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Abstract. We describe an efficient (no square roots or trigonometric functions)
method to construct the 3 x 3 matrix that rotates a unit vector f into another
unit vector t, rotating about the axis f x t. We give experimental results showing
this method is faster than previously known methods. An implementation in C is
provided.

1. Imntroduction

Often in graphics, we have a unit vector, f, that we wish to rotate to another
unit vector, t, by rotation in a plane containing both; in other words, we
seek a rotation matrix R(f,t) such that R(f,t)f = t. This paper describes
a method to compute the matrix R(f,t) from the coordinates of f and t,
without square root or trigonometric functions. Fast and robust C code can
be found on the accompanying Web site.

2. Derivation

Rotation from f to t could be generated by letting u = f x t/||f x t||, and
then rotating about the unit vector u by 6 = arccos(f - t). A formula for the
matrix that rotates about u by 4 is given in Foley et al. [Foley et al. 90],
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namely
u2 + (1 —u2)cosd Ug Uy (1 — cos ) — y, sinf Uz U, + Uy Sin
UzUy (1 — cos ) + u, sinf u + (1 —ul)cosd Uy (1 — cos8) — uy sind
UzUz (1 — cos0) — uysinfd  uyu,(l — cosf) + ug sinf u2 4+ (1 —u2)cosf

The above involves cos(8), which is just f - t, and sin(f), which is ||f x t]|.
If we instead let

v = fxt
¢c = f-t

1—c¢ 1—c¢
h = =

1—¢2 vV

then, after considerable algebra, one can simplify the matrix to

c+ hvfc hvgvy — v,  hugvu, + vy
R(f,t) = | hvguy + v, c+hvl  hvyv, — v, (1)
hvgv, —vy huyv, +v; ¢+ hv?

Note that this formula for R(f,t) has no square roots or trigonometric func-
tions.

When f and t are nearly parallel (i.e., |[f-t| > 0.99), the computation of
the plane that they define (and the normal to that plane, which will be the
axis of rotation) is numerically unstable; this is reflected in our formula by
the denominator of h becoming close to zero.

In this case, we observe that a product of two reflections (angle-preserving
transformations of determinant —1) is always a rotation, and that reflection
matrices are easy to construct: For any vector u, the Householder matrix
[Golub, Van Loan 96]

H(u)=1- iuut
u-u
reflects the vector u to —u, and leaves fixed all vectors orthogonal to u. In
particular, if p and q are unit vectors, then H(q — p) exchanges p and q,
leaving p + q fixed.

With this in mind, we choose a unit vector p and build two reflection
matrices: one that swaps f and p, and the other that swaps t and p. The
product of these is a rotation that takes f to t.

To choose p, we determine which coordinate axis (z, y, or z) is most nearly
orthogonal to f (the one for which the corresponding coordinate of f is smallest
in absolute value) and let p be a unit vector along that axis. We then build
A =H(p —f), and B = H(p — t), and the rotation we want is R = BA.
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That is, if we let

X, if | fz|<|fy| and | fz|<|f2|
P = ¥, if \.fy\<\.fz| and \.fy\<\fz\
2, if | f:|<|fz| and [f2]<|f,]
u = p-—f
v = p_ta

then the entries of R are given by
2
Tij = 6ij — ﬁuiuj - m’l)ﬂ)j +

where §;; = 1 when ¢ = j and §;; = 0 when { # j.

3. Performance

We tested the new method for performance against all previously known (by
the authors) methods for rotating a unit vector into another unit vector. A
naive way to rotate f into t is to use quaternions to build the rotation directly:
Letting u = v/||v||, where v = f x t, and letting ¢ = (1/2) arccos(f - t), we
define q = (sin(¢)u; cos ¢) and then convert the quaternion q into a rotation
via the method described by Shoemake [Shoemake 85]. This rotation takes f
to t, and we refer to this method as Naive. The second is called Cunningham
and is just a change of bases [Cunningham 90]. Goldman [Goldman 90] gives
a routine for rotating around an arbitrary axis: in our third method we sim-
plified his matrix for our purposes; this method is denoted Goldman. All three
of these require that some vector be normalized; the quaternion method re-
quires normalization of v; the Cunningham method requires that one input be
normalized, and then requires normalization of the cross-product. Goldman
requires the normalized axis of rotation. Thus, the requirement of unit-vector
input in our algorithm is not exceptional.

For the statistics below, we used 1,000 pairs of random normalized vectors
f and t. Each pair was fed to the matrix routines 10,000 times to produce
accurate timings. Our timings were done on a Pentium IT 400 MHz with
compiler optimizations for speed on.

Routine: | Naive | Cunningham | Goldman | New Routine
Time (s): | 18.6 13.2 6.5 4.1

The fastest, of previous known methods (Goldman) still takes about 50% more
time than our new routine, and the naive implementation takes almost 350%
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more time. Similar performance can be expected on most other architectures,
since square roots and trigonometric functions are expensive to use.
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