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INTRODUCTION 
The purpose of this document is to provide a brief and essential guide for using SigProfiler (formerly 
known as the Wellcome Trust Sanger Institute [WTSI]'s framework) for deciphering signatures of 
mutational processes from catalogues of cancer genomes. Detailed explanation of SigProfiler’s 
theoretical model and computational framework is available in our manuscript entitled "Deciphering 
signatures of mutational processes operative in human cancer" by Alexandrov et al., Cell Reports, 
Volume 3, Issue 1, 246-259: 
 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588146/ 
 

Further, several examples and multiple input files are provided to better illustrate how to apply SigProfiler 
to mutational catalogues of cancer genomes. Please note that SigProfiler allows identifying mutational 
signatures in both a direct manner and a hierarchical manner (see examples later in the document). The 
approach underlying the direct manner identification of mutational signatures can be found in the 
manuscript "Deciphering signatures of mutational processes operative in human cancer", while the 
approach underlying the hierarchical manner is briefly described in the manuscript “Landscape of 
somatic mutations in 560 breast cancer whole-genome sequences”: 
 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4910866/ 
 

In addition to SigProfiler, a tool for assigning mutational signatures in single samples is also provided. 
The tool is known as SigProfilerSingleSample and its source code as well as an example for running it 
can be found in the tools folder. The algorithm underlying SigProfilerSingleSample is briefly described 
in our manuscript entitled "Clock-like mutational processes in human somatic cells" by Alexandrov et 
al., Nature Genetics, Volume 47, Issue 12, 1402-1407: 
 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783858/ 
 

PREREQUISITES 
SigProfiler and all additional tools are written in MATLAB and require the following packages with 
the specified (or newer) versions: 
 
MATLAB         9.3.0.713579 (R2017b) 
Parallel Computing Toolbox        Version 6.11 (R2017b) 
Global Optimization Toolbox        Version 3.4.3 (R2017b) 
Optimization Toolbox         Version 8.0 (R2017b) 
Bioinformatics Toolbox        Version 4.9 (R2017b) 
Statistics and Machine Learning Toolbox        Version 11.2 (R2017b) 
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In principle, SigProfiler will work on any operating system that allows installing MATLAB R2017b (or 
newer). Please note that SigProfiler has been tested with the above listed versions of MATLAB and 
MATLAB packages on macOS High Sierra (ver. 10.13.4). Further, please note that MATLAB, the 
parallel computing toolbox, the global optimization toolbox, and the optimization toolbox are essential 
for running SigProfiler’s core functionality. In addition, MATLAB and these three toolboxes are also 
required for running SigProfilerSingleSample. The other two toolboxes are desirable but the code for 
deciphering mutational signatures and the code for assigning mutational signatures to an individual 
sample could be executed without them as other freely available packages have been leveraged in the 
appropriate places. SigProfiler and SigProfilerSingleSample do not require installation as one can run 
these programs directly through MATLAB. 
 
Accurately deciphering signatures of mutational processes is computationally intensive. SigProfiler is 
usually executed on a computational cluster (or a computational farm) with at least 100 nodes. Further, 
the three provided examples assume that the default parallel cluster has already been preconfigured 
(please refer to MATLAB’s documentation for configuring a default cluster). The code will make use of 
all available workers for the default cluster. 
 
By default, SigProfiler uses the nonnegative matrix factorization (NMF) solver from (Brunet et al., 
PNAS, 2004, 12, 4164-4169), which is based on the multiplicative update algorithm (Lee and Seung, 
1999, Nature 401, 788-791). However, if the Statistics and Machine Learning Toolbox is available, the 
provided NMF solver (i.e., nnmf) could be used instead and it will generally produce faster results. 
Additional freely available NMF solvers based on the multiplicative update algorithm as well as other 
algorithms are also provided. In principle, for sample datasets, all solvers (with the appropriate options) 
converge to almost identical solutions and the main difference between the algorithms is the required, 
for code execution, CPU time and memory. 
 
FOLDER STRUCTURE 

When first downloaded, SigProfiler contains five folders, four 
example files, and this readme file. 
The source folder includes all code related to deciphering signatures 
of mutational processes including several nonnegative matrix 
factorization solvers. The plotting folder contains all source code 
related to plotting mutational signatures with and without strand 
bias as well as a plot that could be used for identifying the number 
of operative mutational signatures. The input folder contains 

examples of MATLAB (i.e., *.mat) and text input files. These files are used when executed the provided 
examples, run_example.m or run_example_text_IO.m. The executed example code will also create an 
output folder structure (shown on the right) and a temp 
folder. The output folder structure generates a folder for 
the analyzed dataset and full, skinny, text, and summary 
subfolders. The subfolders contain the results of 
executing SigProfiler in either a MATLAB (i.e., *.mat) 
or a text (i.e., *.csv) format. The result files in the full 
folder contain data for all iterations. These files usually 
require a lot of storage (i.e., 100+ gigabytes) when 
examining large datasets. The result files in the skinny 
folder contain data only for the average mutational 
signatures and the mutations they generate in individual 
samples. The result file in the summary folder provides 
summary information (i.e., average reconstruction, 
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average stability, etc.) across the examined dataset. The result files in the text contain two types of text 
matrices (all in a CSV format) – one type of matrices containing the mutational signatures and another 
type containing the number of mutations attributed to each signature in each sample. The temp folder is 
used to store sub-matrix input files that are subsequently leveraged by the hierarchical example. Please 
also note that running a hierarchical analysis will generate sub-sub-folders for each layer of the analysis.  
 

INPUT FILE FORMATS 
 

 

A SigProfiler input file can be either in a MATLAB 
(i.e., *.mat) or in a text (i.e., CSV) format. A 
MATLAB input file contains a set of mutational 
catalogues and metadata information about the cancer 
type, and the mutational types, subtypes, etc. for 
which these mutational catalogues have been defined. 
For example, the provided 21_WTSI_BRCA_whole_genome_substitutions.mat is shown in the 
figure above. The file contains the following fields: 
 

• cancerType: a cell array of string(s) describing the type of each samples in the file. 
 

• sampleNames: a cell array of strings in which each element corresponds to the name of the 
analyzed sample. 

 
• types: a cell array of strings in which each element corresponds to the name of the mutational 

types for which the catalogues have been defined. 
 

• subtypes: a cell array of strings in which each element corresponds to the name of the mutational 
subtype for which the catalogues have been defined. Note that additional fields could be added 
if more classes of mutational types are desired (e.g., strand bias). 

 
• originalGenomes: an array containing mutational catalogues of cancer genomes with size 

<samples> by <mutational types> in which each element corresponds to the number of mutations per 
sample per mutational type and its subtype. 

 
Please note that the MATLAB input file could contain more fields, however, the fields listed above are 
required for SigProfiler to examine the provided mutational catalogues.  
 

In addition to a MATLAB input file, SigProfiler can be applied to a text file in a comma-separated 
values (CSV) format. Five examples of CSV input files are provided in the input/text folder. Each of 
these files is a matrix, where each column reflects a sample and each row a mutation type. The numbers 
in each cell of the matrix correspond to the number of mutations of a particular type found in a specific 
sample. In principle, the first few columns of the CSV file are used to define the names of the different 
mutation types in a string format. The five example input CSV files contain 35 whole-genome sequenced 
biliary adenocarcinomas for respectively: 96, 192, 1536, dinucleotide, and indel mutation types. 
 
DESCRIPTION OF PROVIDED EXAMPLES 
The provided examples perform 10 iterations per available core. Please note that there is an expectation 
of at least 1,000 iterations (i.e., 100 available cores) and this number should be adjusted accordingly to 
the available nodes, otherwise it is possible that the identified mutational signatures are not accurate 
and/or not stable. Please note that only one of the examples generates plots, while the remaining three 
are used to generate output results in a MATLAB (*.mat files) and text format (*.csv). Lastly, note that 
the estimated time for running the provided examples is based on a MacBook Pro (13-inch, 2017) with 
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Intel Core i7 (3.5 GHz) and 16 GB of RAM (LPDDR3 2133 MHz). In principle, SigProfiler should be 
run on a large computational cluster. 
 
run_example.m: This example illustrates deciphering mutational signatures in a direct manner from 
both: (i) a MATLAB input file containing a set of mutational catalogues derived from 21 breast cancer 
genomes; and (ii) a MATLAB input file containing a set of mutational catalogues derived from 100 
breast cancer exomes with a third mutational subtype (i.e., strand bias). Estimated runtime: 30 minutes. 
 
run_example_text_IO.m: This example illustrates deciphering mutational signatures in a direct manner 
from a text/CSV file containing a set of mutational catalogues derived from 35 whole-genome sequenced 
biliary adenocarcinomas. Estimated runtime: 12 minutes. 
 
run_hierarchical_example.m: This example illustrates deciphering mutational signatures in a 
hierarchical manner. The example requires first executing run_example.m and identifying the optimal 
number of mutational signatures in the dataset. The parameters of the example are set for identifying a 
second layer of mutational signatures in 21 breast cancer genomes. Provided that there are enough 
samples, the example can be easily modified for analyzing deeper hierarchical layers by only changing 
the parameters. Estimated runtime: 18 seconds. 
 
evaluate_results_example.m: This example illustrates identifying the number of mutational processes 
operative in an examined dataset. The default option show results for the set of 21 breast cancer 
genomes, while simply changing the file names will allow examining the results for the 100 breast cancer 
exomes or the 35 whole-genome sequenced biliary adenocarcinomas. This example requires running 
run_example.m or run_example_text_IO.m. Estimated runtime: 9 seconds. 
 
CONTACT INFORMATION 
Please address any queries or bug reports to Ludmil B. Alexandrov at l2alexandrov@ucsd.edu.


