
17 Programming Patterns in MATLAB

Loren Shure

loren@mathworks.com

The MathWorks, Inc.

24 Prime Park Way

Natick, MA 01760-1500

USA

Copyright 1984 - 1997 by The MathWorks, Inc.

217 Programming Patterns in MATLAB

Why 17?

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

317 Programming Patterns in MATLAB

Here are the 17 unique regular
tilings of the plane

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

417 Programming Patterns in MATLAB

What is a pattern?

A pattern is a recurring solution to a standard
problem.

Christopher Alexander (an architect) defines a
pattern like this:

Each pattern describes a problem that occurs over
and over again in our environment and then
describes the core of the solution to that problem
in such a way that you can use this solution a
million times over without ever doing it the same
way twice.

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

517 Programming Patterns in MATLAB

Patterns in MATLAB Coding

What is the best way to talk about patterns?

We'll follow a template:

Force

Counterforce

Usage

Example

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

617 Programming Patterns in MATLAB

Reasons to Look for Patterns

 speed

 maintainability

 robustness

 extensibility

 coding productivity

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

717 Programming Patterns in MATLAB

Patterns We'll Explore

 Comma-separated lists

 Vectorized set/get

 Sparse

 Subfunctions for
parsing (switchyards)

 Logical operators
and scalar expansion

 Cell arrays of strings

 Unneeded data copies

 NaN
 Indexing

 feval (dblquad)

 ND arrays

 find

 varargin/out

 Structures to set HG
properties

 Structures in HG UserData

 OOP

 Tony's trick (duplicating
data)% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

817 Programming Patterns in MATLAB

Pattern #1 -
Comma-separated Lists

Force: Speed, programmability where dimensionality is
unknown

Counterforce: Weird, strange-looking notation

Usage: Vectorize manipulation of cell arrays using {:}

Example: fftshift

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

917 Programming Patterns in MATLAB

Pattern #1 -
Comma-separated Lists

DC

Nyquist DC

Nyquist

X(idx{:}) X(idx{1},idx{2},...,idx{end})

Y = X([3 4 1 2],[4 5 6 1 2 3]);

X Y

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1017 Programming Patterns in MATLAB

Pattern #1 -
Comma-separated Lists

function y = fftshift(x)

numDims = ndims(x);

% Create cell array to hold indices

idx = cell(1, numDims);

for k = 1:numDims

m = size(x, k);

p = ceil(m/2);

% Swap indices for each dimension

idx{k} = [p+1:m 1:p];

end

y = x(idx{:}); % Use {:} for N-D indexing

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1117 Programming Patterns in MATLAB

Pattern #2 - Vectorizing
handle graphics

Force: Speed, code size (no loops)

Counterforce: Awkward notation

Usage: Use cat, {:}, and cell arrays when you
want to change the same property for a collection
of objects

Example: Complement the text colors for the
objects with a vector of handles, htext

htc = get(htext,{'color'});

colors = 1 - cat(1,htc{:});

set(htext,{'color'}, num2cell(colors,2))
% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1217 Programming Patterns in MATLAB

Pattern #3 - Sparse matrices

Force: Memory efficiency

Counterforce: Not immediately intuitive

Usage: Use sparse when data structures are
essentially mostly zero

Example: Find and link neighboring pixels
associated with objects in an image, such as in
bwlabel

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1317 Programming Patterns in MATLAB

Pattern #3 - Sparse matrices

1
3

2

1

2

1

Patches labeled 1 and 2 are
equivalent. We will remember
that labels i and j are equivalent
by entering a 1 in positions (i,j)
and (j,i) in a sparse matrix.

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1417 Programming Patterns in MATLAB

Pattern #3 - Sparse matrices
S = sparse([],[],[],numRuns,numRuns,3*numRuns);

for i=1:numRuns

[...]

% Find start and end of current run

rowStart = runs(i,1); rowEnd = runs(i,2);

% Find overlapping runs on previous column

overlaps = find(((rowEnd >= (lastColRuns(:,2)-1)) & ...

(rowStart <= (lastColRuns(:,3)+1))));

[...]

for j=1:numOverlappingRuns

[...]

% Runs i & j overlap with diff. labels -- store info in S

if (labels(i) ~= labels(j)), S(i,j) = 1; S(j,i) = 1; end

end

[...]

end % Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1517 Programming Patterns in MATLAB

Pattern #4 - Encapsulating
functions with switchyards

Force: Fewer M-files

Counterforce: Lots of information in one file

Usage: Use to encapsulate all the information for a
problem formulation in a single file using
switch, feval, and subfunctions

Example: Differential equations to be solved with
the ode suite, e.g., ballode

% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1617 Programming Patterns in MATLAB

Pattern #4 - Encapsulating
functions with switchyards

From the template file, odefile.m:

function varargout = odefile(t,y,flag,p1,p2)

switch flag

case '' % Return dy/dt = f(t,y).

varargout{1} = f(t,y,p1,p2);

case 'init' % Return default [tspan,y0,options].

[varargout{1:3}] = init(p1,p2);

case 'jacobian' % Return Jacobian matrix df/dy.

varargout{1} = jacobian(t,y,p1,p2);
.
:
otherwise

error(['Unknown flag ''' flag '''.']);

end % Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1717 Programming Patterns in MATLAB

Pattern #4 - Encapsulating
functions with switchyards

function dydt = f(t,y,p1,p2)

dydt = < Insert a function of t and/or y, p1, and p2 here. >

% --

function [tspan,y0,options] = init(p1,p2)

tspan = < Insert tspan here. >;

y0 = < Insert y0 here. >;

options = < Insert options = odeset(...) or [] here. >;

%---

function dfdy = jacobian(t,y,p1,p2)

dfdy = < Insert Jacobian matrix here. >;
.
: % Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1817 Programming Patterns in MATLAB

Pattern #5 - Logical operators,
indexing, & scalar expansion

Force: Speed up replacement operations in arrays

Counterforce: none

Usage: Use logical operations to find conditions
and scalar expansion to perform substitution

Example: Replace all values of A outside the range
of [17, 42] with NaNs

A = [-1 45 23 36 9;

3 7 -11 2 17];

A(A<17 | A>42) = NaN

A =

NaN NaN 23 36 NaN

NaN NaN NaN NaN 17% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

1917 Programming Patterns in MATLAB

Pattern #6 - String cell arrays

Force: Need to deal with data of different lengths

Counterforce: none

Usage: Use to collect and process data that
comprises character information

Example: Parse inputs for a function that takes
several possible strings as options.

function y = myopts(x,str)

okstrs = {'contract','expand'};
idx = strmatch(lower(str),okstrs);

if length(idx) ~= 1, error('Unknown option'),end

y = feval(okstrs{idx},x);
% Copyright 2003 The MathWorks, Inc.

Copyright 1984 - 1997 by The MathWorks, Inc.

2017 Programming Patterns in MATLAB

Summary

{:} vectorizing

HG

sparse switch-

yards

scalar

expansion

string

cell arrays

Unneeded

data copies
NaN Indexing feval ND

arrays

find varargin
varargout

setting HG

props via

structures

storing HG

state in

UserData

OOP Tony's

trick% Copyright 2003 The MathWorks, Inc.

