17 Programming Patterns in MATLAB

>> 1997

>> NEREELJconference

Loren Shure
loren@mathworks.com
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760-1500
USA

% Copyright 2003 The MathWorks, Inc.

:

!“»A 17 Programming Patterns in MATLAB

Here are the 17 unique regular
tilings of the plane

Epl

¥

7

L e
LT T = wr
1 s L
1 !#' E

12 13

% Copyright 2003 The MathWorks, Inc.

[

!“ 17 Programming Patterns in MATLAB

What Is a pattern?

A pattern is arecurring solution to a standard
problem.

Christopher Alexander (an architect) defines a
pattern like this:

Each pattern describes a problem that occurs over
and over again in our environment and then
describes the core of the solution to that problem
In such a way that you can use this solution a
million times over without ever doing it the same
way twice.

% Copyright 2003 The MathWorks, Inc.

\

«Ei~ 17 Programming Patterns in MATLAB

Patterns in MATLAB Coding

What is the best way to talk about patterns?
We'll follow a template:

Force
Counterforce
Usage
Example

% Copyright 2003 The MathWorks, Inc.

-+ 17 Programming Patterns in MATLAB

Reasons to Look for Patterns

¢ speed

¢ maintainability

¢ robustness

+ extensibility

¢ coding productivity

% Copyright 2003 The MathWorks, Inc.

\

Ei~ 17 Programming Patterns in MATLAB 7

Patterns We'll Explore

o Comma-separated lists * -nheeded datacopies

_ + NaN
+ Vectorized set/get * Indexing
+ Sparse + feval (dblquad)
¢ Subfunctions for + ND arrays
parsing (switchyards) | 4
. Loglcal operators » varargin/out
scalar expansion

¢ Structures to set HG
properties

¢ Structures in HG UserData
¢ OOP

¢ Tony's trick (duplicating
% Copyright 2003 The I\gtm(ﬁ% Inc.

¢ Cell arrays of strings

Q ! -~ 17 Programming Patterns in MATLAB 8

r "1
Pattern #1 - 'm
Comma-separated Lists
Force: Speed, programmability where dimensionality Is
unknown

Counterforce: Weird, strange-looking notation
Usage: Vectorize manipulation of cell arrays using {:}
Example: fftshift

% Copyright 2003 The MathWorks, Inc.

$~ 17 Programming Patterns in MATLAB 9

Pattern #1 - ml
Comma-separated Lists
X _ Y
Nyquist
—-
Nyquist

Y=X([3412],[456123)]);

X(1dx{:}) = X(1dx{1},1dx{2},...,1dx{end})

% Copyright 2003 The MathWorks, Inc.

¢~ 17 Programming Patterns in MATLAB 10

Pattern #1 - ml
Comma-separated Lists

function y = fftshift(x)
numDims = ndims(x);
% Create cell array to hold indices
1idx = cell(1, numDims);
for k = 1:numDims
m = size(x, k);
p =ceil(m/2);
% Swap indices for each dimension
idx{k} = [p+1l:m 1l:p];
end
y = x(idx{:}); % use {:} for N-D indexing
% Copyright 2003 The MathWorks, Inc.

\

«Ei~ 17 Programming Patterns in MATLAB

Pattern #2 - Vectorizing Rk
handle graphics B

Force: Speed, code size (no loops)
Counterforce: Awkward notation

Usage: Use cat, {:}, and cell arrays when you
want to change the same property for a collection
of objects

Example: Complement the text colors for the
objects with a vector of handles, htext

htc = get(htext,{'color'});
colors = 1 - cat(1,htc{:});

set (htext, 4; 'C%pgri-!jrst)zic‘)'o:s %G,Matl;]lvl\%mg&e'l 1(colors,?2))

E»! 17 Programming Patterns in MATLAB

\

Pattern #3 - Sparse matrices

Force: Memory efficiency
Counterforce: Not immediately intuitive

Usage: Use sparse when data structures are
essentially mostly zero

Example: Find and link neighboring pixels

associated with objects in an image, such as in
bwlabel

% Copyright 2003 The MathWorks, Inc.

7w

[

~' «“ 17 Programming Patterns in MATLAB

©

Pattern #3 - Sparse matrices

A B

#

1
Patches labeled 1 and 2 are
1 equivalent. We will remember
that labels | and j are equivalent
by entering a 1 in positions (i,))
2 and (j,I) in a sparse matrix.

% | Copyright 2003 The MathWorks, Inc.

Q ‘A - 17 Programming Patterns in MATLAB 14

- Pattern #3 - Sparse matrices

S = sparse([],[],[],numRuns, numRuns, 3*numRuns) ;
for i=1:numRuns

[...]

% Find start and end of current run

rowStart = runs(i,1l); rowend = runs(i,2);

% Find overlapping runs on previous column

overlaps = find(((rowend >= (lastColRuns(:,2)-1)) & ...
(rowstart <= (lastColRuns(:,3)+1))));

[...]
for j=1:numOverlappingRuns
[...]
% Runs i & j overlap with diff. labels -- store info in S
if (labels(i) ~= labels(j)), s(i,j) = 1; s(j,i) = 1; end
end
[...]

end % Copyright 2003 The MathWorks, Inc.

:

$~ 17 Programming Patterns in MATLAB 15

Pattern #4 - Encapsulating
functions with switchyards

Force: Fewer M-files
Counterforce: Lots of information in one file

Usage: Use to encapsulate all the information for a
problem formulation in a single file using
switch, feval, and subfunctions

Example: Differential equations to be solved with
the ode suite, e.g., bal lode

% Copyright 2003 The MathWorks, Inc.

\

’ ‘»!, 17 Programming Patterns in MATLAB

Pattern #4 - Encapsulating
functions with switchyards

From the template file, odefile.m:

function varargout = odefile(t,y,flag,pl,p2)

switch flag

case '' % Return dy/dt = f(t,y).
varargout{l} = f(t,y,pl,p2);

case 'init' % Return default [tspan,yO,options].
[varargout{l:3}] init(pl,p2);

case 'jacobian' % Return Jacobian matrix df/dy.
varargout{l} = jacobian(t,y,pl,p2);

6therwise
error(['Unknown flag ''' flag '''.']1);

end % Copyright 2003 The MathWorks, Inc.

:

«‘»!~ 17 Programming Patterns in MATLAB 17

Pattern #4 - Encapsulating
functions with switchyards

function dydt = f(t,y,pl,p2)

d}/dt = < Insert a function of t and/or y, pl, and p2 here. >

function [tspan,yO,options] = init(pl,p2)
tspan = < Insert tspan here. >;
y0 = < Insert y0 here. >;

options = < Insert options = odeset(...) or [] here. >;

function dfdy = jacobian(t,y,pl,p2)
dfdy = < Insert Jacobian matrix here. >;

% Copyright 2003 The MathWorks, Inc.

«-* 17 Programming Patterns in MATLAB

Pattern #5 - Logical operators, i
iIndexing, & scalar expansion &

Force: Speed up replacement operations in arrays
Counterforce: none

Usage: Use logical operations to find conditions
and scalar expansion to perform substitution

Example: Replace all values of A outside the range
of [17, 42] with NaNs

= [-1 45 23 36 9;
3 7 -11 2 17];
A(A<17 | A>42) = NaN
A =
NaN NaN 23 36 NaN
NaN NaN:opyrigINZa(NThe MaMNs, Inc. 17

\

$~ 17 Programming Patterns in MATLAB 19
* Pattern #6 - String cell arrays .

Force: Need to deal with data of different lengths
Counterforce: none

Usage: Use to collect and process data that
comprises character information

Example: Parse inputs for a function that takes
several possible strings as options.

function y = myopts(x,str)
okstrs = {'contract’, 'expand'};
1dx = strmatch(lower(str),okstrs);

if length(idx) ~= 1, error('unknown option'),end

y = Feval (gkstrsLidxhatin

:

g™ - 17 Programming Patterns in MATLAB 20

Q S umm a.ry

vectorizing sparse switch- scalar string
HG yards expansion cell arrays

i "w“
2
Unneeded NaN

data copies

1> e
T

find varargin

Var'ar'gout % eopypg[t%(% The Ma% or s
structures UserD a a

setting HG storlng HG

