
AC 2012-4751: LOW-COST, HIGH-CAPABILITY, EMBEDDED SYSTEMS
FOR EDUCATION AND RESEARCH: A TOOLBOX FOR THE MICROSOFT
KINECT

joshua fabian, Villanova University
Mr. Tyler A. Young, Villanova University

Tyler Young implemented the initial interface between Simulink (in a Unix environment) and the Mi-
crosoft Kinect device.

Dr. James Peyton Jones, Villanova University

James Peyton Jones is a professor of electrical and computer engineering, and a member of the Center for
Nonlinear Dynamics and Control at Villanova University.

Dr. Garrett Miles Clayton, Villanova University

Garrett M. Clayton received his B.S.M.E. from Seattle University and his M.S.M.E. and Ph.D. in mechan-
ical engineering from the University of Washington, Seattle. He is an Assistant Professor in mechanical
engineering at Villanova University. His research interests focus on mechatronics, specifically modeling
and control of scanning probe microscopes and unmanned vehicles.

c©American Society for Engineering Education, 2012

Low‐cost,	High‐Capability,	Embedded	Systems	for		
	Education	and	Research:		A	Toolbox	for	the	Microsoft	Kinect

J. Fabian, T. Young, J.C. Peyton Jones, G.M. Clayton

Center for Nonlinear Dynamics & Control, Villanova University

Abstract

Increasingly powerful, yet low-cost computing and sensing devices are now available for use in
student designs and embedded mechatronic systems. The Microsoft Kinect, for example, though
initially developed as a gaming device, provides rich sensing possibilities, with camera and depth
images, again at remarkably low cost. However, the sophistication of such devices often
requires a high degree of programming ability in order to exploit their evident capabilities. This
paper describes progress on a National Science Foundation and MathWorks sponsored project
aimed at making these devices more accessible to student users through the use of Automatic
Code Generation techniques. Specifically, the paper describes a new toolbox that has been
developed which allows students to perform their designs from within the Matlab / Simulink
environment, and then to implement these designs directly on a hardware platform coupled to the
Kinect system. Students develop their designs using interconnected Simulink blocks and
subsystems, and the ‘build’ process automatically cross-compiles and downloads the model to
the target for execution. External mode capability can be used to monitor the target hardware as
it executes in real time, enabling the user to tune model parameters and log data while their
application is running. An example showing how the Kinect can be integrated into a higher level
system design is shown as an example.

1. Introduction

Advances in low-cost, high-capability computing and sensing devices offer new opportunities for
teaching, particularly in the field of mechatronics, image or signal processing and control. The
use of embedded devices in the robotics area for example has been shown to increase student
motivation and learning [1-3]. The LEGO MindStorms NXT, in particular, has received much
interest and attention with new tools and applications in many STEM areas, [4-6]. Similar
hardware advances are also resulting in the increased availability of low-cost sensing devices,
including gyroscopes, accelerometers, and cameras, [7-9]. The recent introduction of the
MicroSoft Kinect, takes this development one step further by providing a combined camera and
depth image within a single low-cost package. Though intended primarily for the entertainment
market, the Kinect has excited considerable interest, particularly within the robotics community,
for its sensing potential. Early applications are largely focused on a stationary sensor detecting
and/or tracking object motion in 3 dimensions, and include articulated skeleton tracking for
improved human control of robots, hand gesture recognition, and 3D virtual environment
construction. Recent publications include [10-12].

In all of these reports, however, it appears that the robot control and Kinect image processing
algorithms have been coded in C, no doubt because the open source drivers that are available
define C language interfaces. However, this presents a considerable barrier for the introduction
of the Kinect in many signal processing, image processing, and control courses, since the de-
facto language in many engineering colleges has moved from C to the MATLAB / Simulink
environment. Furthermore, the need to resolve low-level programming details, such as fixed
point arithmetic or overflow, distracts students from the higher-level pedagogical goals related to
the signal processing or control algorithm. An alternative approach is for students to perform
their system designs in the preferred MATLAB / Simulink environment, and then use Simulink’s
‘Automatic Code Generation’ or ‘Rapid Prototyping’ capability to translate these designs into
real-time executable code. The aim of this paper is to show how the Kinect device can be
incorporated into high-level Simulink designs, streaming parallel camera and depth images into
the user’s Simulink model. The images are then readily manipulated within Simulink in order to
achieve a much more sophisticated signal processing or control design than was previously
possible in a classroom environment. In particular, the paper describes a new ’VU-Kinect’ block
which makes Kinect depth and camera images easily accessible to users in the Simulink
environment. It should be noted, however, that since the start of this project, other similar
Simulink-based solutions have also become available, [13-15]. The specific ‘VU-Kinect’ block
described in the paper should therefore be regarded as one instantiation of several recent
developments which enable the excitement and interactivity of the Kinect device to be brought
into the classroom.

The paper is organized as follows. An overview of the hardware and software design trade space
is presented in section 2, including the specific architecture used for the present research. The
VU-Kinect block, which provides the interface from the Kinect device to Simulink, is discussed
in detail in section 3. An object detection example is presented in section 4 and used to demon-
strate the utility of the Kinect device and the VU-Kinect block. Finally, brief conclusions and
plans for future work are discussed in section 5.

2. Kinect Hardware, Software, and High-Level Design Alternatives

The KinectTM device is a peripheral sensor system designed to operate as a motion capture and
control input with the Microsoft® Xbox® gaming console. The device has a variety of sensors,
including: a video camera, an Infra-Red camera, 4 microphones and a 3-axis accelerometer. The
depth sensor works by use of light coding. The device projects a static, pseudorandom and
known IR pattern from the IR projector. The device also has an IR camera that detects the return
of this IR pattern from the environment. The KinectTM then compares the IR pattern received to
the known pattern that was transmitted and constructs a depth scene [16]. The KinectTM also
contains a variety of processor chips and controllers. The most relevant of these for the current
effort is the PrimeSense image processor which preprocesses the 2 camera outputs prior to
transmission over the USB interface. This report focuses on the integration of the video and IR
(depth) cameras in the Simulink® environment. For the current research, this integration is
enabled by the libfreenect open-source driver made available on the OpenKinect.org site. This
driver provides a simple C interface to the KinectTM device and makes the video and depth
streams available through an API. Additional drivers are available, including one developed by
PrimeSense called OpenNI and a recently released driver from Microsoft®. The PrimeSense

drivers offer a C++ oriented abstraction library for depth cameras which, while interesting in its
own right, makes it less appropriate for interfacing with Simulink®. The Microsoft® driver was
not available at the start of this project, and is intended for Windows-based platforms. The
ultimate intention of this project is to use a Linux-based embedded target as the host platform, so
the libfreenect APi was chosen as the basis for the project.

While the libfreenect API provides an invaluable interface to the capabilities of the KinectTM, it is
important to consider the environment in which it will be used. Advances in sensing technology
are matched, if not outpaced, by advances in low-cost computational hardware. The increase in
computational power is strongly correlated to programming complexity, and this has motivated a
move away from low-level programming in assembly language or even C, towards higher level
programming tools and environments. To varying degrees, these tools allow users first to
simulate their designs, then implement them on target hardware (using automatic code
generation), and finally to tune system parameters while the code is actually running in real time.
Specifically, these tools include Microsoft® Robotics Studio (MSRS), LabView from National
Instruments, and MATLAB® / Simulink® from the Mathworks. The MATLAB® / Simulink®
environment is arguably the most pervasive within industry and the STEM community, is
already tightly integrated into the research activities and educational curriculum at Villanova
University and other institutions. Simulink® was therefore chosen as the design environment for
the project, and the task was then to develop a seamless bridge between the libfreenect API and
the user-friendly, block-oriented Simulink® environment.

Figure 1. The Microsoft® KinectTM

3. The VU-Kinect Block

The Villanova University Real Time Kinect block (VU-Kinect) provides a high-level interface to
the KinectTM hardware for Simulink® users, as well as the low-level back-end code necessary to
interface to the Freenect API. From a user perspective, the VU-Kinect block appears within the
Simulink® block library browser as shown in Fig. 2, and users simply drag and drop the block
into their design in order to access the KinectTM camera and depth images. The block outputs
four 480 x 640 pixel streaming signals: one each for red, blue and green from the KinectTM video
camera (hereafter referred to as the combined RGB signal) and one for the depth camera. The
RGB signals are unsigned 8-bit integers and the depth signal is an unsigned 16-bit integer. The
Kinect video camera has multiple resolution settings which stream at corresponding frame rates.
For this research the standard resolution, streaming at approximately 30 frames per second (fps),
was implemented. The block can operate in ‘Simulation mode’ where the user model runs on the
host system on a free-wheeling time base, or the design can be transformed automatically into a
real time target-system executable operating on a fixed time base. The target system can either
be the host machine itself, or some other Linux-based target device such as the Beagleboard or
Pandaboard [17].

The details pertaining to real-time embedded applications are worthy of some comment,
particularly since a common end application is for autonomous navigation of mobile robots. The
process is illustrated in Fig. 3. The start point is a user design in the form of a Simulink® model.
When the user initiates a ‘build’ command, the Real Time Workshop automatically generates the
corresponding C code, as well as a ‘makefile’ which defines how to compile this code into a real-
time executable. The VU-Kinect block provides the custom code necessary to interface to the
Freenect API. Other Linux target specific code may be required depending on the desired
destination hardware platform. The combined code is then automatically compiled and linked
into an executable which is either run on the host machine if this is the chosen ‘target’, or
downloaded and run on some other target platform. As shown in Fig. 3, it is also possible to
include code for ‘External Mode’ communications which enable the user to interact with the
target during runtime, (as indicated by the dotted line in the figure). This feature is very useful
for tuning model parameters during execution and for streaming data back to image viewers in
the original Simulink® model to enable the user to monitor the real-time output of the VU-Kinect
block or any subsequent transformations of the image stream.

Figure 2. The VU-Kinect Block

Figure 3. The Rapid Prototyping Process

 RGB Camera

Depth

4. An Object Detection Example

In order to demonstrate the utility of the VU-Kinect Simulink® block and the value of an
integrated 3-dimensional video camera solution, a simple object detection demonstration is
presented. The objective is to highlight issues with standard image-based object detection
techniques and demonstrate the value of augmenting the object detection process with depth
information. For the purpose of the demonstration, the VU-Kinect Simulink® block is used in a
model with several standard Simulink® Video and Image Processing BlocksetTM. In the
demonstration, a person wearing a shirt with a large (and obnoxious!) print pattern is in the
foreground KinectTM field of view (FOV) with another person in the background. The example
demonstrates the inability of standard edge detection techniques, applied to the RGB video, to
correctly identify the persons as unique objects. However, by combining the information for the
depth camera with the RGB video, the persons can clearly be identified.

The experiment was conducted using MATLAB® version R2010a and Simulink® 7.5 on a
standard Linux desktop platform (ie, no special computing environment was required). The
Video and Image Processing BlocksetTM, (now called the Computer Vision BlocksetTM), was
used for processing and viewing the video signals generated by the VU-Kinect block. The use of
this toolbox is not technically required, but provides a great deal of useful functionality and
demonstrates how powerful applications can be constructed with relative ease. The example
application, shown in Fig. 4, makes particular use of the Edge Detection block. The application
processes the image and displays four different videos for comparison:

1. the raw RGB video image
2. the raw depth output
3. the output of edge detection on the RGB, overlaid on the RGB video
4. the output of edge detection on the depth image, overlaid on the RGB video.

The model starts with the VU-Kinect block in the top left corner. The RGB signals are
immediately converted from RGB colorspace into a grayscale intensity signal and then fed into

Figure 4. Simulink® Model for Object Detection

the Edge Detection block. For this example, the Edge Detection block is implemented with the
default Sobel edge detection algorithm which approximates the gradient of the RGB image
intensity at each pixel and uses this gradient to estimate where edge are in the image [18]. The
output of the Edge Detection block is a binary image with white pixels where edges have been
detected and black pixels elsewhere. A gain is applied to this binary signal so that it has the
same range as the 8-bit raw RGB video signal. The raw RGB video signal and the binary Edge
Detection output are then passed to the Compositing block which overlays the edges on top of
the raw RGB video.

An identical process is used for the depth signal with one critical exception. Before the depth
signal can be used in conjunction with the RGB signal, the signal (image) must be registered
with the RGB signal (image). Since the RGB and depth images come from separate cameras
mounted on the KinectTM sensor, there is an inherent misalignment in the outputs. The
registration / alignment of the depth image with the RGB image is a fundamental step in the
model and involves the geometric transformation of the coordinate system of the depth camera
into the coordinate system of the RGB camera. The specific parameters used for this
transformation were developed using the MATLAB® Control Point Selection Tool, which is part
of the Image Processing ToolboxTM. The tool allows the user to select corresponding points in 2
images and then automatically generates the required transformation to register one image with
other.

To demonstrate the importance of the image registration process, the images in Fig. 5 show the
unregistered depth image and the registered depth, respectively, overlaid on the RGB video. The
image on the left clearly shows the misalignment of the two images prior to registration. Of
particular note are the gray 'shadows' around all of the objects on the desk. Once the geometric
transformation has been applied, the gray objects in the depth overlay are very closely aligned
(registered) with their corresponding objects in the RGB image underneath. This registration
process is critical for any applications that intend to make use of both video and depth data.

Once the depth image has been successfully registered to the RGB image, it is converted to
unsigned 8-bit integers, and the image is then ready for Edge Detection and Compositing using a
process identical to that described above for the RGB image stream.

Figure 5. Comparison of Unregistered and Registered Depth Images

Image

Misalignment Images Aligned

4.1 Results & Discussion

Using the model described above, the following results were obtained. The images in Fig. 6
show the raw RGB video output and the registered depth output, respectively. There are clearly
two persons in the KinectTM FOV, overlapping in the plane of the camera, but separated in
distance from the camera. By comparison it is easy to observe the limitations in the range
resolution of the depth camera. While the main features in the FOV are detected, many of the
objects clearly visible in the RGB image are not easily detectable in the depth image (e.g. the
phone on the wall).

Figure 6. KinectTM Color Video and Depth Images

The image in Fig. 7 shows the edges detected in the RGB image by the Edge Detection block,
overlaid on the RGB image. The Edge Detection block correctly identifies all of the major
features in the FOV: e.g. both persons, the chair on the right, the window and cabinets, etc.
However, the block also detects many 'objects' that are not unique objects: e.g. the pineapples
and lettering on the shirts of the persons in the image. In addition, there is not clear distinction
between the two people in the image (e.g. around their shoulders). From an object detection
perspective this would create issues for tracking objects in the FOV, as well as performing other
image processing applications.

By using the registered depth image, in conjunction with the RGB image, it is more obvious
which edges define unique objects and which do not: The image in Fig. 8 shows the edges
detected in the depth image, overlaid on the RGB image. Note that the main features, namely
the two persons, are now uniquely and individually defined by their outlines. Of course, the
limitation in range resolution does cause the edges detected to be relatively jagged, as compared
to the RGB-generated edges. The best processing path forward would depend on the specific
application being developed. For the purpose of this example, it is sufficient to demonstrate the
differences between the two images.

Figure 7. RGB Image Edge Detection

Figure 8. Depth Image Edge Detection

The intention of the model and examples discussed above is to demonstrate the value of
integrating the KinectTM sensor into the MATLAB® and Simulink® software environment. The
VU-Kinect S-Function and Simulink® block allow the KinectTM sensor data, RGB and depth, to
be manipulated and processed by the various tools available in the Simulink® blocksets, as well
as by custom developed Embedded MATLAB® Functions. Due to the relatively low cost of the
KinectTM sensor, as compared to other video and depth sensing solutions of comparable
resolution, and the availability of drivers and MATLAB® and Simulink® functions and blocks,
this development opens the door for many areas of research and development.

5. Conclusions

The VU-Kinect block helps realize the potential of the KinectTM sensor in teaching and research
by providing a seamless pathway from high-level Simulink designs to the low-level libfreenect
device drivers. In particular, the block provides access to the RGB video and depth images
streaming from the device at a 30 frames per second rate. As illustrated in the simple example, it
is then possible to draw upon the existing and extensive library of Simulink image and signal
processing blocks in order to construct sophisticated applications without needing to program in
C, or to engage in low-level programming. These benefits make the exciting capabilities of the
KinectTM much more accessible for non-computer specialists, opening new avenues for teaching
and research in signal or image processing, autonomous systems and robotics, and control.
Ongoing work is now focused on exploring these opportunities, initially through senior design
projects, but with the intention of incorporating the KinectTM within the experiments of the
regular taught curriculum.

Acknowledgements

The authors gratefully acknowledge support for this project from the National Science
Foundation (DUE No. 0837637 [16]), and The MathWorks, Inc. MATLAB®, Simulink® and
Video and Image Processing BlocksetTM are registered trademarks of the The MathWorks, Inc.
This work is neither endorsed nor maintained by Microsoft Corporation. Microsoft®, KinectTM
and Xbox® are registered trademarks of Microsoft Corporation.

Bibliography

1. L. Greenwald, and D. Artz, “Teaching artificial intelligence with low cost robots,” In Accessible hands-on

artificial intelligence and robotics education, ed. L. Greenwald, Z. Dodds, A. Howard, S. Tejada, and J.
Weinberg, pp. 35-41. Technical Report SS-04-01. Menlo Park, CA: AAAI Press, (2004).

2. S. Coradeschi and J. Malec “How to make a challenging AI course enjoyable using the RoboCup soccer
simulation system, in RoboCup-98: Robot soccer world cup II: Lecture notes in artificial intelligence, vol. 1604,
pp.120-124, ed. M. Asada and H. Kitano. Berlin: Springer, (1999).

3. M. Goldweber, et al. “The use of robots in the undergraduate curriculum: Experience reports,” Panel at 32nd
SIGCSE Technical Symposium on Computer Science Education, Charlotte, North Carolina..

4. G. Droge, B. Ferri, and O. Chiu, “Distributed Laboratories: Control System Experiments with LabVIEW and
the LEGO NXT Platform,” submitted to the ASEE Annual Conference and Exposition, San Antonio, (June
2012).

5. F. Klassner, K. Lehmer, J.C. Peyton Jones, Genetic Algorithms with LEGO Mindstorms and MATLAB,
submitted to the 25th International Florida Artificial Intelligence Research Society Conference (2012).

6. Peyton Jones, J.C., McArthur, C., Young, T. The VU-LEGO Real Time Target: Taking Student Designs to
Implementation. Proceedings of the ASEE 2011 Annual Conference & Exposition, June 26-29 2011,
Vancouver, Canada. (2011).

7. Vernier Inc, website: http://www.vernier.com/engineering/lego-nxt/

8. MindSensors Inc, website: http://www.mindsensors.com/

9. Camera Reference needed

10. E. Suma, B. Lange, A. Rizzo, D. Krum and M. Bolas, “FAAST: The Flexible Action and Articulated Skeleton
Toolkit,” Proceedings - IEEE Virtual Reality, p 247-248, (2011).

11. M. Roccetti and G. Marfia, “Recognizing Intuitive Pre-Defined Gestures for Cultural Specific Interactions: An
Image-Based Approach,” 2011 IEEE Consumer Communications and Networking Conference, CCNC'2011, p
172-176, (2011).

12. R. Jota and H. Benko, “Constructing Virtual 3D Models with Physical Building Blocks,” Conference on Human
Factors in Computing Systems - Proceedings, p 2173-2178, (2011).

13. Simulink for Natural Integration Device (NID), T. Chikamasa, MathWorks File Exchange File ID #32318,
website: www.mathworks.com/matlabcentral/fileexchange

14. Kinect MicroSoft SDK, MathWorks File Exchange File ID #33035, website:
www.mathworks.com/matlabcentral/fileexchange

15. Kinect SDK with Matlab, MathWorks File Exchange File ID #32586, website:
www.mathworks.com/matlabcentral/fileexchange

16. PrimeSense Ltd., website: www.primesense.com.

17. PandaBoard website: www.pandaboard.org.

18. “A 3x3 Isotropic Gradient Operator for Image Processing”, Pattern Classification and Scene Analysis, 1973

19. J.C. Peyton Jones, F. Klassner, S. Kulkarni, C. Nataraj, “Introducing undergraduates to complex systems
through rapid-prototyping of low-cost, networked mobile robots”. National Science Foundation DUE No.
0837637.

