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Abstract— The common spatial patterns (CSP) algorithm
is commonly used to extract discriminative spatial filters for
the classification of electroencephalogram (EEG) signals in the
context of brain-computer interfaces (BCIs). However, CSP
is based on a sample-based covariance matrix estimation.
Therefore, its performance is limited when the number of
available training samples is small. In this paper, the CSP
method is considered in such a small-sample setting. We propose
a regularized common spatial patterns (R-CSP) algorithm by
incorporating the principle of generic learning. The covariance
matrix estimation in R-CSP is regularized through two regu-
larization parameters to increase the estimation stability while
reducing the estimation bias due to limited number of training
samples. The proposed method is tested on data set IVa of the
third BCI competition and the results show that R-CSP can
outperform the classical CSP algorithm by 8.5% on average.
Moreover, the regularization introduced is particularly effective
in the small-sample setting.

I. INTRODUCTION

Noninvasive brain computer interfaces (BCIs) aim to trans-
late brain activity into sequences of control commands so
that a subject, such as a disable person, can communicate
with the outside world, such as a computer, without using
the peripheral nervous system [1]. Electroencephalography
(EEG) [2] has been widely used to capture the electric field
generated by the central nervous system and to infer the
user’s intention for noninvasive BCI applications because of
its simplicity, inexpensiveness and high temporal resolution
[3]. EEG signals are recorded from multiple electrodes
placed on the scalp of a subject, resulting in multichannel
time series.

Multichannel EEG signals typically have low signal-to-
noise ratio (SNR), giving a rather blurred image of the
brain activity [4]. Thus, they are not directly usable in BCI
applications. The common spatial patterns (CSP) method
is an algorithm frequently employed to extract the most
discriminative information from EEG signals. It was first
suggested for binary classification of EEG trials in [5]. CSP
is a spatial filtering method that seeks projections with the
most differing power/variance ratios in the feature space. The
projections are calculated by a simultaneous diagonalization
of the covariance matrices of two classes [4]. Usually, only
the first a few most discriminative filters obtained are useful
for classification.
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However, it should be noted that the classical CSP algo-
rithm relies on a sample-based covariance matrix estimation.
Therefore, its performance is limited when there are only
a small number of samples available for training. Similar
small-sample problems have arisen in many other applica-
tions. In the regularized discriminant analysis (RDA) [6],
regularization was first introduced to tackle the small-sample
problem for linear and quadratic discriminant analysis. It
was pointed out by J. H. Friedman in [6] that small number
of training samples tends to result in biased estimation of
eigenvalues. At the same time, the sample-based covariance
estimates from such poorly-posed problem are usually highly
unstable. Accordingly, two regularization parameters are
introduced to take these undesirable effects into account.
In more recent works, regularization has been successfully
employed for small-sample problem in various applications
such as face recognition [7], [8] and gait recognition [9]–
[11].

In this paper, we investigate the regularization of the CSP
algorithm in the small-sample setting. A regularized CSP (R-
CSP) algorithm is proposed by regularizing the covariance
matrix estimation in common spatial pattern extraction. Al-
though robust covariance matrix estimation is an old topic
[6], to the best of the authors’ knowledge, this is the first
attempt to apply the regularization techniques in [6] to the
problem of EEG signal classification. As in [6], there are
two regularization parameters involved. The first regulariza-
tion parameter controls the shrinkage of a subject-specific
covariance matrix towards a “generic” covariance matrix to
improve the estimation stability, based on the principle of
generic learning [12]. The second regularization parameter
controls the shrinkage of the sample-based covariance matrix
estimation towards a scaled identity matrix to account for the
bias due to limited number of samples. Data set IVa from the
BCI Competition III was used to evaluate the performance
of the proposed algorithm, with significant improvement
demonstrated, especially in the small-sample setting.

II. REGULARIZED COMMON SPATIAL PATTERNS

This section starts with the covariance matrix estimation
in the classical CSP method. Regularized covariance matrix
estimation is then proposed, built upon the regularization
introduced in [6] and generic learning in [12]. Lastly, the
R-CSP algorithm for EEG signal classification is presented.

A. Covariance Matrix Estimation in the CSP Method

The CSP algorithm is widely used in processing multi-
channel EEG signals during imagined hand movement [3],



[5], [13], [14]. It extracts several spatial filters so that the
variances of the filtered signals are the most discriminative
for two classes. A given single EEG trial with N channels is
represented as a matrix E of size N × T , where T denotes
the number of samples in each channel for a single trial.
The normalized sample covariance matrix S of a trial E is
obtained as [5]

S =
EET

tr(EET )
, (1)

where the superscript ‘T ’ indicates the transpose of a matrix
and tr(·) is the trace of a matrix (sum of the diagonal
elements). In this paper, we consider only binary classifi-
cation problems so there are two classes only, indexed by
c = {1, 2}. For simplicity, we assume that there are M trials
in each class available for training for a subject of interest,
indexed by m as E(c,m), where m = 1, ...,M . Thus, each
trial has a corresponding covariance matrix S(c,m).

The average spatial covariance matrix for each class is
then calculated as [5]

S̄c =
1
M

M∑
m=1

S(c,m), c = {1, 2}. (2)

B. Regularization of the Covariance Matrix Estimation in
Small-Sample Setting

The discriminative patterns extracted by the CSP algorithm
is based on the sample covariance matrix estimation in (2).
However, this estimation problem could be poorly posed
when there are only a small number of training trials [6]. In
this case, the parameters estimated can be highly unstable,
giving rise to high variance. Furthermore, the low signal-to-
noise ratio for EEG signals makes the estimation variance
even higher.

The method of regularization has been proved to be
effective in solving the small-sample problem by biasing the
estimates away from their sample-based values toward more
“physically plausible” values [6]. This reduces the variance
associated with sample-based estimates while tending to in-
crease bias. The bias variance trade-off is generally regulated
by one or more regularization parameters that control the
strength of the biasing.

Following the regularization technique introduced in [6],
the regularized average spatial covariance matrix for each
class is calculated as

Σ̂c(β, γ) = (1− γ)Σ̂c(β) +
γ

N
tr[Σ̂c(β)] · I, (3)

where β (0 ≤ β ≤ 1) and 0 ≤ γ ≤ 1 are two regularization
parameters, I is an identity matrix of size N×N , and Σ̂c(β)
is defined as following:

Σ̂c(β) =
(1− β) · Sc + β · Ŝc

(1− β) ·M + β · M̂
. (4)

In (11), Sc is the sum of the sample covariance matrices for
all M training trials in class c:

Sc =
M∑

m=1

S(c,m), (5)

while Ŝc is the sum of the sample covariance matrices for a
set of M̂ generic training trials {E(c,m̂)} in class c:

Ŝc =
M̂∑

m̂=1

S(c,m̂). (6)

In the above definitions, S(c,m) and S(c,m̂) are the normal-
ized sample covariance matrix as defined in (1).

The term Ŝc is introduced in (11) to reduce the variance
in the covariance matrix estimation and it tends to produce
more stable results. For its construction, we adopt the idea
of generic learning introduced for one-training-sample face
recognition [12]. For a subject whose EEG signals are to be
classified, the training process employs the corresponding
EEG trials collected for other subjects in the regularization
term Ŝc.

From (11), the first regularization parameter β controls the
degree of shrinkage of the training sample covariance matrix
estimation to the generic covariance matrix estimation. From
(10), the second regularization parameter γ controls the
degree of shrinkage toward a multiple of the identity matrix,
with the average eigenvalue of Σ̂c(β) as the multiplier. This
shrinkage effectively decreases the larger eigenvalues and
increases the smaller ones since the estimates in (1) tend
to bias the eigenvalues in the opposite direction, especially
in the small-sample setting [6]. It should be noted that
when β = γ = 0, the R-CSP algorithm is reduced to the
conventional CSP algorithm so CSP can be considered as a
special case of R-CSP.

C. The Regularized CSP for EEG Signal Classification

Next, the procedures in the classical CSP method [5] is
followed to get the R-CSP algorithm. The composite spatial
covariance in R-CSP is formed and factorized as

Σ̂(β, γ) = Σ̂1(β, γ) + Σ̂2(β, γ) = ÛΛ̂ÛT , (7)

where Û is the matrix of eigenvectors and Λ̂ is the diagonal
matrix of corresponding eigenvalues. In this paper, we adopt
the convention that the eigenvalues are sorted in descending
order.

Next, the whitening transformation is obtained as

P̂ = Λ̂
−1/2

ÛT . (8)

Σ̂1(β, γ) and Σ̂2(β, γ) are whitened as

Σ̃1(β, γ) = P̂Σ̂1(β, γ)P̂T (9)

and
Σ̃2(β, γ) = P̂Σ̂2(β, γ)P̂T , (10)

respectively. Σ̃1(β, γ) can then be factorized as

Σ̃1(β, γ) = B̂Λ̂1B̂T , (11)

and the full projection matrix is formed as

Ŵ0 = B̂T P̂. (12)

For the most discriminative patterns, only the first and last
α columns of Ŵ0 are kept to form Ŵ, which is of size



N × Q, where Q = 2α. For feature extraction, a trial E is
first projected as

Ẑ = ŴT E. (13)

Then, a Q-dimensional feature vector ŷ is formed from the
variance of the rows of Ẑ as

ŷq = log

(
var(ẑq)∑Q

q=1 var(ẑq)

)
, (14)

where ŷq is the q-th component of ŷ, ẑq is the q-th row of
Ẑ, and var(ẑq) is the variance of the vector ẑq .

For classification, the Fisher’s discriminant analysis is
used. A projection is solved to maximize the ratio of the
between-class scatter over the within-class scatter. In classi-
fication, the class label of the nearest neighbor is assigned
to a test trial.

III. EXPERIMENTAL RESULTS

In this section, the experimental results are presented for
performance evaluation.

A. Data Description

Date set IVa from the BCI Competition III [15] is used to
test the proposed R-CSP algorithm. This data set was pro-
vided by Fraunhofer FIRST Intelligent Data Analysis Group,
and Campus Benjamin Franklin of the Charité, University
Medicine Berlin (Neurophysics Group) [16].

In each capturing session, a subject was presented with
visual cues for 3.5 seconds, indicating one of the three motor
imageries that the subject should perform: left hand, right
hand and right foot. The presentation of the target cues was
separated by intervals of random length from 1.75 to 2.25
seconds for the subject to relax. Only the right hand and right
foot motor imageries are provided for five healthy subjects
(‘aa’, ‘al’, ‘av’, ‘aw’, and ‘ay’). The EEG signals were
recorded using 118 electrodes at the positions of the extended
international 10/20 system.

There are 280 trials for each subject, i.e., 140 trials for
each class, per subject. The number of training trials (M )
and the number of test trials for each subject are indicated
in the second and third rows of Table I, respectively. The
number of testing trials is much more than M for subjects
‘av’, ‘aw’, and ‘ay’. The EEG signals were down-sampled
to 100 Hz and band-pass filtered to the 7-30 Hz frequency
band [4].

B. Performance Evaluation and Discussion

From the description above, we have N = 118, T =
350, and M as indicated in Table I. In this experimental
evaluation, only the two most discriminative CSP features
are used for classification for preliminary evaluation, i.e.,
Q = 2 (α = 1). To study the potential of R-CSP, we examine
its performance over a testing grid of (β, γ) values defined
by the outer product of β = [0 : 0.1 : 1] and γ = [0 :
0.1 : 1]. The best results obtained and the corresponding
regularization parameters (β∗, γ∗) are reported. In future
work, schemes to determine (β∗, γ∗) will be investigated,

TABLE I
CLASSIFICATION PERFORMANCE ON DATA SET IVA OF THE BCI

COMPETITION III.

Subject aa al av aw ay Mean

M 84 112 42 28 14 -
#Test per class 56 28 98 112 126 -
CSP CCR in % 62.5 83.9 57.1 51.3 73.4 65.7

R-CSP CCR in % 69.6 83.9 64.3 70.5 82.5 74.2
β∗ 0 0/0.3 0.6 0.3 0 -
γ∗ 0.2 0 0.1 0 0.1 -

such as cross validation [6]. The generic training trials for
a particular subject (e.g., ‘ay’) consist of the trials from all
the other subjects (e.g., ‘aa’, ‘al’, ‘av’, and ‘aw’). Thus,
M̂ = 560. As pointed out earlier, R-CSP with β = γ = 0
is equivalent to the classical CSP. The correct classification
rate (CCR) is used to measure the classification accuracy.

The CCRs obtained from CSP and R-CSP, as well as
(β∗, γ∗) are reported in Table I for each subject. The average
CCRs (mean) are also included in the last column in the
table, where an average improvement of 8.5% is achieved,
indicating the effectiveness of the regularization procedure
introduced in this paper.

Fig. 1 depicts the performance gains for the five subjects
as well as their average. It is observed that the regularization
procedure is the least effective on subject ‘al’, which has 112
trials per class for training while only 28 trials per class for
test. For the other four subjects, the average improvement
in CCR is 10.65%. In particular, there is an improvement
of 19.2% for subject ‘aw’. These results demonstrate the
strength of R-CSP in dealing with small-sample setting in
EEG signal classification.

The regularization parameter β controls the shrinkage of
covariance matrix estimation for the subject of interest to
the generic covariance matrix estimation based on other
subjects. From Table I, a small value of β tends to have
better performance, except for subject ‘av’. Fig. 2 illustrates

Fig. 1. Illustration of the improvement in CCRs due to regularization.



(a) (b)

Fig. 2. Illustration of the CCRs for various values of β with (a) γ = 0,
and (b) γ = 1.

the variation of CCRs for different values of β for each
subject with γ = 0 and γ = 1. Fig. 2(a) indicates that
the performance could be sensitive to the value of β. While
for γ = 1, the covariance estimates become scaled identity
matrices and therefore, the patterns extracted are not useful
for classification, as shown in Fig. 2(b).

The regularization parameter γ controls the shrinkage of
the covariance matrices to scaled identity matrices. From
Table I, for all subjects, a small value of γ (≤ 0.2) gives
the best classification performance. Fig. 3 demonstrates the
variation of CCRs for different values of γ for each subject
with β = 0 and β = 1. Fig. 3(a) is consistent with the
observation from Table I that a small value of γ is preferred
for good regularization results. When β = 1, from Fig. 3(b).
the performance is more sensitive to the value of γ and the
results are poorer than the case of β = 0 in general (except
for subject ‘av’).

IV. CONCLUSIONS

The classical CSP algorithm uses a sample-based co-
variance matrix estimation. This results in limited perfor-
mance with small number of training samples. This work
addresses the problem of discriminative common spatial
pattern extraction in the small-sample setting. A regularized
CSP algorithm has been introduced based on regulariza-
tion and generic learning. Two regularization parameters
are involved in reguarlizing the covariance estimates. One
is to increase the estimation stability and the other is to
reduce the estimation bias. Experimental results on data set

(a) (b)

Fig. 3. Illustration of the CCRs for various values of γ with (a) β = 0,
and (b) β = 1.

IVa of BCI competition III demonstrated the effectiveness
of the proposed R-CSP method, particularly in the small-
sample setting. Nonetheless, further studies are needed for
appropriate regularization parameter determination.
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