500-600s. 

3. Fault type 1a,  71,3 m  on 900-1000s. 

4. Fault type 2a, 1

1, .2  sradmr  on 1200-1300s. 

5. Faults type 2b and 3b, 
2,2, 5.0 mrmr    and 

1,1, 5.1 mgmg    on 1700-1800s. 

6. Fault type 4a, Nmgg 1000  on 4200-4300s. 

7. Fault type 6, 
dtdt   22.0 . 

8. Fault type 5a, parameters in pitch actuator 2 (wn,) 

abruptly changed from [11.11, 0.6] to [5.73, 0.45] 

from 3200 and 3300s. 

9. Fault type 5b, parameters in pitch actuator 3 (wn,) 

changed slowly (with a linear function) from [11.11, 

0.6] to [3.42, 0.9] over 30s, remained constant during 

40s, and then decreased again over 30s from 3400 and 

3500s. 
 

Fig. 1 shows that fixed value fault of the pitch position could 

be detected in the required time (see Table 2). This fault type 

could be detected in both controller zones easily. Fig. 2 

shows the estimation results of fault of type 1b (gain factor) 

for the same sensor (pitch position). Only faults with gain 

factor higher than or equal to 2 can be detected during the 

required detection time. If the gain factor is reduced, then the 

detection time is prolonged. For a gain factor of 5, the 

detection time is 261 the sample period. This is logic since 

the fault would take longer time to give an impact on the 

output if the gain factor is lower. Note the oscillating nature 

of the residual in this case which should be due to the slower 

fault dynamic. 

Fig. 3 indicates the occurrence of a fixed value fault in sensor 

1,mr  indicating the rotor speed. It can be seen that it is 

achieved instantaneously without difficulty if the error lever 

is 2 (while the requirement are 1.4). When a gain factor type 

error of level 50% takes place a rotor speed sensor (
2,mr ), 

the estimations are again slightly more oscillating but the 

fault is detected rapidly (Fig. 4). Note however that the 

objective would be to detect 10% error in this sensor. 

Probably, this can be achieved by introducing more data in 

the learning step and adapting an adequate filtering method. 

 
Fig. 1. Fault detection and isolation of pitch position (fault 

n°1, type 1a). 

 
Fig. 2. Fault detection and isolation of pitch position (fault 

n°2, type 1b). 
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Fig. 3. Fault detection and isolation of the rotor speed (fault 

n°4, type 2a). 

 

Fig. 5 shows the fault detection results of the sensor of the 

generator speed (
1,mg ). In case of a gain factor error of 

50%, an important change in the residual occurs rapidly. If 

the threshold is to be fixed at 0 for all the faults (not 

necessary but preferable), then the model should slightly be 

modified to ensure the detection of the fault rapidly. 

 

Concerning the estimation of actuator of the rotator torque 

speed, it could be detected as required in terms of fault level 

and rapidity (Fig. 6). Note that x uses the desired torque value 

that is compared to the measured one with 2 sample periods 

delay. This fault could be detected in both of the controller 

zones. 

 
Fig. 4. Fault detection and isolation of the rotor speed (faults 

n°5, type 2b). 

 
Fig. 5. Fault detection and isolation of the generator speed 

(faults n°5, type 3b). 

 

Concerning the actuators of the pitch positions, their faults 

could not be detected by the proposed vector x. Further 

investigation of this vector and parameter tuning should be 

done in order to extract the hidden information about these 

actuators among the measurements. 

 

Finally, Fig. 7 shows fault detection of the system consisting 

of the drive train friction. This error was modeled by 

changing the values of the model parameter
dt . However, 

the error could be detected only with much higher fault level 

in this parameter. 

 
Fig. 6. Fault detection and isolation of the convertor torque 

(fault n°6, type 4a). 
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Fig. 7. Fault detection and isolation of the system (fault n°7, 

type 6). 

Table 2.  Fault detection results 

N° Fault 
Fault level 

to detect 

Fault 

detected & 

isolated s

D

T

T
 

s

desired

D

T

T

 

1a) 
FV 

mik ,   Yes 2 

<10 

1b) 
GF 

mik ,  
GF ≥ 1.2 

 

Yes 

if GF ≥ 2  

261 

if 

GF=5 

2a) 
FV 

mir ,   yes
 

2 

2b) 
GF 

mir ,  GF ≥ 0.1 
Yes if 

GF ≥ 0.5 
67 

3a) 
FV 

mig ,   Yes 2 

3b) 
GF 

mig ,  GF ≥ 0.1 
Yes if 

GF ≥ 0.2 
2 

4a) 
Offset 

g  
100 g  Yes 2 <5 

5a) 
Abrupt 

k  
wn≥ 0.5 

 ≥ 0.25 
No - <8 

5b) 
Slow 

k  
wn≥ 0.25 

 ≥ 0.5 
No

 
- <600 

6) 

Drive 

train, 

r ,

g  

 dt 5% 
Yes if 

 dt 50%
  2835 Free 

FV: Fixed value, GF: Gain factor, TD/Ts: sample periods. 

 

 

 

6. CONCLUSIONS 

The wind energy is profitable if the technology of the 

turbines is optimized and online supervised. In view of the 

large number of components in the system, high number of 

frequent but noisy measurements besides the system 

disturbances, a good statistical method should be used for 

fault detection and isolation. The SVM was found to be a 

good method for pattern recognition. A model was learned to 

detect all the sensors, actuators and system faults. Defining 

the input vector of the model as well as parameter tuning are 

primordial in order to detect and isolate the faults. A 

compromise between sensitivity to noise and fault detection 

was to be determined. 

Most of the requirements for fault detection were realized. 

Faults of type 1a and 5a could be detected without further 

constraints. Faults n° 1b, 1a, 2a, 2b, 3a, 3b and 6 could be 

detected only with higher error levels than required. Finally, 

faults n° 5a and 5b could not be detected. However, further 

investigation might be necessary in order to improve the 

quality of the estimations mainly by improving the input data 

vector x. 
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