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Abstract—Common spatial pattern (CSP) is a popular algo-
rithm for classifying electroencephalogram (EEG) signals in the
context of brain–computer interfaces (BCIs). This paper presents
a regularization and aggregation technique for CSP in a small-
sample setting (SSS). Conventional CSP is based on a sample-based
covariance-matrix estimation. Hence, its performance in EEG clas-
sification deteriorates if the number of training samples is small.
To address this concern, a regularized CSP (R-CSP) algorithm is
proposed, where the covariance-matrix estimation is regularized
by two parameters to lower the estimation variance while reducing
the estimation bias. To tackle the problem of regularization param-
eter determination, R-CSP with aggregation (R-CSP-A) is further
proposed, where a number of R-CSPs are aggregated to give an
ensemble-based solution. The proposed algorithm is evaluated on
data set IVa of BCI Competition III against four other competing
algorithms. Experiments show that R-CSP-A significantly outper-
forms the other methods in average classification performance in
three sets of experiments across various testing scenarios, with
particular superiority in SSS.

Index Terms—Aggregation, brain–computer interface (BCI),
common spatial pattern (CSP), electroencephalogram (EEG),
generic learning, regularization, small sample.

I. INTRODUCTION

NOWADAYS, electroencephalography (EEG) signal clas-
sification is receiving increasing attention in the biomedi-

cal engineering community [1]. EEG captures the electric field
generated by the central nervous system. Due to its simplicity,
inexpensiveness, and high temporal resolution, it is widely used
in noninvasive brain–computer interfaces (BCI) [2], [3], where
brain activity is translated into sequences of control commands
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that enable a subject, such as a disable person, to communicate
to a device, such as a computer, without using the peripheral
nervous system [2]. In noninvasive EEG-based BCI, the study
of motor imagery is of particular interest. It is measurable as po-
tential changes in EEG signals, the event-related desynchroniza-
tion/synchronization (ERD/ERS) patterns. EEG has also been
an important tool in epilepsy diagnosis [4] for seizure detection,
classification, and localization.

EEG records brain activities as multichannel time series from
multiple electrodes placed on the scalp of a subject. However,
recorded multichannel EEG signals typically have very low
signal-to-noise ratio (SNR) [2], and they are not directly usable
in BCI applications. One of the most effective algorithms for
EEG signal classification is the common spatial pattern (CSP)
algorithm, which extracts spatial filters that encode the most
discriminative information [5]–[8]. CSP was first introduced
for the binary classification of EEG trials in [5]. It is designed to
find spatial projections that maximize the power/variance ratios
of the filtered signals for two classes. Its calculation is through a
simultaneous diagonalization of the covariance matrices of two
classes. Usually, only the first few most discriminative filters are
needed for classification.

This paper focuses on EEG signal classification in a small-
sample setting (SSS). There are two motivations for this prob-
lem. On one hand, this SSS problem often arises in practical
EEG signal-classification problem, when there is only a small
training set with limited number of trials available. It should
be noted that although a large number of data points can be
sampled from a trial with sufficiently high frequency, these data
points are highly dependent. Generally, they are not representa-
tive enough for EEG signal classification and a large number of
trials are still preferred for reliable classification performance.
On the other hand, as the user usually has to perform a tedious
calibration measurement before starting the BCI feedback ap-
plications, one important objective in BCI research is to reduce
the number of training trials needed (and the time needed) for a
specific task [9]. Since the conventional CSP algorithm is based
on sample-based covariance-matrix estimation, the accuracy of
the estimation will be affected significantly if there is only a
small training set.

The problem due to SSS in classification is common in many
other applications. Regularization was first introduced to tackle
the small-sample problem for linear and quadratic discriminant
analysis in the regularized discriminant analysis (RDA) [10].
It was pointed out in [10] that a small number of training
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samples tends to result in a biased estimation of eigenvalues.
On the other hand, sample-based covariance estimates from
these poorly posed problems are usually highly unreliable. Two
regularization parameters were introduced by Friedman [10] to
account for these undesirable effects. Recently, the regulariza-
tion technique has been adopted to tackle small-sample prob-
lems in various applications such as face recognition [11]–[13]
and gait recognition [14].

This paper studies the regularization of the CSP algorithm in
SSS. A regularized CSP (R-CSP) algorithm is proposed to regu-
larize the covariance-matrix estimation in CSP extraction. Two
regularization parameters are adopted, as in [10]. The first regu-
larization parameter controls the shrinkage of a subject-specific
covariance matrix toward a more generic covariance matrix to
lower the estimation variance. This is built upon the generic
learning principle in [15]. The second regularization parameter
controls the shrinkage of the sample-based covariance-matrix
estimation toward a scaled identity matrix to account for the bias
due to the limited number of samples. Furthermore, the problem
of regularization parameter determination needs to be addressed
for R-CSP. However, in SSS, the number of samples may not be
large enough for determining regularization parameters by the
commonly used cross-validation method [10]. Thus, the aggre-
gation strategy introduced in [12] for tensor object recognition
is adopted for regularization parameter determination in EEG
signal classification through R-CSP, where a number of differ-
ently regularized CSPs are combined to give an ensemble-based
solution. The experimental evaluation is performed on data set
IVa from BCI Competition III. The proposed algorithm out-
performs four other competing CSP-based algorithms across a
wide range of testing scenarios with more advantage in SSS.

There are several other versions of regularized spatial filters
in the literature. The adaptive spatial filter in [16] replaced the
information used in training by a priori information for more
robust performance by considering various artifacts in EEG sig-
nals. Heuristic parameter selection was used in [16]. The invari-
ant CSP in [17] incorporated neurophysiological prior knowl-
edge in covariance-matrix estimation to alleviate the nonsta-
tionarities in EEG signals, and the regularization parameter was
determined by cross validation. A method of logistic regression
with dual spectral regularization (LRDS) was introduced in [18]
for EEG classification, where cross validation was employed for
parameter selection too. A composite CSP was proposed in [8]
to transfer information from other subjects to a subject of interest
with fewer training samples in order to boost the performance
in SSS. Ten values for the regularization parameter are tested,
with the average results reported. Lately, the spatially regular-
ized CSP (SRCSP) [19] is proposed to include spatial a priori
in the learning process by penalizing spatially nonsmooth filters
with a regularization term. Another recent work that involves
regularization for EEG analysis is the regularized discriminative
framework in [20].

The main contributions of this work are as follows.
1) The introduction of an R-CSP algorithm for EEG sig-

nal classification, which was first reported in a prelimi-
nary version in [21]. It should be noted that while there
have been several approaches proposing variations of CSP

through more robust covariance-matrix estimation [8],
[16]–[18], [22], none has considered the effects of small
training-sample set on the eigenvalues of the covariance
matrices, as discussed previously. Thus, this paper com-
plements existing works on CSP extensions by addressing
this important problem frequently arising in practice. It
also has a positive impact in data collection effort, pro-
cessing efficiency, and memory/storage requirement in ap-
plications involving EEG signal classification, since now
much fewer training samples are needed for the same level
of performance.

2) The proposal of an aggregation solution for the problem of
regularization parameter determination in R-CSP, where
the commonly-used cross-validation scheme [17], [18]
may not be applicable in SSS. This solution adopts the
principles introduced in uncorrelated multilinear discrim-
inant analysis [12], [23] for tensor object recognition to
CSP extraction in EEG signal classification. This is a sig-
nificant further progress from the preliminary publication
in [21], where the regularization parameter determination
is not solved and only a feasibility study was provided.
In contrast, the composite CSP in [8] did not address the
problem of regularization parameter determination.

3) A detailed study on EEG signal classification in SSS that
considers 2–120 trials per condition, including extreme
small number of trials (2–10) in contrast to the recent
literature [3] that considers 10–100 trials per condition.
This study consists of 1500 experiments in total in or-
der to study the statistical significance of the obtained
results. Another two sets of experiments are carried out
for performance evaluation against four competing solu-
tions. Based on the simulations, insightful observations
have been made regarding the proposed algorithm. This
is also a significant development from the earlier publica-
tion [21].

The rest of this paper is organized as follows. Section II
presents the R-CSP algorithm for EEG signal classification. In
Section III, the problem of regularization parameter determina-
tion is discussed, and an aggregation solution is formulated for
R-CSP. Section IV provides an experimental study of the EEG
signal-classification problem in SSS and an evaluation of the
proposed algorithm. Finally, Section V draws the conclusion.

II. REGULARIZED CSP FOR EEG SIGNAL CLASSIFICATION

This section presents the R-CSP algorithm for classification of
EEG signals. Regularized covariance-matrix estimation is used
in R-CSP by employing the regularization technique introduced
in [10] and the generic learning principle in [15]. The EEG
classification scheme of R-CSP follows that in the conventional
CSP algorithm [5].

A. Sample-Based Covariance Matrix in CSP

In CSP-based EEG signal classification, a matrix E of size
N × T is used to represent a single N -channel EEG trial, with T
samples in each channel for a single trial. The sample covariance
matrix of a trial E is normalized with the total variance as [5]
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follows:

S =
EET

tr(EET )
(1)

where the superscript “T ” denotes the transpose of a matrix, and
tr(·) denotes the trace of a matrix. This paper considers only
binary classification problems and the two classes are indexed
by c = {1, 2}. For simplicity, it is assumed that M trials are
available for training in each class for a subject of interest,
indexed by m as E(c,m ) , m = 1, 2, . . . ,M . Hence, each trial has
a covariance matrix S(c,m ) and the average spatial covariance
matrix is then calculated for each class as [5] follows:

S̄c =
1
M

M∑
m=1

S(c,m ) , c = {1, 2}. (2)

The discriminative spatial patterns in CSP are extracted based
on this sample-based covariance-matrix estimation. When there
are only a small number of training trials, such an estimation
problem could be poorly posed [10] and the estimated param-
eters could be highly unreliable, giving rise to high variance.
Moreover, the low SNR for EEG signals makes the estimation
variance even higher.

B. Regularized Covariance-Matrix Estimation in SSS

Regularization technique has been proved to be effective in
tackling the small-sample problem. It works by biasing the esti-
mates away from their sample-based values toward more “phys-
ically plausible” values [10], which reduces the variance of the
sample-based estimates while tending to increase bias. This
bias-variance trade-off is commonly controlled by one or more
regularization parameters [10].

As in [10], the proposed R-CSP calculates the regularized
average spatial covariance matrix for each class as follows:

Σ̂c(β, γ) = (1 − γ)Ω̂c(β) +
γ

N
tr[Ω̂c(β)] · I (3)

where β and γ are two regularization parameters (0 ≤ β, γ ≤ 1),
and I is an N × N identity matrix. Ω̂c(β) comprises covariance
matrices for the trials from the specific subject as well as generic
trials from other subjects. It is defined as follows:

Ω̂c(β) =
(1 − β) · Sc + β · Ŝc

(1 − β) · M + β · M̂
(4)

where Sc is the sum of the sample covariance matrices for all
M training trials in class c

Sc =
M∑

m=1

S(c,m ) (5)

and Ŝc is the sum of the sample covariance matrices for M̂
generic training trials {E(c,m̂ )} from other subjects in class c

Ŝc =
M̂∑

m̂=1

S(c,m̂ ) . (6)

In these definitions,S(c,m ) andS(c,m̂ ) are the normalized sample
covariance matrix defined in (1).

The term Ŝc introduced in (4) aims to reduce the variance in
the covariance-matrix estimation, and it tends to produce more
reliable results. This is built upon the idea of generic learning
for the one-training-sample case in face recognition [15], and
it also embodies the same principle as that in [8] and [17].
For the classification of EEG signals from a particular subject,
the proposed training process constructs the regularization term
Ŝc using corresponding EEG trials collected from some other
subjects, i.e., generic trials from the population. When there are
S subjects available in total, each with M trials for each class,
M̂ = (S − 1) × M .

The rationales of the regularization scheme in (4) follow those
in [10]. The first regularization parameter β controls the degree
of shrinkage of the training-sample covariance-matrix estimates
to the pooled estimate, which is to reduce the variance of the
estimates. The second regularization parameter γ controls the
degree of shrinkage toward a multiple of the identity matrix,
with the average eigenvalue of Ω̂c(β) as the multiplier. This
second shrinkage has the effect of decreasing the larger eigen-
values while increasing the smaller ones. This is because the
sample-based estimates in (1) tend to bias the eigenvalues in the
opposite direction, especially in SSS [10]. Thus, γ is to coun-
teract such bias due to the limited number of samples. From
the aforementioned, the conventional CSP can be considered
as a special case of R-CSP, i.e., when β = γ = 0. In addition,
the composite CSP introduced in [8] could be considered as a
special case of R-CSP with γ = 0.

The effects of the adopted regularization scheme are illus-
trated in Figs. 1 and 2 with some typical examples. In the figures,
the first 20 largest eigenvalues of a typical average spatial co-
variance matrix are shown in descending order with magnitudes
in log scale. Fig. 1 depicts the eigenvalue distribution without
regularization and with a regularization β = 0.3 (γ = 0) for five
randomly selected training sets with M = 10 for the same class
of a particular subject. It is observed that the variance of the
eigenvalues are much higher when there is no regularization by
β. Fig. 2 simply shows the eigenvalue distribution without regu-
larization and with a regularization γ = 0.1 (β = 0) for a fixed
training set with M = 10. It can be seen that the regularization
by γ decreases the relative magnitudes of the larger eigenvalues
over those of the smaller eigenvalues, which reduces the bias
due the small number of training samples in turn.

C. R-CSP Feature Extraction and Classification

With the formulation of the regularized covariance-matrix
estimation in SSS, feature extraction in R-CSP follows that in
the classical CSP method [5]. The regularized composite spatial
covariance is formed and factorized as follows:

Σ̂(β, γ) = Σ̂1(β, γ) + Σ̂2(β, γ) = ÛΛ̂ÛT (7)

where Û denotes the matrix of eigenvectors, and Λ̂ denotes the
diagonal matrix of corresponding eigenvalues. This paper adopts
the convention that the eigenvalues are sorted in descending
order. The full projection matrix is then formed as follows:

Ŵ0 = B̂T Λ̂
−1/2

ÛT (8)
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Fig. 1. Illustration of the effects of the regularization parameter β on five
random training sets with M = 10 for the same class of a particular subject. (a)
Eigenvalue distribution of a typical average covariance matrix without regular-
ization by β . (b) Eigenvalue distribution of a typical average covariance matrix
with regularization β = 0.3.

where B̂ denotes the matrix of eigenvectors for the whitened

spatial covariance matrix Λ̂
−1/2

ÛT Σ̂1(β, γ)ÛΛ̂
−1/2

.
To get the most discriminative patterns, the first and last α

columns of Ŵ0 are retained to form an N × Q matrix Ŵ with
Q = 2α. In R-CSP feature extraction, an input trial E is first
projected as follows:

X̂ = ŴT E. (9)

A Q-dimensional feature vector ŷ is then constructed from the
variance of the rows of X̂ as follows:

ŷq = log

(
var(x̂q )∑Q

q=1 var(x̂q )

)
(10)

where ŷq denotes the qth component of ŷ, x̂q denotes the qth
row of X̂, and var(x̂q ) denotes the variance of x̂q .

Finally, R-CSP classification in this paper employs the
Fisher’s discriminant analysis (FDA) followed by the simple
nearest-neighbor classifier (NNC). FDA solves for a projec-
tion v to maximize the ratio of the between-class scatter to the

Fig. 2. Illustration of the effects of regularization parameter γ on a fixed
training set: the eigenvalue distribution of a typical average spatial covariance
matrix with and without regularization by γ .

Fig. 3. Two examples showing the variation of classification accuracy (coded
as the gray levels in the displayed checkerboard) for 121 pairs of regularization
parameters β and γ . The pair resulting in the highest classification accuracy is
marked with a black star.

within-class scatter

vFDA = arg max
v

vT ΨB v
vT ΨW v

(11)

where ΨB and ΨW are the between-class scatter matrix and
the within-class scatter matrix [24] for the features ŷ in (10),
respectively. This problem can be solved as a generalized eigen-
value problem [25] and the discriminant feature vector zm is
obtained as follows:

z = vT
FDA ŷ. (12)

In NNC classification, the nearest neighbor is found as μ∗ =
arg minμ ‖z − zμ ‖, where zμ is the feature vector for the μth
training trial, μ = 1, 2, . . . , 2M , and ‖ · ‖ is the Euclidean norm
for vectors. The class label of the μ∗th training sample cμ∗ is
then assigned to the test trial E.

Fig. 3 gives two examples on the variation of classification
accuracy for 121 pairs of regularization parameters β and γ. The
classification accuracy is coded as the gray levels (white for the
highest and black for the lowest) in the displayed checkerboard.
A black star is used to mark the highest classification accuracy
in each example. The effectiveness of both β and γ is observed
in the figure. At the same time, it could be seen that the classi-
fication accuracy could be sensitive to parameter settings, and
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determining the optimal pair of regularization parameters is a
challenging problem.

III. AGGREGATION OF R-CSPS

As pointed out at the end of Section II, there is one impor-
tant problem remaining for the proposed R-CSP algorithm, i.e.,
the problem of regularization parameter determination, which
is a model selection problem [10]. This problem is important
since it is unlikely to know what values are good for the two
regularization parameters in advance, as illustrated in Fig. 3.
In earlier work [21], 121 regularization parameter combinations
were tested and the best result for each case was reported, which
is a close-set optimization scheme. Consequently, the evaluation
is not a fair one. This section proposes an aggregation solution
to this problem.

Traditionally, the problem of parameter determination is
solved through cross-validation (and the overall assessment,
such as generalization error estimation is performed by nested
cross validation) [10], [17], [18], which is a sample-based esti-
mation method. Typically, one round of cross validation parti-
tions a sample set of data into complementary subsets. Analysis
is performed on one subset (the training set), and the other sub-
set (the validation set) is used to validate the analysis. Usually,
several rounds of cross validation are needed using different
partitions to reduce variability.

The cross-validation method has been employed in our study
to determine the regularization parameters of R-CSP for EEG
signal classification in SSS. However, the R-CSP determined
this way could perform worse than the conventional CSP algo-
rithm in some cases. The main cause is that in SSS, there may
be insufficient number of samples for the construction of the
training and validation subsets to get reliable estimates of the
regularization parameters. For example, in the case that only
three samples are available for each class per subject, only one
sample can be used for the training, validation, and testing, re-
spectively. When only two samples per class from a subject are
available for training and testing, there is no data for valida-
tion except the testing data, therefore, cross validation can not
be performed. Therefore, the cross-validation scheme may not
always be applicable to parameter determination of R-CSP for
EEG signal classification in SSS.

Based on the aforementioned study, this paper adopts the
technique of aggregation for regularization parameter determi-
nation developed in face-recognition and gait-recognition appli-
cations [12], resulting in R-CSP with aggregation (R-CSP-A).
In R-CSP-A, instead of using a single pair of regularization
parameters from the interval [0, 1], a fixed set of regulariza-
tion parameter pairs is used and the results from differently
regularized CSPs are combined to form an aggregated solu-
tion. This approach embodies the principle of ensemble-based
learning. Since different regularization parameter pair will re-
sult in different discriminative features, such diversity is good
for ensemble-based learning, based on the generalization theory
explaining the success of boosting [26]–[28]. As for the combi-
nation scheme, there are various ways including the feature-level
fusion [29], the matching score-level fusion [30], [31], and more

Fig. 4. Pseudo-code implementation of the R-CSP-A algorithm for EEG signal
classification in SSS.

advanced ensemble-based learning, such as boosting [26], [32],
[33]. In this paper, the simple sum rule for matching score fusion
is employed, as in [12].

Fig. 4 provides the pseudocode implementation of R-CSP-A
for EEG signal classification in SSS, where s = 1, . . . , S is
used to index the S subjects, each with M trials for each
class. In feature extraction, the input trials E(c,m )( s )

, c = {1, 2},
m = 1, 2, . . . , M , and s = 1, . . . , S are fed into A differently
regularized CSP feature extractors with parameters βa and γa

to obtain a set of A different feature vectors ŷ(a) .
In classification, FDA is applied to ŷ(a) to get z(a) for NNC.

For each a, the nearest-neighbor distance of the test trial E to
each candidate class c is calculated as [12] follows:

d(E, c, a) = min
μ,cμ =c

‖ z(a) − zμ (a ) ‖ . (13)

The range of d(E, c, a) is then matched to the interval [0, 1]
as [32] follows:

d̃(E, c, a) =
d(E, c, a) − mincd(E, c, a)

maxcd(E, c, a) − mincd(E, c, a)
. (14)

Finally, the aggregated nearest-neighbor distance is obtained
employing the simple sum rule as [12] follows:

d(E, c) =
A∑

a=1

d̃(E, c, a) (15)
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and the test sample E is assigned the label: c∗ =
arg mincd(E, c). Since only two classes are considered in this
paper, the aforementioned aggregation process is equivalent to
a simple majority voting in this case. Nonetheless, the aggrega-
tion formulation here is applicable in future work for more than
two classes.

In addition, it should be noted that there are other ensemble-
based extensions of CSP [34]–[36]. In [35], EEG signals are
decomposed into subbands, where CSP is applied to extract
features from each subband, and then the subband scores are
fused to give the final classification result. In the mixtures of
CSP approach [36], multiple CSP feature extractors are con-
structed by bootstrap sampling of the training set to improve
the classification performance. These two algorithms apply the
ensemble-based learning principle on the training data, while
the proposed R-CSP-A applies the ensemble-based learning in
the feature-extraction process with fixed training data. These
two approaches employ the same principle at different stages of
processing, therefore, they could be combined to work together
for even better classification performance. However, this is out
of the scope of this paper, therefore, it is left for future research.

IV. EXPERIMENTAL STUDY

This section presents a large number of experiments carried
out in support of the following objectives.

1) Investigate how the performance of EEG signal classifi-
cation is affected by the number of training samples.

2) Evaluate the performance of R-CSP-A against the con-
ventional CSP algorithm as well as other competing CSP-
based algorithms on EEG signal classification.

A. Experimental Data and Design

Experiments are carried out on data set IVa of BCI Compe-
tition III [34], [37]. In each capturing session of this data set,
visual cues were presented to a subject for 3.5 s with the indica-
tion of one of the three motor imageries that the subject should
perform: left hand, right hand, and right foot. For the subject
to relax, the cue presentation was separated by intervals with
random length ranging from 1.75 to 2.25 s. Only the right hand
and right foot motor imageries of five healthy subjects (“aa,”
“al,” “av,” “aw,” and “ay”) are provided for public use. The
EEG signals were recorded with 118 electrodes located at the
positions of the extended international 10/20 system. There are
140 trials for each class per subject, i.e., a total of 280 trials for
each subject. All EEG signals were down sampled to 100 Hz and
bandpass filtered. Thus, N = 118 and T = 350. In addition, the
first and last three columns of Ŵ0 are used for classification,
i.e., Q = 6 (α = 3), as recommended in [2] and [3]. For a sub-
ject, whose EEG signals are to be classified, the training process
of R-CSP employs the corresponding EEG trials collected for
other four subjects in the regularization term Ŝc , e.g., the generic
training trials for “ay” consist of all the trials from “aa,” “al,”
“av,” and “aw”. Therefore, M̂ = 560. For the aggregation, the
research in ensemble-based learning [32] indicates that high di-
versity of the learners to be combined is preferred. Thus, based
on the study in [21] and the experience learnt from [12], the

following six values for β and five values for γ are empirically
selected in an approximately even logarithmic scale to cover a
wide range, ensure diversity, and also limit the number of values
for computational concerns

β ∈{0, 0.01, 0.1, 0.2, 0.4, 0.6}, γ ∈{0, 0.001, 0.01, 0.1, 0.2}

where one more value is selected for β than for γ because
the effective β values have a wider range, as seen in [21].
The aforementioned selection gives A = 6 × 5 = 30 differently
regularized CSP feature extractors, indexed by a = 1, . . . , A.
This setting for R-CSP-A is used in all the experiments in the
following.

Three sets of experiments are carried out as detailed in the
following.

I) To study EEG signal classification in SSS, the following
15 values of M (the number of training samples per class)
are tested for each subject:

M ∈ {2, 3, 4, 5, 6, 8, 10, 20, 30, 40, 50, 60, 80, 100, 120}.

To ensure the significance of the studies, for each class per
subject, the M trials are randomly selected from the 140
trials and the rest 140 − M trials are used for testing. The
reported results are the average of 20 such repeated exper-
iments. Thus, there are 5 × 15 × 20 = 1500 experiments
in total. For this study, the 7–30 Hz frequency band is
used. Besides space limitation, as the commonly used ten-
fold cross validation cannot be performed for very small
values of M , only the results for conventional CSP and
R-CSP-A are reported for this set of experiments.

II) To evaluate the proposed R-CSP-A algorithm against com-
peting solutions, this set of experiments is carried out us-
ing subject-specific frequency bands that are used by the
winning entry of data set IVa in BCI Competition III [38].
R-CSP-A is compared against the following five compet-
ing algorithms:

a) CSP: the conventional CSP [5];
b) LW-CSP: CSP with regularized covariance matri-

ces determined by Ledoit and Wolf’s method [39],
[40];

c) LRDS: logistic regression with dual spectral reg-
ularization, where the regularization parameter is
determined by ten-fold cross validation (20 param-
eters are tested as suggested by the authors) [18];

d) SRCSP: spatially regularized CSP with ten-fold
cross validation to determine the regularization pa-
rameters (80 parameter combinations are tested as
suggested by the authors) [19];

e) R-CSP-CV: the proposed R-CSP with ten-fold
cross validation to determine the regularization
parameters (30 parameter combinations used by
R-CSP-A are tested).

To be more realistic, the first L trials are used for training
and the rest are used for testing. The following ten values
of L are tested for each subject:

{10, 20, 40, 60, 80, 100, 120, 160, 200, 240}.
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TABLE I
EEG CLASSIFICATION PERFORMANCE FOR EXPERIMENT I, WITH CCRS IN PERCENTAGE REPORTED (MEAN ± STD)

III) In addition, the EEG classification experiments are carried
out in the setting of BCI Competition III for completeness,
where L = 84, 112, 42, 28, and 14 for subject “aa,” “al,”
“av,” “aw,” and “ay,” respectively. The results for CSP,
LW-CSP, LRDS, SRCSP, R-CSP-CV, and R-CSP-A are
reported. Similar to experiment II, subject-specific fre-
quency bands by the winner of data set IVa [38] are used
in this set of experiments.

B. Experimental Results

In the following, the experimental results are presented for
the experimental settings described previously. For performance
evaluation, the correct classification rate (CCR) is used to mea-
sure the classification accuracy.

1) Results for Experiment I: The complete experimental re-
sults for the first set of experiments are summarized in Table I,
where the mean and standard deviation (Std) of the 20 repe-
titions are reported for the five subjects and for the 15 values
of M tested. This table also includes the average over subjects
for each value of M and the average over the various Ms for
each subject. In all the testing scenarios, the R-CSP-A algo-
rithm outperforms the classical CSP algorithm, with an average
improvement of 6% in CCR. This shows that the regulariza-
tion scheme introduced in this paper is effective in improving
the EEG-signal-classification accuracy. Furthermore, on an av-
erage, for M ranging from 2 to 10, R-CSP-A outperforms CSP
by 8.6%, while R-CSP-A outperforms CSP by only 3.8% for

Fig. 5. Illustration of the improvement achieved over CSP by the proposed
R-CSP-A algorithm in experiment I.

M ranging from 20 to 120, indicating that R-CSP-A is particu-
larly powerful when the number of training samples is small. In
particular, for subject “ay,” the average improvement in CCR is
more than 17% for M = 2, 3, 4, and 5. Fig. 5 further illustrates
the classification performance difference between R-CSP-A and
CSP. Similar to the observations in Table I, the figure shows that
the advantage of R-CSP-A over CSP is more significant for
small values of M . Due to its ensemble learning nature, R-CSP-
A also has lower Std than CSP on an average, as seen from
the right bottom of Table I. To study the statistical significance



LU et al.: REGULARIZED COMMON SPATIAL PATTERN WITH AGGREGATION FOR EEG CLASSIFICATION IN SMALL-SAMPLE SETTING 2943

Fig. 6. Demonstration of EEG classification performance difference among
subjects in experiment I. (a) CCRs obtained by CSP for each of the five subjects.
(b) CCRs obtained by R-CSP-A for each of the five subjects.

of the improvement of R-CSP-A over CSP, paired t-tests were
carried out for all the 1500 experiments. The p value obtained
is much less than 0.001, indicating that the performance gain of
R-CSP-A over CSP is statistically significant.

Fig. 6 plots the results for the five subjects separately. The
figure demonstrates that the classification results are subject
dependant. For some subjects such as “al,” the classifica-
tion accuracy is generally higher, while for some other sub-
jects such as “av,” the classification accuracy is generally
lower. Furthermore, the classification performance does not al-
ways increase monotonically with M . In Table I, the best re-
sults for each subject and their average over various M are
highlighted with italic bold fonts. For CSP, the best results
for “aa,” “al,” “av,” “aw,” “ay,” and their average are ob-
tained with M = 100, 40, 120, 80, 60, and 100, respectively. For
R-CSP-A, the best results for “aa,” “al,” “av,” “aw,” “ay,” and
their average are obtained with M = 100, 40, 120, 100, 60, and
100, respectively. Similar observations can be made from results
reported by other researchers, e.g., Figs. 1 and 2 in [3]. This is
in contrary to our common belief that better results should be
obtained with more training data and the cause needs further
investigation. A possible cause could be the increased number

Fig. 7. EEG classification performance comparison for ten values of L, aver-
aged over five subjects in experiment II.

Fig. 8. EEG classification performance comparison in experiment II for the
five subjects and their mean, averaged over ten values of L. (Please note that
colors are used so this figure is best viewed on screen or in color print.)

of outliers, therefore, effective outlier elimination may mitigate
this problem.

2) Results for Experiment II: The results for experiment II
are summarized in Figs. 7 and 8. There are a total of 300 exper-
iments (ten experiments on five subjects for six algorithms).

Fig. 7 depicts the EEG classification performance averaged
over five subjects for the ten values of L tested. From the fig-
ure, it could be seen that R-CSP-A outperforms R-CSP-CV for
all averaged cases, illustrating the effectiveness of the proposed
aggregation scheme over traditional cross validation. R-CSP-
A also outperforms the other four algorithms (CSP, LW-CSP,
LRDS, and SRCSP) in most averaged cases except for L = 160,
where LRDS obtains better results than R-CSP-A. Furthermore,
the figure demonstrates again that R-CSP-A is particularly ef-
fective for small values of L. In general, R-CSP-A outperforms
the other methods by a greater amount for a smaller value of L.
For example, the average CCR over L = 10, 20, and 40 for CSP,
LW-CSP, LRDS, SRCSP, R-CSP-CV, and R-CSP-A are 58.6%,
69.8%, 73.3%, 68.2%, 78.5%, and 83.4%, respectively. R-CSP-
A has outperformed all the other methods significantly in this
case, with CCR 10.1% higher than LRDS and 4.9% higher than
R-CSP-CV.



2944 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 12, DECEMBER 2010

TABLE II
EEG CLASSIFICATION PERFORMANCE FOR EXPERIMENT III, THE BCI
COMPETITION III SETTING, WITH CCRS REPORTED IN PERCENTAGE

Fig. 8 shows the EEG classification performance averaged
over the ten values of L tested for five subjects as well as the
overall mean. The advantage of R-CSP-A over R-CSP-CV is
observed for all subjects except “aw” and R-CSP-A gives higher
CCRs than the other four algorithms in most averaged cases
except for subject “ay,” where LRDS is particularly effective
and gives the best results (on the other hand, the performance
of LRDS is particularly poor for subject “av”). The overall
average CCR for CSP, LW-CSP, LRDS, SRCSP, R-CSP-CV,
and R-CSP-A are 72.5%, 75.5%, 76.9%, 77.1%, 81.5%, and
84.5%, respectively, as the last bar group in Fig. 8 indicates. R-
CSP-A has outperformed all the other methods on average, with
CCR 7.4% higher than SRCSP and 3% higher than R-CSP-CV.
Moreover, even R-CSP-CV produces better results than all the
other four algorithms (4.4% higher than SRCSP), demonstrating
the effectiveness of the proposed regularization scheme for CSP
and also showing that the results from the training set can be well
transferred to the test set (though still inferior to the aggregation
scheme).

3) Results for Experiment III: Table II reports the results for
experiment III, where the classification tasks are carried out in
the BCI Competition III setting. The highest CCR among the
six algorithms listed in Section IV-A is highlighted in bold font
for each subject and their average. On an average, R-CSP-A has
outperformed the other five algorithms by at least 4%. In this
set of results, its superiority over other methods is mainly on
the more difficult subject “av,” and its performance on the other
subjects has no significant difference over LRDS and R-CSP-
CV. In the exceptional case of “aa” (with L = 84), R-CSP-CV
gives a better result than R-CSP-A, though this is not the general
case, as shown in Section IV-B-2.

The CCRs by the winner for this data set in BCI Competition
III are included at the bottom of Table II for easy reference. It
could be seen that R-CSP-A is inferior to the winner. However, it
should be noted that the winner algorithm involves an ensemble
classifier based on three methods: CSP on ERD, autoregressive
models on ERD, and LDA on temporal waves of readiness
potential. Different methods are used for two groups of subjects
with fine-tuned parameters for each subject [38]. CSP is the only
method used for all subjects. Furthermore, the winner algorithm
uses bootstrap aggregation and extends training samples with
former classified test samples for two subjects to achieve the best
performance. Thus, R-CSP-A is less complex and not subject
customized compared to the winner algorithm, therefore, the
performance gap is expected and it should be considered as one

significant enhancement of a particular component (CSP) of the
winner algorithm.

4) Discussions: One important implication from the exper-
imental results is that the proposed algorithm has positive im-
pact on the data collection effort, processing efficiency and
memory/storage requirement in EEG signal-classification ap-
plications. This is because for the same level of performance,
R-CSP-A needs much fewer training samples than other com-
peting algorithms. For example, from Fig. 7, to achieve an av-
erage CCR of at least 80%, R-CSP-A needs only 10 samples
in total, while R-CSP-CV needs 20 samples, and the other four
algorithms need more than 90 samples.

Finally, since R-CSP-A is an aggregation of A multiple
R-CSPs, the computational time of R-CSP-A is about A times
of that of CSP. However, since CSP is a very efficient algorithm
and only a very small number (six) of features is involved for
each R-CSP, the increased computational time will result in little
performance degradation in modern computer systems.

V. CONCLUSION

The sample-based covariance-matrix estimation in the con-
ventional CSP algorithm results in limited performance when
only a small number of samples is available for training. This
paper addresses the problem of discriminative CSP extraction
in SSS for EEG signal classification. CSP is regularized using
two regularization parameters, with one, to lower the estimation
variance, and the other, to reduce the estimation bias. The prin-
ciple of generic learning is applied in the regularization process.
To tackle the problem of regularization parameter determination
in SSS, the aggregation method in [12] is adopted. Experiments
were performed on data set IVa of BCI Competition III. The
experimental results have demonstrated the effectiveness of the
proposed R-CSP-A algorithm, especially its superiority over
other competing algorithms in SSS. Moreover, R-CSP-A has
a positive impact in data collection effort, data storage, and
processing efficiency as well.
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