Vol. 4, No. 4: 14

Efficiently Building a Matrix to
Rotate One Vector to Another

Tomas Mdller
Chalmers University of Technology

John F. Hughes

Brown University

Abstract. We describe an efficient (no square roots or trigonometric functions)
method to construct the 3 x 3 matrix that rotates a unit vector f into another
unit vector t, rotating about the axis f x t. We give experimental results showing
this method is faster than previously known methods. An implementation in C is
provided.

1. Imntroduction

Often in graphics, we have a unit vector, f, that we wish to rotate to another
unit vector, t, by rotation in a plane containing both; in other words, we
seek a rotation matrix R(f,t) such that R(f,t)f = t. This paper describes
a method to compute the matrix R(f,t) from the coordinates of f and t,
without square root or trigonometric functions. Fast and robust C code can
be found on the accompanying Web site.

2. Derivation

Rotation from f to t could be generated by letting u = f x t/||f x t||, and
then rotating about the unit vector u by 6 = arccos(f - t). A formula for the
matrix that rotates about u by 4 is given in Foley et al. [Foley et al. 90],

© A K Peters, Ltd.
1 1086-7651/88 $0.50 per page

2 journal of graphics tools

namely
u2 + (1 —u2)cosd Ug Uy (1 — cos) — y, sinf Uz U, + Uy Sin
UzUy (1 — cos) + u, sinf u + (1 —ul)cosd Uy (1 — cos8) — uy sind
UzUz (1 — cos0) — uysinfd uyu,(l — cosf) + ug sinf u2 4+ (1 —u2)cosf

The above involves cos(8), which is just f - t, and sin(f), which is ||f x t]|.
If we instead let

v = fxt
¢c = f-t

1—c¢ 1—c¢
h = =

1—¢2 vV

then, after considerable algebra, one can simplify the matrix to

c+ hvfc hvgvy — v, hugvu, + vy
R(f,t) = | hvguy + v, c+hvl hvyv, — v, (1)
hvgv, —vy huyv, +v; ¢+ hv?

Note that this formula for R(f,t) has no square roots or trigonometric func-
tions.

When f and t are nearly parallel (i.e., |[f-t| > 0.99), the computation of
the plane that they define (and the normal to that plane, which will be the
axis of rotation) is numerically unstable; this is reflected in our formula by
the denominator of h becoming close to zero.

In this case, we observe that a product of two reflections (angle-preserving
transformations of determinant —1) is always a rotation, and that reflection
matrices are easy to construct: For any vector u, the Householder matrix
[Golub, Van Loan 96]

H(u)=1- iuut
u-u
reflects the vector u to —u, and leaves fixed all vectors orthogonal to u. In
particular, if p and q are unit vectors, then H(q — p) exchanges p and q,
leaving p + q fixed.

With this in mind, we choose a unit vector p and build two reflection
matrices: one that swaps f and p, and the other that swaps t and p. The
product of these is a rotation that takes f to t.

To choose p, we determine which coordinate axis (z, y, or z) is most nearly
orthogonal to f (the one for which the corresponding coordinate of f is smallest
in absolute value) and let p be a unit vector along that axis. We then build
A =H(p —f), and B = H(p — t), and the rotation we want is R = BA.

Moller and Hughes: Efficiently Building a Matrix to Rotate One Vector to Another 3

That is, if we let

X, if | fz|<|fy| and | fz|<|f2|
P = ¥, if \.fy\<\.fz| and \.fy\<\fz\
2, if | f:|<|fz| and [f2]<|f,]
u = p-—f
v = p_ta

then the entries of R are given by
2
Tij = 6ij — ﬁuiuj - m’l)ﬂ)j +

where §;; = 1 when ¢ = j and §;; = 0 when { # j.

3. Performance

We tested the new method for performance against all previously known (by
the authors) methods for rotating a unit vector into another unit vector. A
naive way to rotate f into t is to use quaternions to build the rotation directly:
Letting u = v/||v||, where v = f x t, and letting ¢ = (1/2) arccos(f - t), we
define q = (sin(¢)u; cos ¢) and then convert the quaternion q into a rotation
via the method described by Shoemake [Shoemake 85]. This rotation takes f
to t, and we refer to this method as Naive. The second is called Cunningham
and is just a change of bases [Cunningham 90]. Goldman [Goldman 90] gives
a routine for rotating around an arbitrary axis: in our third method we sim-
plified his matrix for our purposes; this method is denoted Goldman. All three
of these require that some vector be normalized; the quaternion method re-
quires normalization of v; the Cunningham method requires that one input be
normalized, and then requires normalization of the cross-product. Goldman
requires the normalized axis of rotation. Thus, the requirement of unit-vector
input in our algorithm is not exceptional.

For the statistics below, we used 1,000 pairs of random normalized vectors
f and t. Each pair was fed to the matrix routines 10,000 times to produce
accurate timings. Our timings were done on a Pentium IT 400 MHz with
compiler optimizations for speed on.

Routine: | Naive | Cunningham | Goldman | New Routine
Time (s): | 18.6 13.2 6.5 4.1

The fastest, of previous known methods (Goldman) still takes about 50% more
time than our new routine, and the naive implementation takes almost 350%

4 journal of graphics tools

more time. Similar performance can be expected on most other architectures,
since square roots and trigonometric functions are expensive to use.

Acknowledgements. Thanks to Eric Haines for encouraging us to write this.

References

[Cunningham 90] Steve Cunningham. “3D Viewing and Rotation using Orthonor-
mal Bases.” In Graphics Gems,edited by Andrew S. Glassner, pp. 516-521,
Boston: Academic Press, Inc., 1990.

[Foley et al. 90] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer
Graphics—Principles and Practice, Second Edition, Reading, MA: Addison-
Wesley, 1990.

[Goldman 90] Ronald Goldman. “Matrices and Transformations.” In Graphics
Gems, edited by Andrew S. Glassner, pp. 472-475, Boston: Academic Press,
Inc., 1990.

[Golub, Van Loan 96] Gene Golub and Charles Van Loan, Matriz Computations,
Third Edition, Baltimore: Johns Hopkins University Press, 1996.

[Shoemake 85] Ken Shoemake. “Animating Rotation with Quaternion Curves,”
Computer Graphics (Proc. SIGGRAPH ’85), 19(3): 245-254 (July 1985).

Web Information:
http:/ /www.acm.org/jgt /papers/MollerHughes99

Tomas Moller, Chalmers University of Technology, Department of Computer Engi-
neering, 412 96 Gothenburg, Sweden (tompa@acm.org) Currently at U.C. Berkeley.

John F. Hughes, Brown University, Computer Science Department, 115 Waterman
Street, Providence, RI 02912 (jth@cs.brown.edu)

Received June 28, 1999; accepted in revised form January 14, 2000.

