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Abstract

The Babbage Di�erence Engine No. 2 replica that currently resides at
the Sunnyvale Computer History Museum evaluates a 7th-order polyno-
mial. Each cycle of the engine generates a new value. With the luxury
of modern computational tools one can generate an approximating poly-
nomial that will demonstrate the intended purpose of the engine, namely
to compute and print error-free mathematical tables.

This paper reviews the properties of �nite di�erences that underlie
the design of Di�erence Engine No. 2. An algorithm that converts �nite
di�erences to polynomial coe�cients is included. A direct emulator of
the 31 digit di�erence engine is described and demonstrated. The paper
concludes with the demonstration of initiation processes than might have
been used to initiate a di�erence engine computation.

1 Introduction

A reconstruction of Charles Babbage's Di�erence Engine No. 2 (DE2) is cur-
rently on loan to the Computer History Museum (CHM) through the generosity
of Nathan Myhrvold. The Charles Babbage story and how DE2 came to be
constructed more than 150 years after it was designed can be found in Doron
Swade's book, The Cogwheel Brain, [1] and his paper, The Construction of
Charles Babbage's Di�erence Engine No. 2, [2]. Briey, evolving industrial-
age commerce created a demand for accurate tables of mathematical functions.
Mathematicians knew how to perform the computations, [3] but manual execu-
tion was time consuming and translating the results to print was error prone.
In a popular anecdote, Charles Babbage was comparing tables of functions with
his astronomer colleague John Hershel. They found numerous discrepancies,
which caused Babbage to exclaim, \I wish to God that these calculations had
been executed by steam."
In 1823 Babbage proposed the construction of a calculating engine that

would compute and print error-free tables of mathematical functions. He peti-
tioned the British government and received funding to build Di�erence Engine
No. 1. A working fragment was constructed by his machinist Joseph Clement
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and demonstrated, but the development came to an abrupt end after a dispute
with Clement. Under British law Clement was entitled to keep the tools he
constructed. Eleven years into the e�ort with only the beautiful fragment in
hand, Babbage turned his attention to the design of an analytic engine capable
of general purpose computation under punched card control. He is most famous
for his analytic engine design, which foreshadowed modern digital computing.
He created the design for DE2 using re�nements developed for the analytic en-
gine. He o�ered DE2 to the British government in 1848 as a ful�llment of his
earlier commitment, but because of cost and non delivery, the o�er was declined.
Charles Babbage died in 1871 bitterly disappointed that his designs were never
realized. He is quoted as having said \another age must be the judge."
The London Museum of Science inherited Babbage's designs and papers,

which had been collected by his son. The plans resided in the London Museum
until a new curator, Doron Swade, following a proposal by Allan Bromley in
1985, started a project to build DE2 from Babbage's plans. The computation
section of DE2 was completed and demonstrated in 1991 to celebrate the bi-
centennial of Babbage's birth. The un�nished DE2 came to the attention of
Microsoft's former Chief Technical O�cer Nathan Myhrvold. He agreed to
fund the completion of the �rst DE2 replica provided that the London Science
Museum would build a second complete replica for his personal use. Upon its
completion in 2008, Myhrvold lent his DE2 replica to CHM where it has been
regularly demonstrated for public appreciation.
The web site http://ed-thelen.org contains tutorial material, references,

photographs, computer emulations of DE2's operation, and procedures for ini-
tiating a DE2 computation. Polynomial approximation is the underlying prin-
ciple of DE2's operation, which is designed to evaluate 7th-order polynomials.
As we shall see, the method of �nite di�erences makes it possible to reduce
sequential evaluation of the approximating polynomial to recursive additions.
Students of the DE2 often try to reproduce the addition operations on personal
computers, but neither standard spread sheets nor most computation-oriented
programming languages will reproduce the full 31-digit precision of DE2. With
the luxury of modern symbolic computation languages, we can perform such
computations with relative ease. In Babbages's time tedious manual computa-
tions were used, but speci�c details have been \left as exercises for the reader,"
as Babbage himself was fond of doing. This paper presents a mathematical
tour of the design and operation of DE2 with some thoughts on how its in-
tended purpose might have been realized in the 19th century.
To introduce some notation, let f(x) represent a continuous well behaved

function, which is to be approximated over a prescribed range of the independent
variable x by a polynomial. Let P (x) represent an approximating polynomial
of order p. An order p polynomial is de�ned by p + 1 coe�cients, which are
denoted eak with k = 0; 1; � � � ; p. The approximating polynomial would normally
be written as eP (x) = pX

k=0

eakxk: (1)
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Although f(x) is a continuous function, the independent variable is evaluated
only at uniformly spaced values xn = n�x + x0. Thus, the function values to
be used in the approximation are

fn = f(n�x+ x0); for n = 0; � � � ; N � 1. (2)

Note that eP (0) = ea0. Thus, we are e�ectively approximating a function fn,
with a polynomial eP (n�x) = pX

k=0

eak (n�x)k ; (3)

initially starting at n = 0. One could o�set the independent variable in the
polynomial, but it is readily shown that there is an equivalent polynomial of the
same order that translates the o�set to the �rst coe�cient. For mathematical
convenience, the following equivalent rede�nition will be used:

Pn =

pX
k=0

akn
k;where ak = eak (�x)k : (4)

The dependence on �x has been absorbed in the polynomial coe�cients, but
the �nal form of the approximating polynomial is completely general.
With (4) as a starting point, Section 2 introduces the �nite-di�erence method

and demonstrates the properties that support the DE2 operation. Finite di�er-
ences are di�erences between two consecutive values of a function or di�erences
of previously computed �nite di�erences. The eight DE2 columns (See Figure
2.3) are numbered 0 to 7. Each column has 31 number wheels that de�ne
31-digit integers. Column 0 on the left contains fn. Column 7 on the right
contains the 7th-order di�erence. The intermediate columns contain modi�ed
di�erences 1 through 6 that will be described later. However, once initialized
by entering 31-digit numbers in each column, the operation of the DE2 proceeds
as follows: During the �rst DE2 half cycle, the odd columns are simultaneously
added to even columns. With the symbol ! indicating replacement, the si-
multaneous additions with replacement are 7 + 6 ! 6, 5 + 4 ! 4, 3 + 2 ! 2,
and 1 + 0 ! 0. The new answer, overwritten in column 0, is available at the
end of the �rst half cycle. During the second DE2 half cycle, the modi�ed even
columns are simultaneously added to the odd columns and fn is transferred to
the print section. Notationally, 6 + 5 ! 5, 4 + 3 ! 3, 2 + 1 ! 1; and 0 !
printer.
The addition operations themselves are performed in two parts. First

digit-by-digit additions are performed with mechanical carry warnings set when
single-digit additions exceed 9. After the column wise addition operations are
performed, the carry warnings are serviced mechanically by adding one to the
next wheel in the column when a carry warning is encountered. This must be
a serial operation because the carry operation itself can initiate a carry.
Section 3 describes and demonstrates a direct numerical emulation of the

DE2 addition and carry operations. Direct emulation means wheel-by-wheel
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additions with carry ags �rst set and then serviced. Direct emulation can
be implemented without special software; moreover, direct emulaton makes it
possible to set up the engine with carry levers disengaged. In normal DE2
operation the �rst four number wheels in each column are set to evaluate the
trivial polynomial Pn = n. As long as n does not exceed 9999, there is no carry
an the counting action does not a�ect wheels 5 through 31. Disengaging carry
levers at any level isolates the lower and upper computation wheels, which can
then be initiated to evaluate two polynomials simultaneously.
Attempts have been made to demonstrate a real DE2 computation as op-

posed to an evaluation of a demonstration polynomial. The least-squares
method, which was developed by Carl Fedrick Gauss at the end of the 18th

century, can be used to determine 8 polynomial coe�cients that approximate
a function with high precision. With the approximating polynomial as a sur-
rogate for the function, 8 consecutive values are generated, a �nite di�erence
table is constructed, and the aforementioned precomputations are performed.
This de�nes 8 starting values to be transferred manually to the number wheels.
Form the work of Brook Taylor in 1715, the intimate relation between poly-

nomial approximation and Taylor series would also have been well known in
Babbage's time. Finite-di�erence tables were commonly used to explore the
complexity of a function presented in tabular form. Once higher-order di�er-
ences cease to be signi�cant, the function segment being investigated can be
approximated by a polynomial. As one might expect, the polynomial coe�-
cients that correspond to a �nite di�erence table derived from the function itself
are very close to the Taylor series coe�cients. This suggests that 8 consecu-
tive values of the function to be approximated could be used as an initiation
sequence.
In Section 5 examples of least-squares and direct initiation of a DE2 appli-

cation to base-ten logarithm tabulation are presented. The results illustrate
initiation procedures that could have been used in Babbage's time. However, a
mathematician of Babbage's caliber might have devised an initiation procedure
uniquely suited to the DE2 operation.

2 Finite Di�erence Methods

Di�erential calculus provides a mathematical framework for analyzing functional
change. Derivatives, the formal measure of functional change, are constructed
from limits of �nite di�erences normalized to the sampling interval as the sam-
pling interval becomes in�nitesimally small. The calculus of �nite di�erences
is appealing because it has its own set of constructs and theorems that do not
involve in�nitesimals.

2.1 Finite Di�erences

Once a function has been computed at uniformly spaced values of the indepen-
dent variable, a �nite di�erence table can be constructed. Forward di�erences
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are de�ned as follows:

d0n = fn (5)

dmn = d
m�1
n+1 � dm�1n (6)

The m index represents the order of the �nite di�erence. The n index identi�es
the �rst contributing sample. A �nite di�erence table to order 7 is constructed
as follows:

fn d1n d2n d3n d4n d5n d6n d7n
fn+1 d1n+1 d2n+1 d3n+1 d4n+1 d5n+1 d6n+1
fn+2 d1n+2 d2n+2 d3n+2 d4n+2 d5n+2
fn+3 d1n+3 d2n+3 d3n+3 d4n+3
fn+4 d1n+4 d2n+4 d3n+4
fn+5 d1n+5 d2n+5
fn+6 d1n+6
fn+7

: (7)

The �rst column could be replaced by d0n, but it is more transparent to let the
value of the function appear explicitly.
If dpn is constant at some order p, all higher order di�erences are zero. This

occurs if and only if fn is a polynomial of order p. Thus, a �nite di�erence
table provides a measure of how closely a polynomial of order p approximates the
function. If a di�erence table has precisely constant di�erences at order p, the
function is a polynomial of order p. The proposition is proved by demonstrating
that unique polynomial coe�cients can be recovered from the �nite di�erences.
An algorithm that will recover the polynomial coe�cients from the fn row of
the di�erence table follows. Coe�cient recovery is not need for normal DE2
operations, but it will be used in Section 4 for evaluation purposes.

2.2 Polynomial coe�cient recovery

Finite di�erences of order m can be written in terms of m + 1 values of fn
explicitly:1

dmn =
mX
k=0

(�1)k
�
m

k

�
fn+m�k: (8)

where �
m

k

�
=

m!

(m� k)!k! : (9)

If fn is a polynomial, fn+m�k can be written as

fn+m�k =

pX
l=0

al(n+m� k)l: (10)

1Abrmowitz and Stegun 25.1[4]
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To determine the de�ning polynomial coe�cients, consider the set of �nite dif-
ferences at n = 0:

fm�k =

pX
l=0

al(m� k)l (11)

=

pX
l=0

al

lX
l0=0

(�1)l
0
�
l

l0

�
kl

0
ml�l0 (12)

Substituting fm�k into the expression for d
m
n it follows that

dp�j0 =

p�jX
k=0

(�1)k
�
p� j
k

�
fp�j�k (13)

=

p�jX
k=0

(�1)k
�
p� j
k

� pX
l=0

al

lX
l0=0

(�1)l
0
�
l

l0

�
(p� j)l�l

0
kl

0
(14)

=

pX
l=0

al

lX
l0=0

(�1)l
0
�
l

l0

�
(p� j)l�l

0
Sp�jl0 (15)

where

Sml0 =

mX
k=0

(�1)k
�
m

k

�
kl

0
. (16)

One can verify that Sml0 = 0 for l
0 < m. It follows that

dp�j0 =

pX
l=p�j

al

lX
l0=p�j

(�1)l
0
�
l

l0

�
(p� j)l�l

0
Sp�jl0 (17)

= ap�j(�1)p�jSp�jp�j (18)

+

pX
l=p�j+1

al

lX
l0=p�j

(�1)l
0
�
l

l0

�
(p� j)l�l

0
Sp�jl0 (19)

The contributions to dp�j0 are determined by the coe�cients from p � j to p.
This leads to the following recursion:

ap =
dp0

(�1)pSpp
(20)

ap�j =

(
dp�j0 �

Pp
l=p�j+1 ealPl

l0=p�j(�1)l
0� l
l0

�
(p� j)l�l

0
Sp�jl0

(�1)p�jSp�jp�j
for j = 1; � � � ; p

(21)

One could also set up a system of p + 1 linearly equations whose solution
de�nes the coe�cients, but the recursive solution is more in keeping with the
properties of �nite di�erence tables.
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2.3 Forward DE2 Recursion

The critical �nite di�erence property for DE2 operation is that p+1 consecutive
values of the approximating polynomial de�ne all subsequent values with only
recursive addition operations. From (6) it follows that dm�1n+1 = dm�1n + dmn .
Since dpn is constant for all n, the following recursion extends (7) inde�nitely:

d
p�(l+1)
n+(l+1) = d

p�l
n+l + d

p�(l+1)
n+l for l = 0; � � � ; p� 1: (22)

In (22) dp�ln+l de�nes an antidiagonal in the di�erence table that terminates with
the value of the function in the �rst column. Recall that the symbol denotes
replacement. Although extension of the di�erence table illustrates the recursive
property of �nite di�erences, for evaluation purposes one would start with the
�rst complete row in (7). Recursive evaluation of fn, with repetition of 7 values
already computed would proceed as follows:

dpn+1 = d
p
n (23)

d
p�(l+1)
n+1 = dp�ln + dp�(l+1)n for l = 0; � � � ; p� 1: (24)

A device with p+1 storage registers and a single addition unit could execute the
recursion serially. With the shorthand notation dn with n = 7; 6; � � � ; 0 used
to designate the elements in the nth row of (7), the �nite-di�erence algorithm
is de�ned as follows:

d07  d7

d06  d7 + d6

d05  d06 + d5

d04  d05 + d4

d03  d04 + d3 (25)

d02  d03 + d2

d01  d02 + d1

d00  d01 + d0

The primes are introduced to separate the values before (unprimed) and after
the replacement operations (primed). To execute the di�erence operations
mechanically, each column would have to be added to the adjacent column.
It is noteworthy that Babbage never used this scheme because of its ine�-

ciency. In a mechanical device the provision for addition must be replicated
for each column. However, the serial addition only executes one addition at a
time. Six of the sever addition units are idle during each sequential addition.
There is a way to do half of the operations in parallel, but the scheme is not at
all obvious. To introduce the scheme, it is helpful to start with a construction
that might have suggested the parallel algorithm.
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In the course of trying to understand what patterns of operations lead to
recurrent jams, those involved with keeping the DE2 running have used a re-
construction of the di�erences that preceded the jam. Starting with the last
complete cycle, n, consider reconstructing the di�erences at preceding values,
n� 1, n� 2, and so on. This is illustrated in the following table:

fn�4 d05n�4 d06n�4 d7n
fn�3 d04n�3 d05n�3 d06n�3 d7n
fn�2 d03n�2 d04n�2 d05n�2 d06n�2 d7n
fn�1 d02n�1 d03n�1 d04n�1 d05n�1 d06n�1 d7n
fn d1n d2n d3n d4n d5n d6n d7n

: (26)

The reconstruction is performed by repeated use of (6). The relations that
de�ne the row-by-row reconstructions in the table are summarized below:

n� 1
d06n�1 = d

6
n � d7n

d05n�1 = d
5
n �

�
d06n�1

�
d04n�1 = d

4
n �

�
d05n�1

�
d03n�1 = d

3
n �

�
d04n�1

�
d02n�1 = d

2
n �

�
d03n�1

�
(27)

n� 2
d06n�2 =

�
d06n�1

�
� d7n

d05n�2 =
�
d05n�1

�
�
�
d06n�2

�
d04n�2 =

�
d04n�1

�
�
�
d05n�2

�
d03n�2 =

�
d03n�1

�
�
�
d04n�2

� (28)

n� 3
d06n�3 =

�
d06n�2

�
� d7n

d05n�3 =
�
d05n�2

�
�
�
d06n�3

�
d04n�3 =

�
d04n�2

�
�
�
d05n�3

� (29)

n� 4
d06n�4 =

�
d06n�3

�
� d7n

d05n�4 =
�
d05n�3

�
�
�
d06n�4

� (30)

Instead of using the di�erences in the �rst row, consider the bold di�erences
in (26). Those di�erences can be evaluated with the following parallel additions
7 + 6! 6, 5 + 4! 4, 3 + 2! 2, and 1 + 0! 0. In preparation for the next
computation, the subsequent even-to-odd additions, 6+5! 5, 4+3! 3, 2+1!
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1, can also be performed in parallel. This pattern of alternate parallel odd and
even additions is easily overlooked, but Charles Babbage discovered it in his
design of the original di�erence engine. A re�ned mechanical implementation
of it was used in the design of DE2. In modern computer terminology, the
parallel operations are referred to as pipelining.
To summarize the complete DE2 operation, the following precomputations

set up the di�erences that initiate a DE2 operating sequence:

fn = fn; d
1
n = d1;d7 = d7

d6 = d6 � d7
d5 = d5 � d6
d4 = d4 � d5
d3 = d3 � d4
d2 = d2 � d3

(31)

d6 = d6 � d7
d5 = d5 � d6
d4 = d4 � d5

d6 = d6 � d7
The precomputations are in a slightly di�erent order to reect their derivation,
but the results are identical to those on the website http://ed-thelen.org.2

With the modi�ed register contents denoted dn, the elegantly simple DE2
parallel half-cycle operations are de�ned as follows:

ODD-TO-EVEN

d06  d7 + d6

d04  d5 + d4 (32)

d02  d3 + d2

d00  d1 + d0

EVEN-TO-ODD

d05  d06 + d5

d03  d04 + d3 (33)

d01  d02 + d1

2The development presented here was suggested by CHM docent Lowell Krasner, who said
it emerged from discussion with Tim Robinson and the CHM maintenance crew. CHM docent
Dick Guertin uses a cardboard cutout to highlight the di�erence table relation that de�nes
the pipelining operation.
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Evaluating (31), followed by repeated evaluation of (32) and (33) will extend the
approximating polynomial exactly, until one of the columns generates a carry
that propagates to wheel 31.

3 DE2 Emulation

The photograph above shows DE2 ready for demonstration. The crank on
the right operates the engine through a 4:1 reduction gear. The computation
section is contained in the central rectangular frame. The printing section is on
the left. The 8 vertical columns of bronze �gure wheels are e�ectively 31-digit
registers that store the current state of the di�erence engine. The contents of
the registers from left to right are denoted d0, d1, d2, d3, d4, d5, d6, and d7, with
d0 representing the current value of the polynomial. Indirect emulation of the
DE2 operation would perform the mathematical operations de�ned by (32) and
(33) as 31-digit integers. Here direct emulation of the digit-by-digit operations
performed by the DE2 will be pursued. The actual mechanical operation of
the DE2 will be described only in enough detail to de�ne the emulation. The
detailed mechanical operation of the DE2 can be found in documents on the

10



website http://ed-thelen.org.

3.1 Background

The addition operations de�ned by (32) and (33) formally take the contents
of the �rst designated register and add it to the left adjacent register. Each
�gure wheel has 40 teeth, representing the digits 0 to 9 repeated 4 times. The
DE2 wheel-by-wheel additions are performed through intermediate sector gears.
Rotation of the adding wheels from their current value to zero transfers the value
to the receiving wheels through the sector gears. The sector gears serve two
functions. The �rst is to remember the �gure wheel values being given o� to
the receiving �gure wheels. The sector gears have a stepped thickest. The
thicker portion engages the giving o� wheel. The thinner portion engages the
sector wheel. During the reset phase that follows the giving o� phase, the
sector column is lifted to disengage it from the receiving wheels while keeping
it engaged with the zeroed giving o� wheels. The values remembered by the
sector wheels are transferred back to the giving o� wheels.

The complete addition cycle is performed in two phases. During the
giving o� phase of the addition cycle, each wheel of the �rst active column is
added to the corresponding wheel of the second active column as just described.
If the addition causes a receiving wheel to pass 9, a carry warning is set by a tab
on the �gure wheel. In the DE2 each wheel that can receive an addition has a
carry lever with four positions: unwarranted, warned, carried, and disconnected.
The warned state indicates that a carry occurred during the giving o� phase of
the addition cycle.

During the carry phase of the addition cycle when the receiving wheels
are disengaged and free to turn, the carry warning states are polled and serviced.
The servicing operation is conceptually straightforward. If the nth carry wheel is
warned, the n+1th wheel is advanced one digit, and the carry arm is advanced to
the carried position. If the carry addition itself initiates a carry, the n+1th carry
arm is advanced to the warned position. The DE2 carry levers are attached
to a shaft adjacent to the receiving number-wheel column. The mechanical
implementation of the service operation uses a separate shaft with 30 �xed
carry arms that trip the warned carry levers to initiate the carry operation. A
direct sequential implementation of the carry servicing operations would require
30 arms arranged with 12 degree separation. Babbage didn't use this scheme
because there is not enough time during a 12 degree rotation to service a carry
induced by a carry operation.

The 30 DE2 polling arms are spaced at 22.5 degrees, with an extra 22.5
degrees between the 15th and 16th wheel. With this arrangement, the polling
arms can spiral in two identical groups of 15, which means that the upper and
lower halves of the column carry warnings are serviced simultaneously. If a carry
occurs at wheel 15 in the �rst rotation it will not be serviced. A second rotation
of the carry arms captures and, if necessary, propagates this carry. Since
the �rst carry warnings from the �rst 15 wheels have already been polled and
serviced, the second rotation only a�ects wheels 16 through 31. The polling
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and carry servicing operations are performed on the receiving columns when
they are disengaged after the giving o� operation.

3.2 Direct DE2 Emulation

The two-phase addition cycle is easily emulated. The 31 column n wheel set-
tings are stored in an integer array dn(m), where m represents the �gure wheel
index from 1, (least signi�cant) to 31, (most signi�cant). An auxiliary array,
C(m), keeps track of the the carry lever settings, 0, unwarned, 1 warned, 2
carried. Disarmed carries are agged by a separate ag that overrides speci�ed
carry operations. The giving o� emulation is an element-by-element modulo 10
addition of dn(m) to dn�1(m). Where additions would produce a second digit,
the corresponding carry array entry is changed from 0 to 1. The carry phase
operation uses dn�1(m) and C(m). Carry polling and servicing starts at the
�rst wheel. If a 1 is present, the carry ag is changed to 2 and 1 is added to
the next wheel, dn�1(m+ 1) . If that addition causes a carry, C(m+ 1) is set
equal to 1 before it is polled.
To emulate the DE2 implementation, the carry phase operation is �rst ap-

plied to digits 16 to 31 and then to digits 1 to 15. Stopping at A carry at wheel
31 is not serviced. By performing the segmented polling in reverse order, a
carry ag at digit 15 will not be serviced until the second cycle is performed. A
repeat of the carry phase operations for digits 16 to 31 picks up an unserviced
carry at wheel 15. The emulation can be segmented for independent operation
by setting all the carry ags at speci�ed wheel location to disengaged with a
separate ag.
The DE2 emulation is implemented with the following two subroutines:

[da,carry]=GivingOff(d1,d2)

[dc,carry]=CarryPhase(da,carry,nwstart,nwend,DisableFlags)

The GivingOff routine replaces da with the modulo 10 addition of d1+ d2. A
carry ag array is generated with zeros indicating no carry or 1 indicating a carry
warning. The CarryPhase subroutine implements the carry operations. Carry
operations will propagate. The carry ags are serviced from wheel nwstart
to nwend. If the carry ag corresponding to nwend is set, da(nwend + 1) in
incremented. To service 31 digits, nwend = 30. After executing GivingOff
the carry entries are 0 or 1. After executing CarryPhase all the active carry
entry 1 values are replaced by 2.
The DE2 emulator implements the numbered serial operations summarized

in the following tables. The DE2 executes operations 1, 2, 3, and 4 in parallel
during the �rst quarter of the full cycle. The serial carry phase operations 5
and 6, 7 and 8, 9 and 10, 11 and 12 are performed in parallel during the sec-
ond quarter cycle. The results are unchanged if operations 5 through 12 are
replaced by a single CarryPhase execution for wheels 1 through 31. The opera-
tion sequence is repeated for the corresponding even-to-odd addition and carry
operations during the second half of the full cycle. In the actual machine op-
eration the answer is transferred to the print section as part of the even-to-odd
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half-cycle. The intermediate values of each column and associated carry levers
can be extracted at the end of each quarter cycle of the DE2 operation. Al-
though the PC implementation is serial, the computation is fast enough that the
intermediate results could be collected and used to derive a graphic simulation
of the DE2.

No. ODD-2-EVEN OPERATIONS
GIVING OFF

1 [d6; c6] = GivingOff(d6; d7)
2 [d4; c4] = GivingOff(d4; d5)
3 [d2; c2] = GivingOff(d2; d3)
4 [d0; c0] = GivingOff(d0; d1)

CARRY ROTATION 1
5 [d6; c6] = CarryPhase(d6; c6; 16; 31)
6 [d6; c6] = CarryPhase(d6; c6; 1; 15)
7 [d4; c4] = CarryPhase(d4; c4; 16; 31)
8 [d4; c4] = CarryPhase(d4; c4; 1; 15)
9 [d2; c2] = CarryPhase(d2; c2; 16; 31)
10 [d2; c2] = CarryPhase(d2; c2; 1; 15)
11 [d0; c0] = CarryPhase(d0; c0; 16; 31)
12 [d0; c0] = CarryPhase(d0; c0; 1; 15)

CARRY ROTATION 2
13 [d6; c6] = CarryPhase(d6; c6; 16; 31)
14 [d4; c4] = CarryPhase(d4; c4; 16; 31)
15 [d2; c2] = CarryPhase(d2; c2; 16; 31)
16 [d0; c0] = CarryPhase(d0; c0; 16; 30)

(34)

No. EVEN-2-ODD OPERATIONS
GIVING OFF

17 [d5; c5] = GivingOff(d5; d6)
18 [d3; c3] = GivingOff(d3; d4)
19 [d1; c1] = GivingOff(d1; d2)

CARRY ROTATION 1
20 [d5; c5] = CarryPhase(d5; c5; 16; 31)
21 [d5; c5] = CarryPhase(d5; c5; 1; 15)
22 [d3; c3] = CarryPhase(d3; c3; 16; 31)
23 [d3; c3] = CarryPhase(d3; c3; 1; 15)
24 [d1; c1] = CarryPhase(d1; c1; 16; 31)
25 [d1; c1] = CarryPhase(d1; c1; 1; 15)

CARRY ROTATION 2
26 [d5; c5] = CarryPhase(d5; c5; 16; 31)
27 [d3; c3] = CarryPhase(d3; c3; 16; 31)
28 [d1; c1] = CarryPhase(d1; c1; 16; 31)

(35)
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3.3 Demonstration Polynomial Example

The polynomial

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7

with

a0 = 41 a1 = 4 a2 = 7 a3 = 1

a4 = 5 a5 = 9 a6 = 2 a7 = 8

has been used for DE2 demonstrations. Because the coe�cients are small, the
initial values of the polynomial do not exceed the accuracy of 64 bit double
precision arithmetic. However, once initiated, the DE2 emulator its 100%
accurate until one the registers overows. For this demonstration the initiation
values are small, whereby the computation can be initialized with standard
software.
The register settings at initiation are shown in Figure 1. The initial values

were constructed by using the �rst 8 values of the polynomial (n = 0; � � � ; 7) to
form a di�erence table and then following the prescription for precomputation
(31). The wheels numbers are summarized in columns from most signi�cant to
least signi�cant. The asterisk marks the end of the polynomial computation
(wheels 5 to 31). With d1 wheel 1 set equal to 1, each cycle adds 1 to the
d0 column providing a cycle count. Figure 2 shows the state of the di�erence
engine at cycle 1000. Although the polynomial evaluation can be initiated
with any sequence of 7 consecutive values of the function, those values must
be computed with enough accuracy to support the correct di�erences to order
7. An initiation using 64 bit double precision arithmetic fails as n approaches
300. For comparison, evaluation of the polynomial with 64 bit double-precision
integer arithmetic gives the following result, which is accurate only to 15 decimal
places:

P (1000) = 8002009005001006900000:

The d0 row of the emulation in Figure 2 is the exact value. Exact values would
continue until a carry occurs at wheel 31.
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Wheel  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5 *4  3  2  1
d0    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  1  0  0  0  0
d1    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  6  0  0  0  1
d2    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  8  0  0  0  0
d3    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  4  6  4  0  0  0  0
d4    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  6  0  0  0  0  0
d5    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  5  2  4  0  0  0  0  0
d6    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  4  4  0  0  0  0  0
d7    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  3  2  0  0  0  0  0

Figure 1: Initial state of di�erence engine for demonstration polynomial evalu-
ation.

Wheel  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5 *4  3  2  1
d0    0  0  0  0  0  8  0  0  2  0  0  9  0  0  5  0  0  1  0  0  7  0  0  4  0  4  1  1  0  0  0
d1    0  0  0  0  0  0  0  5  6  1  8  0  3  5  5  4  3  0  3  2  1  1  5  0  0  3  6  0  0  0  1
d2    0  0  0  0  0  0  0  0  0  3  3  6  0  6  0  7  4  0  1  2  0  2  0  8  0  2  8  0  0  0  0
d3    0  0  0  0  0  0  0  0  0  0  0  1  6  8  3  6  0  5  9  4  4  3  8  1  4  6  4  0  0  0  0
d4    0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  7  2  0  7  2  7  8  0  0  3  6  0  0  0  0  0
d5    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  1  8  1  6  1  5  2  4  0  0  0  0  0
d6    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  3  2  1  4  4  0  0  0  0  0
d7    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  3  2  0  0  0  0  0

Figure 2: State of di�erence engine for demonstration polynomial at n = 1000.
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3.4 Negative Di�erences

The demonstration polynomial produced an initial state with no negative di�er-
ences. However, negative di�erences are not excluded from the �nite-di�erence
scheme as described above. Negative numbers must be identi�ed and manipu-
lated accordingly. For example, the initial digit could be used to convey positive
or negative values with a 0 or 1. For automated computation, there is a much
more e�cient procedure. Consider the n-digit negative number

N = �an10n � an�110n�1 � � � � � a110� a0: (36)

The coe�cients an represent positive integers. The tens complement is de�ned
as

NC = (9� an) 10n + (9� an�1) 10n�1 + � � �+ (9� a110) + (9� a0)
= � jN j+ (10n � 1) : (37)

For numbers in the range �10n + 1 to 10n � 1, the complement of a negative
number will always have the nth digit equal to 9.
From (37), it follows that adding the complement to any positive number in

range will always produce the correct answer with negative number remaining
in complement form. Adding negative numbers produces the correct negative
number. Thus, to accommodate negative numbers it is only necessary to write
the negative numbers in tens complement form and proceed with normal addi-
tions. If the polynomial itself produced negative numbers, the di�erence engine
would produce and print the correct answers in tens complement form. Under
these conditions a non-zero value of digit 31 would indicate a negative number.
Negative logarithms can be avoided by scaling. Negative ranges of trigonomet-
ric functions can be avoided by symmetry. In general, negative numbers must
be either anticipated and avoided or accepted in tens complement form.

4 Polynomial Approximation

With the complete operation of the DE2 in hand, the issue of polynomial ap-
proximation remains. The DE2 will evaluate any polynomial with integer co-
e�cients exactly until an overow occurs. The functions of interest have a
speci�ed ranges for both the function and its independent variable. Scaling
must be used to keep the function within the range of the DE2; moreover,
some means of converting the cycle count to a value of x must be implemented.
These are comparatively straightforward details that can be applied once the
approximation procedure is in hand.
As already noted, the DE2 was designed to approximate well behaved math-

ematical functions such as logarithms and trigonometric functions. The least-
squares method is well suited to this kind of problem. It was developed by
Carl Fredric Gauss near the end of the 18th century, and it would have been
well know in Babbage's time. An approximating polynomial has p + 1 un-
knowns. A least-squares algorithm adapted to the polynomial form used for
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demonstrating �nite-di�erence properties is summarized in Section 4.1. The
mathematical operations involve Vandermonde matrix manipulations. The size
of the Vandermonde matrix is �xed by the number of samples. The Vandermode
matrix multiplied by the function is equivalent to computing 8 moments (8�N
multiply and adds). The desired coe�cients are obtained by solving an 8-by-8
system of linear equations (~82 multiply and adds). The scaled form of the
Vandermode matrix leads to a well-conditioned system of equations.
Once the polynomial coe�cients have been determined, the approximating

polynomial must be evaluated 8 times. This is a signi�cant amount of compu-
tation at full precision, but the error distribution over the N -sample range of
the function is fairly uniform. The procedure might have to be repeated with
di�erent coarse samplings to determine the approximation range. That entire
operation would have to be repeated until the complete range of the independent
variable is covered.

4.1 Least Squares

The least-squares solution to the polynomial approximation problem minimizes
the integrated quadratic error measure

�2 =

N�1X
n=0

 
pX
k=0

akn
k � fn

!2
: (38)

The solution, obtained by di�erentiating �2 with respect to ak then forcing each
di�erentiation to equal zero, involves a Vandermonde matrix of the form

V pN =

2666664
1 1 1 � � � � � � 1

0 1 2 (N � 1)1

0 1 22 (N � 1)2
...

0 1 2p (N � 1)p

3777775 (39)

The system of linear equations that de�nes the least-squares solution can be
written in matrix-vector form ash

V pNV
pT
N

i�!a = V pN�!f ; (40)

where�!a the column vector arrangement of the unknown polynomial coe�cients,
and
�!
f a column vector arrangement of the N values of the function. The formal

solution for N � p is
�!a =

h
V pNV

pT
N

i�1
V pN
�!
f ; (41)

The matrix
h
V pNV

pT
N

i
, is p � p; however, if N = p, the solution reduces to the

simpler form
�!a = [V pN ]

�1�!
f : (42)
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The Vandermonde structure, (41) can be solved more e�ciently than the
general solution of a system of linear equations. However, with small numbers
of function samples, the computation time is dominated by the computation ofh
V pNV

pT
N

i
, and the evaluation of the right-hand side, V pN

�!
f . Each entry of the

product vector is a moment of the form

Mk =
N�1X
n=0

nkfn for k = 1: (43)

Note also that dropping the �rst column in V pN is equivalent to constraining the
solution to be zero at n = 0.

4.2 Taylor Series

The Taylor series was developed by the English mathematician Brook Taylor in
1715. It would also have been well known in Babbage's time. Taylor's theorem
states that any well-behaved function can be represented by an in�nite power
series of the form

f(x) =
1X
k=0

1

k!
f (k) (x)

���
x=x0

(x� x0)k : (44)

where f (k) (x) denotes the kth derivative of f (x) with respect to the independent
variable. The derivatives are evaluated at the starting point of the series. If
the Taylor series is truncated at p, the contribution of the neglected remainder
can be bounded by the relation

Rp = (x� x0)p+1f (p+1) (�) where x0 � � � x: (45)

Since derivatives of the functions most commonly tabulated were known, A
Taylor series approximation could have been implemented directly. However,
because the DE2 e�ectively increments the index without the o�set, the poly-
nomial series must be evaluated in its Maclaurin form

f(x+ x0) =
1X
k=0

1

k!
f (k) (x+ x0)

���
x=0

xk: (46)

For later reference, consider log10(x), sin(x), and cos(x), where

log10(x) = ln(x)= ln(10); (47)

with ln(x) is the natural logarithm of x. The range of log10(x) logarithm can
be extended with decibel scaling:

log10
�
10�nx

�
= �n+ log10 x for x � 1 (48)

Thus, any desired value can be scaled from values within the �rst decade 1 �
x < 10. Trigonometric functions are periodic with repetition at multiples of
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� radians, but there is a four-fold symmetry, such that only the range 0 � x
� �=2 need be evaluated. The sine function is a simple translation of the
cosine function, but it is instructive to observe how Taylor series preserve known
symmetries. One can readily verify the series expansions

log 10(1 + n�x) =

pX
n=0

[(��x)n= (n log(10))]nn; (49)

sin(n�x) =

[p=2]X
n=0

�
�(��x)2n+1= (2n+ 1)!)

�
n2n+1; (50)

and

cos(n�x) =

[p=2]X
n=0

�
(��x)2n= (2n)!)

�
n2n: (51)

The square brackets isolate the polynomial coe�cients scaled by by a power of
the sampling interval. Using scaled coe�cients emphasizes the dependence on
the sample interval. If �x is small, the larger coe�cients have no e�ect. If �x
is large, a few large terms dominate the series and the overall �t is poor. This
suggests that there is an optimum sample spacing for e�cient use of the DE2.

5 DE2 Initiation Examples

To demonstrate end-to-end DE2 operation, we assume that the function to be
approximated can be evaluated with high accuracy. For demonstration pur-
poses, the luxury of symbolic computation software will be exploited. However,
the least squares computation was a direct implementation of (41). For expedi-
ency, evaluation of the approximating polynomial was used as a DE2 operation
surrogate. However, the appropriately scaled �nite di�erences could be used
for a DE2 demonstration or emulation. The amount of computational e�ort
required to reproduce the initiation sequence, the accuracy of the results, and
the stress on the engine caused by the number of carry operations could be
monitored.

5.1 Base-10 Logarithms

A demonstration initiation sequence for base-10 logarithms was presented by
CHM docent Tim Robinson using Mathematica software utilities. The results
presented here are di�erent only in detail because of the assumed form of the
approximating polynomial. With N = 60, a least squares �t from 1 � x < 1:3
produced the coe�cients summarized in the table below. The Taylor series
coe�cients from (49) is show for comparison. Coe�cients 1, 2, 3, and 4 are
close to the Taylor Series values. The computations were perform with 27-digit
accuracy.
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Figure 3: Approximating polynomial errors for base 10 logarithm. The 60
samples spann the range 1 � x � 1:5:

# LLS Taylor Series (49)
0 0:0000000000534154758803604890605272234 0
1 0:00217147231645692432214091864 0:00217147240951625913825564459
2 �0:00000542865023180578876952822433 �0:00000542868102379064784563911149
3 0:0000000180915128658727781852353979 0:0000000180956034126354928187970383
4 �0:0000000000675824950193322988716826282 �0:0000000000678585127973830980704888936
5 0:000000000000260977035104324043668396685 0:000000000000271434051189532392281955574
6 �0:0000000900336735186556960642467315e � 10�8 �0:000000113097521328971830117481489 � 10�8
7 0:000000000190292877387147973112440254 � 10�8 0:000000000484703662838450700503492097 � 10�8

To reconstruct the polynomial for DE2 initiation the polynomial is resampled
at a �ner interval dx,

ak  ak (dx=dxLLS)
k
: (52)

Figure 3 shows the errors over the range 1 � x � 1:3 at dx = :001. The �rst
8 values could be used to initiate a 300-cycle DE2 operating sequence. The
process would have to be repeated approximately 30 times (3000 cycles) to cover
the full range of the independent variable.
At this point the hairdressers doing the manual computation might note that

the 8 consecutive values of the polynomial they worked so hard to construct are
very close to the actual values of the function, as they must be. So why
not use 8 the eight easily obtained values of the function itself to initiate the
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operation? The �rst table below shows the di�erences between the �rst 8 values
from the LLS polynomial and the exact values (to 27 decimal places). To
evaluate what happens when exact values of the function are used to construct
�nite di�erences, the corresponding polynomial coe�cients were computed using
(21). For comparison, the Taylor series coe�cients are listed. Recall that our
de�nition of the coe�cients carry the sampling interval scaling. The values are
scaled accordingly from the values in the previous table. As might be expected,
the �nite di�erence coe�cients di�er from the exact Taylor series coe�cients
only to the extend that the properly normalized �nite di�erences di�er from the
exact derivatives.

# Approximating Polynomial Exact
0 0:0000000000534154758803604890605272234 0
1 0:000434077515321642903243225284 0:000434077479318640668921387778
2 0:000867721552090536946554588463 0:0008677215312269124928427079
3 0:00130093302823451968511145446 0:00130093302041811880082627886
4 0:00173371280569073833626761169 0:00173371280900052976802710616
5 0:0021660617438310438684756772 0:00216606175650767623042063776
6 0:00259798069947186809061747855 0:002597980719908592311962985
7 0:0030294705268840597448646425 0:00302947055361800716932576738

# Coe�cients from (21) Taylor Series (49)
0 0 0
1 0:000434294481903251295837860225 0:000434294481903251827651128919
2 �0:000000217147240950533469116175607 �0:000000217147240951625913825564459
3 0:000000000144764826492415415155735737 0:000000000144764827301083942550376306
4 �0:00000000000010857333934724602379310691 �0:00000000000010857362047581295691278223
5 0:0000868103362391110645725057616 � 10�12 0:0000868588963806503655302257838 � 10�12
6 �0:0000000684402621381474673967204581 � 10�12 �0:0000000723824136505419712751881532 � 10�12
7 �0:00000000005377986966693970406783 � 10�12 0:0000000000620420688433216896644469884 � 10�12

6 MATLAB Scripts

The attached program listings include the MATlAB routines used to implement
the direct emulator and the mupad scripts used for the symbolic math compu-
tations. The symbolic math computations were performed using the MATLAB
Symbolic Math Toolbox. The toolbox uses a language called mupad. The
attached scripts were written using simple structures that are easily reproduced
in other languages. No special routines were used except the implicit linear
equation solver were used.
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function DE2Emulator(varargin) 

%Emulator for Babbage Difference Engine 2 

%Computer History Museum 

%Author Chuck Rino 

%CHM Docent 

%April 2012 

 

%USER INPUTS 

Disable1=ones(1,31);  %Carry Levers disabled by replacing 1's with 4 

 

%fprintf('DISABLED CARRY LEVERS D1 12, 15, 16 \n') 

%Disable1(12)=4; Disable1(15)=4; Disable1(16)=4; 

%nDisable1= Disable1==4; 

 

%Identify cycles for summary output 

ncycleP1=1; 

ncycleP2=9999;  %MAXIMUM # OF CYCLES BEFORE COUNTER OFERFLOWS 

fprintf('DUMP CYCLES %8i TO %8i \n',ncycleP1,ncycleP2) 

 

if isempty(varargin) 

    ID=[]; 

else 

    ID=input('Input CR for screen dump only, 1 for file dump '); 

end 

if isempty(ID) 

    fid=1; 

else 

    fid=fopen('DE2out.txt','w'); 

end 

%Precomputation of finite differences: d(nvals,norder+1) 

 

%Order 7 polynomial: 

norder=7; 

a0=41.0; a1=4.0; a2=7.0; a3=1.0; 

a4=5.0;  a5=9.0; a6=2.0; a7=8.0; 

a=[a0;a1;a2;a3;a4;a5;a6;a7]; 

 

if isempty(varargin) 

    ncycle=[]; 

else 

    ncycle=input('Input current cycle 0<ncycle<=200 CR=>1 '); 

end 

if isempty(ncycle) 

    ncycle=1; 

end 

n=ncycle-1:ncycle+norder;  %Setup for previous cycle 

f=polynomial(n,a); 

nvals=length(f); 

 

%Generate finite difference table 

d=zeros(nvals,norder+1); 
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d(:,1)=f; 

for ndiff=2:norder+1 

    for nval=1:nvals-ndiff+1 

        d(nval,ndiff)=d(nval+1,ndiff-1)-d(nval,ndiff-1); 

    end 

end 

D=d(1,:); 

 

%Precomputation for parallel operation 

D(7)=D(7)-D(8); 

D(6)=D(6)-D(7); 

D(7)=D(7)-D(8); 

D(5)=D(5)-D(6); 

D(4)=D(4)-D(5); 

D(6)=D(6)-D(7); 

D(3)=D(3)-D(4); 

D(5)=D(5)-D(6); 

D(7)=D(7)-D(8); 

 

%Load the 31 digit figure wheel registers 

%Offset first noff wheels for cycle count 

noff=4; 

d0=num2DE2col(D(1),noff); 

d1=num2DE2col(D(2),noff); 

d2=num2DE2col(D(3),noff); 

d3=num2DE2col(D(4),noff); 

d4=num2DE2col(D(5),noff); 

d5=num2DE2col(D(6),noff); 

d6=num2DE2col(D(7),noff); 

d7=num2DE2col(D(8),noff); 

d1(1)=1; 

strdm=fliplr(num2str(ncycle-1)); 

nn=length(strdm); 

for nc=1:nn 

    d0(nc)=str2num(strdm(nc)); 

end 

DE=[d0',d1',d2',d3',d4',d5',d6',d7']; 

DisplayRegisters2(DE,ncycle-1,fid,f) 

 

CRANK=[]; 

z=zeros(1,31); 

while isempty(CRANK) %Execute one cycle 

    DE=[d0',d1',d2',d3',d4',d5',d6',d7']; 

    %Odd to Even 1/2 Cycle  (Parallel) 

    [d6,c6]=GivingOff(d6,d7); 

    [d4,c4]=GivingOff(d4,d5); 

    [d2,c2]=GivingOff(d2,d3); 

    [d0,c0]=GivingOff(d0,d1); 

 

    %Odd to Even 1/2 Cycle Carry (Parallel) 

    %Single pass carry phase 
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    [d6,c6]=CarryPhase(d6,c6,1,31); 

    [d4,c4]=CarryPhase(d4,c4,1,31); 

    [d2,c2]=CarryPhase(d2,c2,1,31); 

    [d0,c0]=CarryPhase(d0,c0,1,31); 

 

    %Even to odd 1/2 Cycle  (Parallel) 

    [d5,c5]=GivingOff(d5,d6); 

    [d3,c3]=GivingOff(d3,d4); 

    [d1,c1]=GivingOff(d1,d2); 

    %Even to odd 1/2 Cycle Carry (Parallel) 

    [d5,c5]=CarryPhase(d5,c5,1,31); 

    [d3,c3]=CarryPhase(d3,c3,1,31); 

    [d1,c1]=CarryPhase(d1,c1,1,31,Disable1); 

    DE=[d0',d1',d2',d3',d4',d5',d6',d7']; 

 

    if ncycle>=ncycleP1 && ncycle<=ncycleP2 

        DisplayRegisters2(DE,ncycle,fid,polynomial(ncycle,a)) 

    end 

    fprintf('End Cycle %8i 64-BIT POLYNOMIAL=%27.0f \n',ncycle,polynomial

(ncycle,a)); 

    %CRANK=input('CRANK '); 

    CRANK=1;  %TEMPORARY REPLACEMENT FOR KEYBOARD INPUT 

    ncycle=ncycle+1; 

end 

if fid~=1 

    fclose(fid); 

end 

    function [result,carry]=GivingOff(d1,d2) 

        % GIVING OFF PHASE 

        % Right to left modulo10 add and replace (d1<=d2+d1) with carry flags warned 

 

        carry=zeros(1,31);                      %carry==1 => warned carry==2 => 

carried  0=> unarmed 

        dtemp=d2+d1;                            %Add d2 figure wheels to d1 figure 

wheels 

        carry(dtemp>9)=1;                       %Set carry warnings 

        result=mod(dtemp,10);                   %Truncate to 1st digit (d1 

intermediate result) 

        %End of first half of add cycle 

    end 

 

    function [result,carry]=CarryPhase(dtemp,carry,nwstart,nwend,varargin) 

        % CARRY PHASE 

        % service carry flags 

        if isempty(varargin); 

            DE=ones(1,31); 

        else 

            DE=varargin{1}; 

        end 

        for nwheel=nwstart:nwend                        %Pole carries from giving 

off phase 
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            if carry(nwheel)==1 && DE(nwheel)==1    %Check for pending carry if 

~disabled 

                dtemp(nwheel+1)=dtemp(nwheel+1)+1;  %Service pending carry 

                carry(nwheel)=2;                    %Completed 

                if dtemp(nwheel+1)>9 

                    carry(nwheel+1)=1; 

                end 

                dtemp(nwheel+1)=mod(dtemp(nwheel+1),10); 

            end 

        end 

        result=dtemp; 

    end 

 

    function f=polynomial(x,a) 

        x=x(:); 

        f=zeros(length(x),1); 

        nn=length(a); 

        for n=0:nn-1 

            f=f+a(n+1).*x.^n; 

        end 

    end 

 

    function DisplayRegisters2(DE,~,fid,varargin) 

        % 

        %    DE is 31x8 <= wheel 1,2,..,31 by 

        % 

        if isempty(varargin) 

            poly=[]; 

        else 

            poly=varargin{1}; 

        end 

        DID=cell(1,8); 

        DID{1}='d0'; DID{2}='d1'; DID{3}='d2'; DID{4}='d3'; 

        DID{5}='d4'; DID{6}='d5'; DID{7}='d6'; DID{8}='d7'; 

        fprintf(fid,... 

            '\nWheel  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 

11 10  9  8  7  6  5 *4  3  2  1\n'); 

        for nd=1:8 

            fprintf(fid,'  %s  ',DID{nd}); 

            fprintf(fid,'%3i',flipud(DE(:,nd))); 

            fprintf(fid,'\n'); 

        end 

        %if mod(N+1,3)==0 

        %    fprintf(fid,'\n\n\n\n\n\n\n\n'); 

        %end 

        %fprintf(fid,'\n64-BIT POLYNOMIAL=%27.0f \n',poly); 

    end 

end 

%REPLACEMENT CODE FOR 2-Cycle Carry Phase Emulation 

%[d6,c6]=CarryPhase(d6,c6,16,31); 

%[d6,c6]=CarryPhase(d6,c6,1,15);
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%[d4,c4]=CarryPhase(d4,c4,16,31); 

%[d4,c4]=CarryPhase(d4,c4,1,15); 

%[d2,c2]=CarryPhase(d2,c2,16,31); 

%[d2,c2]=CarryPhase(d2,c2,1,15); 

%[d0,c0]=CarryPhase(d0,c0,16,31); 

%[d0,c0]=CarryPhase(d0,c0,1,15); 

%Odd to Even 1/2 Cycle Carry 2 

%[d6,c6]=CarryPhase(d6,c6,16,31); 

%[d4,c4]=CarryPhase(d4,c4,16,31); 

%[d2,c2]=CarryPhase(d2,c2,16,31); 

%[d0,c0]=CarryPhase(d0,c0,16,31); 

%[d5,c5]=CarryPhase(d5,c5,16,31); 

%[d5,c5]=CarryPhase(d5,c5,1,15); 

%[d3,c3]=CarryPhase(d3,c3,16,31); 

%[d3,c3]=CarryPhase(d3,c3,1,15); 

%[d1,c1]=CarryPhase(d1,c1,16,31,Disable1); 

%[d1,c1]=CarryPhase(d1,c1,1,15,Disable1); 

 

%Even to odd 1/2 Cycle Carry 2 

%[d5,c5]=CarryPhase(d5,c5,16,31); 

%[d3,c3]=CarryPhase(d3,c3,16,31); 

%[d1,c1]=CarryPhase(d1,c1,16,31,Disable1); 

DUMP CYCLES        1 TO     9999  

 

Wheel  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  

6  5 *4  3  2  1 

  d0    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

4  1  0  0  0  0 

  d1    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

3  6  0  0  0  1 

  d2    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

2  8  0  0  0  0 

  d3    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  4  

6  4  0  0  0  0 

  d4    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  

6  0  0  0  0  0 

  d5    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  5  2  

4  0  0  0  0  0 

  d6    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  4  

4  0  0  0  0  0 

  d7    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  3  

2  0  0  0  0  0 

 

Wheel  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  

6  5 *4  3  2  1 

  d0    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  

7  7  0  0  0  1 
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  d1    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  5  

2  8  0  0  0  1 

  d2    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  4  

9  2  0  0  0  0 

  d3    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  7  0  

6  4  0  0  0  0 

  d4    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  5  6  

0  0  0  0  0  0 

  d5    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  5  7  0  

0  0  0  0  0  0 

  d6    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  1  7  

6  0  0  0  0  0 

  d7    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  3  

2  0  0  0  0  0 

End Cycle        1 64-BIT POLYNOMIAL=                         77  
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Babbage Difference Enginge 2
Least squares estimation of polynomial approximation to f=log10(1+x)
reset: p:=7: DIGITS:=27:

Generate y=f(x) for x=x_start to x_stop step dx
Adjust x_stop for nsamp from x_start to x_stop
x_start:=0: x_stop:=0.3: dxLLS:=.005:
nsamp:=round((x_stop-x_start)/dxLLS): x_stop:=x_start+nsamp*dxLLS:
delete y:           y=hfarray(0..nsamp-1):
n:=0:
for x from x_start to x_stop step dxLLS do
    y[n]:=ln(x+1)/float(ln(10)): n:=n+1:
end_for: nsamp:n-1: print("Number of samples=",nsamp)
"Number of samples=", 60

fn to vector-indexed 1 to nsamp 
delete fn: fn:=matrix(nsamp,1):
for n from 0 to nsamp-1 do
    fn[n+1]:=y[n]:
end_for:

V  matrix (nsamp x p+1)
delete V: V:=matrix(nsamp,p+1):
for ncol from 0 to nsamp-1 do
     for nrow from 0 to p do
        V[ncol+1,nrow+1]:=ncol^nrow:
  end_for:
end_for:

Least Squares Solution for polynomial coefficients
delete A: A:=(transpose(V)*V)^(-1)*(transpose(V)*fn):

Change array variable
delete a: a=hfarray(0..p):
for n from 0 to p do
    a[n]:=A[n+1]:
end_for: a

0 0.0000000000534154758803604890605272234
1 0.00217147231645692432214091864
2 - 0.00000542865023180578876952822433
3 0.0000000180915128658727781852353979
4 - 0.0000000000675824950193322988716826282
5 0.000000000000260977035104324043668396685
6 - 0.000000000000000900336735186556960642467315
7 0.00000000000000000190292877387147973112440254

Taylor Coeffieients
delete aa: aa=hfarray(0..p):
for n from 1 to p do
    aa[n]:=-(-dxLLS)^n/n/float(ln(10)):
end_for: aa[0]:=0:
aa



aa
0 0
1 0.00217147240951625913825564459
2 - 0.00000542868102379064784563911149
3 0.0000000180956034126354928187970383
4 - 0.0000000000678585127973830980704888936
5 0.000000000000271434051189532392281955574
6 - 0.00000000000000113097521328971830117481489
7 0.00000000000000000484703662838450700503492097

Compute the error at dx
x_start:=0: x_stop:=0.3: dx:=.001:
nsamp:=round((x_stop-x_start)/dx): x_stop:=x_start+nsamp*dx:
delete z:           z=hfarray(0..nsamp-1):
n:=0:
for x from x_start to x_stop step dx do
    z[n]:=ln(x+1)/float(ln(10)): n:=n+1:
end_for: nsamp:=n-1: print("Number of samples=",nsamp):
"Number of samples=", 300

delete g: g=hfarray(0..nsamp):
for nn from 0 to nsamp do
      g[nn]:=0:
      for mm from 0 to p do
         g[nn]:=g[nn]+a[mm]*(nn*dx/dxLLS)^mm:
      end_for:
      g[nn]:=(g[nn]-z[nn]):
end_for:
plot(g)
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delete d: d=hfarray(0..p):
for nn from 0 to p do
      d[nn]:=0:
      for mm from 0 to p do
         d[nn]:=d[nn]+a[mm]*(nn*dx/dxLLS)^mm:
      end_for:
end_for: d



0 0.0000000000534154758803604890605272234
1 0.000434077515321642903243225284
2 0.000867721552090536946554588463
3 0.00130093302823451968511145446
4 0.00173371280569073833626761169
5 0.0021660617438310438684756772
6 0.00259798069947186809061747855
7 0.0030294705268840597448646425



Babbage Difference Enginge 2
Direct DE2 Estimation of  f=log10(1+x)
reset: p:=7: DIGITS:=27:

Generate y=f(x) for x=x_start to x_stop step dx
Adjust x_stop for nsamp from x_start to x_stop
x_start:=0: x_stop:=0.3: dx:=.001:
nsamp:=round((x_stop-x_start)/dx): x_stop:=x_start+nsamp*dx:
delete z:           z=hfarray(0..nsamp-1):
n:=0:
for x from x_start to x_stop step dx do
    z[n]:=ln(x+1)/float(ln(10)): n:=n+1:
end_for: nsamp:=n-1: print("Number of samples=",nsamp):
"Number of samples=", 300

Generate finite difference table 
delete d: d:=hfarray(0..p,0..p):
for m from 0 to p do
    d[m,0]:=z[m]:
end_for: 
for n from 1 to p do
    for m from 0 to p-n do
        d[m,n]:=d[m+1,n-1]-d[m,n-1]:
    end_for:
end_for: d[0..p,0..p]:

Extract difference d0,d1,...,d7
delete dd: dd=hfarray(0..p):
for n from 0 to p do
    dd[n]:=d[0,n]:
end_for: dd

0 0.0
1 0.000434077479318640657279110284
2 - 0.000000433427410368803292528561144
3 0.000000000864693303233559501519422952
4 - 0.0000000000025850328821963586278798175
5 0.000000000000010293144375034257720358255
6 - 0.0000000000000000500901403688303048511443194
7 - 0.0000000000000000002710505431213761085018632

Recover polynomial coefficients
delete a: a=hfarray(0..p):
S:=0:
for n from 0 to p do
      S:=S+(-1)^n*(fact(p)/fact(p-n)/fact(n))*n^p:
end_for:
a[p]:=dd[p]/S/(-1)^p:
for j from 1 to p do
    Sum:=0:
    for l from p-j+1 to p do
        Sum0:=0:
        for lp from p-j to l do
            S:=0:
            for n from 0 to p-j do
                S:=S+(-1)^n*(fact(p-j)/fact(p-j-n)/fact(n))*n^lp:
            end_for:
            Sum0:=Sum0+(-1)^lp*(fact(l)/fact(l-lp)/fact(lp))*(p-j)^(l-lp)*S:
        end_for:
        Sum:=Sum+a[l]*Sum0:
    end_for:
    S:=0:



    for n from 0 to p-j do
      S:=S+(-1)^n*(fact(p-j)/fact(p-j-n)/fact(n))*n^(p-j):
    end_for:
    a[p-j]:=(dd[p-j]-Sum)/((-1)^(p-j)*S):
end_for:
a

0 0.0
1 0.000434294481903251295837860225
2 - 0.000000217147240950533469116175607
3 0.000000000144764826492415415155735737
4 - 0.00000000000010857333934724602379310691
5 0.0000000000000000868103362391110645725057616
6 - 0.0000000000000000000684402621381474673967204581
7 - 0.00000000000000000000005377986966693970406783

delete g: g=hfarray(0..nsamp):
for nn from 0 to nsamp do
      g[nn]:=0:
      for mm from 0 to p do
         g[nn]:=g[nn]+a[mm]*nn^mm:
      end_for:
      g[nn]:=g[nn]-z[nn]:
end_for:
plot(g)
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Taylor Coeffieients
delete aa: aa=hfarray(0..p):
for n from 1 to p do
    aa[n]:=-(-dx)^n/n/float(ln(10)):
end_for: aa[0]:=0:
aa

0 0
1 0.000434294481903251827651128919
2 - 0.000000217147240951625913825564459
3 0.000000000144764827301083942550376306
4 - 0.00000000000010857362047581295691278223
5 0.0000000000000000868588963806503655302257838
6 - 0.0000000000000000000723824136505419712751881532
7 0.0000000000000000000000620420688433216896644469884



delete d: d=hfarray(0..p):
for nn from 0 to p do
    d[nn]:=ln(nn*dx+1)/float(ln(10)):
end_for: d

0 0.0
1 0.000434077479318640668921387778
2 0.0008677215312269124928427079
3 0.00130093302041811880082627886
4 0.00173371280900052976802710616
5 0.00216606175650767623042063776
6 0.002597980719908592311962985
7 0.00302947055361800716932576738
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