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A MATLAB Script for Optimal Single Impulse De-orbit from Earth Orbits 
 

This document describes a MATLAB script named deorbit_snopt that can be used to compute the 

optimal impulsive maneuver required to de-orbit a spacecraft in a circular or elliptical Earth orbit.  The 

user provides the classical orbital elements of the initial orbit along with geodetic altitude and relative 

flight path angle targets at the entry interface (EI). 

 

This script solves this maneuver optimization problem using a simple shooting method.  During the 

solution process, the script numerically integrates the spacecraft equations of motion subject to the 

Earth’s 2J  gravity coefficient.  The numerical integration is performed using MATLAB’s ode45 

function.  The entry interface targets are computed with respect to an oblate, rotating Earth. 

 

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the 

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control 

variables.  The scalar magnitude of the de-orbit V  is the objective function or performance index, 

and the geodetic altitude and relative flight path angle at the entry interface are treated as nonlinear 

equality constraints.  The algorithm uses an initial guess determined from the analytic de-orbit solution 

relative to a spherical, non-rotating Earth. 

 

The deorbit_snopt script uses the SNOPT nonlinear programming algorithm to solve this orbital 

mechanics problem.  MATLAB versions of SNOPT for several computer platforms can be requested 

or purchased at Professor Philip Gill’s web site which is located at http://scicomp.ucsd.edu/~peg/.  

Professor Gill’s web site also includes a PDF version of the software user’s guide. 

 

Interacting with the script 
 

This MATLAB script is “data driven” by a text file created by the user.  When the deorbit_snopt 

script is started, the software will display the following screen which allows the user to select a data 

file for processing. 

 

 
 

The file type defaults to names with a *.in filename extension.  However, you can select any 

deorbit_snopt compatible ASCII data file.  The next section describes the format and typical 

contents of compatible input files. 

http://scicomp.ucsd.edu/~peg/
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Input data file 
 

This section describes a typical input data file for the software.  In the following discussion the actual 

input file contents are in courier font and all explanations are in times italic font.  Typical user-

provided values are in bold font. 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input. 

 

The first five lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with five and only five initial text lines. 

 
***************************************************** 

** impulsive de-orbit delta-v trajectory optimization 

** de-orbit from initial circular orbit 

** file ==> deorbit3.in   April 18, 2020 

***************************************************** 

 

The first input is the calendar date of the impulsive maneuver.  Be sure to include all four digits of the 

calendar year. 

 
calendar date at time of impulsive maneuver (month, day, year) 

3, 18, 2010 

 

The next input is the UTC time of the de-orbit maneuver. 

 
UTC at time of impulsive maneuver (hours, minutes, seconds) 

12, 30, 45.875 

 

The next series of inputs define the classical orbital elements of the initial Earth orbit.  Notice that the 

true anomaly is an initial guess for the location of the maneuver.  The true anomaly initial guess for 

elliptical Earth orbits should be 180 degrees. 

 
********************************************** 

orbital elements at time of impulsive maneuver 

********************************************** 

 

semimajor axis (kilometers)7378.14  

6878.14 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5 

 

argument of perigee (degrees) 

100.0 

 

right ascension of the ascending node (degrees) 

220.0 

 

initial guess for true anomaly (degrees) 

180.0 
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The software allows the user to specify lower and upper bounds for the optimal true anomaly of the 

maneuver.  The algorithm enforces an inequality constraint on the true anomaly according to 

 

 L U     

 

where  and L U   are the user-defined lower and upper bounds, respectively. 

 

The numerical values of these bounds are defined in the next two data items. 

 
lower bound for true anomaly (degrees) 

170.0 

 

upper bound for true anomaly (degrees) 

190.0 

 

The final two items in the simulation file define the geodetic altitude and relative flight path angle 

targets at the entry interface. 

 
*********************************** 

entry interface mission constraints 

*********************************** 

 

geodetic altitude (kilometers) 

121.92 

 

relative flight path angle (degrees) 

-2.0 

 

Script examples 
 

The following is the deorbit_snopt numerical solution for this example. 

 
**************************************** 

single impulse deorbit from Earth orbits 

**************************************** 

 

time and conditions prior to deorbit maneuver 

--------------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.87814000000000e+03  +0.00000000000000e+00  +2.85000000000000e+01  +1.00000000000000e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20000000000000e+02  +1.90000000000000e+02  +2.90000000000000e+02  +9.46163624134673e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.45318321844679e+03  +2.83906883966968e+03  -3.08403806222734e+03  +6.87814000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -4.00911535387506e+00  -6.35100857948859e+00  +1.24236145363939e+00  +7.61260651018449e+00   

 

deorbit delta-v vector and magnitude 

------------------------------------ 

 

x-component of delta-v         80.301516  meters/second 

y-component of delta-v        117.688815  meters/second 

z-component of delta-v        -21.001409  meters/second 

total delta-v                 144.014061  meters/second 
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deorbit delta-v pointing angles 

------------------------------- 

 

pitch angle                    -2.256618  degrees 

 

yaw angle                    -179.973071  degrees 

 

time and conditions after deorbit maneuver 

------------------------------------------ 

 

calendar date      18-Mar-2010 

 

UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.62986196765162e+03  +3.74561317348360e-02  +2.84998225494152e+01  +1.08881122818562e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20001021787282e+02  +1.81117979216534e+02  +2.89999102035096e+02  +8.95398701301721e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.45318321844679e+03  +2.83906883966968e+03  -3.08403806222734e+03  +6.87814000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -3.92881383778096e+00  -6.23331976439964e+00  +1.22136004444855e+00  +7.46870630131950e+00   

 

time and conditions at entry interface 

-------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           13:00:49.638 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.63194303419306e+03  +3.87915541331080e-02  +2.85109989908368e+01  +1.07810489094078e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.19909866252810e+02  +2.99617139359573e+02  +4.74276284536510e+01  +8.95820323314157e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.45318321844679e+03  +2.83906883966968e+03  -3.08403806222734e+03  +6.87814000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +7.50958358577267e+00  +3.73745768234497e-01  +2.46143688225353e+00  +7.91152343460458e+00   

 

relative flight path coordinates at entry interface 

--------------------------------------------------- 

 

east longitude              252.44489639  degrees  

 

geocentric declination       20.58001385  degrees  

 

flight path angle            -2.00000000  degrees  

 

relative azimuth             68.65207490  degrees  

 

position magnitude         6497.40258326  kilometers  

 

velocity magnitude            7.49698673  kilometers/second  

 

geodetic coordinates at entry interface 

--------------------------------------- 

 

geodetic latitude            20.70458617  degrees  

 

geodetic altitude           121.92000000  kilometers  

 

 

flight time from maneuver to EI     30.06271094  minutes 

 

The following is a brief description of the information provided in the script output. 
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sma (km) = semimajor axis in kilometers 
 

eccentricity = orbital eccentricity (non-dimensional) 
 

inclination (deg) = orbital inclination in degrees 
 

argper (deg) = argument of perigee in degrees 
 

raan (deg) = right ascension of the ascending node in degrees 
 

true anomaly (deg) = true anomaly in degrees 
 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum 

of true anomaly and argument of perigee. 

 

period (mins) = orbital period in minutes 
 

rx (km) = x-component of the position vector in kilometers 

ry (km) = y-component of the position vector in kilometers 
 

rz (km) = z-component of the position vector in kilometers 
 

rmag (km) = scalar magnitude of the position vector in kilometers 
 

vx (kps) = x-component of the velocity vector in kilometers per second 
 

vy (kps) = y-component of the velocity vector in kilometers per second 
 

vz (ksp) = z-component of the velocity vector in kilometers per second 
 

vmag (kps) = scalar magnitude of the velocity vector in kilometers per second 

 

The components of the de-orbit delta-v vector are displayed in the ECI coordinate system.  The relative 

flight path coordinates are with respect to a rotating Earth.  The UTC time is given in hours, minutes 

and seconds. 

 

The deorbit_snopt script will also create a three-dimensional graphics display of the initial orbit 

and re-entry trajectory.  The following is the graphic image for this example.  The initial orbit trace is 

red and the re-entry trajectory is blue.  The dimensions are Earth radii (ER) and the plot is labeled with 

an Earth-centered-inertial (ECI) coordinate system where green is the x-axis, red is the y-axis and blue 

is the z-axis.  The impulse location is marked with a blue asterisk and entry interface is marked with a 

small blue circle. 

 

Trajectory image files are saved to disk in both tif format and MATLAB fig format with a file name 

indicating the solution number.  The disk file names are deorbit_snopt.tif and 

deorbit_snopt.fig.  The interactive features of MATLAB graphics allow the user to manipulate 

the fig version of the trajectory display.  These capabilities allow the user to interactively find the best 

viewpoint as well as verify basic three-dimensional geometry of the orbital maneuver and entry. 
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The following is the output created by this MATLAB script for the optimal de-orbit from a typical 

highly elliptical orbit (HEO). 

 
**************************************** 

single impulse deorbit from Earth orbits 

**************************************** 

 

time and conditions prior to deorbit maneuver 

--------------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.44140000000000e+04  +7.27044000000000e-01  +2.85000000000000e+01  +2.70000000000000e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20000000000000e+02  +1.80010875055299e+02  +9.00108750552986e+01  +6.32729583646570e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +2.38242965164960e+04  -2.83802405542600e+04  +2.01189455552070e+04  +4.21640501929899e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.22991535564376e+00  +1.03330298046443e+00  -5.32994999257885e-04  +1.60636456496297e+00   

 

deorbit delta-v vector and magnitude 

------------------------------------ 

 

x-component of delta-v        -16.099990  meters/second 

y-component of delta-v        -13.510509  meters/second 

z-component of delta-v          0.004894  meters/second 

 

total delta-v                  21.017696  meters/second 

 

deorbit delta-v pointing angles 

------------------------------- 

pitch angle                    -0.002649  degrees 

 

yaw angle                     179.989285  degrees 

 

time and conditions after deorbit maneuver 

------------------------------------------ 

 

calendar date      18-Mar-2010 
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UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43140994191278e+04  +7.34139993195612e-01  +2.84999999733610e+01  +2.69999971672997e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20000297715537e+02  +1.80010641744793e+02  +9.00106134177898e+01  +6.28849923664669e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +2.38242965164960e+04  -2.83802405542600e+04  +2.01189455552070e+04  +4.21640501929899e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.21381536549559e+00  +1.01979247133070e+00  -5.28100846447572e-04  +1.58534687213445e+00   

 

time and conditions at entry interface 

-------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           17:43:27.044 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43457651117266e+04  +7.34618508714193e-01  +2.84881736895298e+01  +2.70116511603440e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.19931376435734e+02  +3.50932531329709e+02  +2.61049042933149e+02  +6.30078806344008e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +2.38242965164960e+04  -2.83802405542600e+04  +2.01189455552070e+04  +4.21640501929899e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -8.39531350465642e+00  -5.97405295708906e+00  -4.38335404240751e-01  +1.03132310893426e+01   

 

relative flight path coordinates at entry interface 

--------------------------------------------------- 

 

east longitude               37.72990551  degrees  

 

geocentric declination      -28.11018407  degrees  

 

flight path angle            -4.00000004  degrees  

 

relative azimuth             95.03036771  degrees  

 

position magnitude         6495.29077143  kilometers  

 

velocity magnitude            9.89797352  kilometers/second  

 

geodetic coordinates at entry interface 

--------------------------------------- 

 

geodetic latitude           -28.26740378  degrees  

 

geodetic altitude           121.92000146  kilometers  

 

 

flight time from maneuver to EI    312.68615417  minutes 

 

Here’s the trajectory graphics display for this example. 
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Technical discussion 
 

This section is a brief explanantion of the algorithms implemented in this MATLAB script. 

 

Nonlinear programming problem 

 

A trajectory optimization problem can be described by a system of dynamic variables 
 

 
( )

( )

t

t

 
=  
 

y
z

u
 

 

consisting of the state variables y  and the control variables u  for any time t.  In this discussion 

vectors are denoted in bold. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows 
 

 ( ) ( ), , ,
d

t t t
dt

= =   
y

y f y u p  

 

where p is a vector of problem parameters that is not time dependent. 

 

The initial dynamic variables at time 0t  are defined by ( ) ( )0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by ( ) ( ), ,f f f ft t t   ψ ψ y u .  These conditions are called 

the boundary values of the trajectory problem.  The problem may also be subject to path constraints of 

the form ( ) ( ), , 0t t t =  g y u . 
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The basic nonlinear programming problem (NLP) is to determine the control vector history and 

problem parameters that minimize the scalar performance index or objective function given by 

 

 ( ) ( )0 0, , , ,f fJ t t t t  =  y y p  

 

while satisfying all the user-defined mission constraints. 

 

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the 

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control 

variables.  The scalar magnitude of the de-orbit V  is the objective function, and the geodetic altitude 

and relative flight path angle at the entry interface are the nonlinear equality constraints. 

 

Initial guess 

 

An initial guess for the scalar magnitude of the de-orbit delta-v and time-of-flight from the maneuver 

location to the entry interface is determined using analytic solutions for these values relative to a non-

rotating, spherical Earth model and two-body or Keplerian motion.  The analytic solution for circular 

orbits in discussed in Appendix B and Appendix C contains the equations for elliptical orbits.  Please 

note the elliptical orbit analytic solution assumes the de-orbit maneuver occurs at apogee (true anomaly 

= 180 ).  This is the typical true anomaly initial guess for de-orbit from elliptical orbits. 

 

The initial guess for the de-orbit delta-v vector is aligned opposite (retrograde) to the unit velocity 

vector on the initial Earth orbit at the maneuver location.  This creates an impulsive velocity increment 

in the Earth-centered-inertial (ECI) Cartesian coordinate system. 

 

Spacecraft equations of motion 

 

During the solution process, the deorbit_snopt script numerically propagates the spacecraft 

trajectory from the maneuver time to the current estimate of the time at the entry interface.  The system 

of six first-order differential equations subject to Earth gravity, defined in the ECI coordinate system 
( , , )x y z , is given by the following expressions 
 

 1 4 2 5 2 6x y zy v y y v y y v y= = = = = =  

 

 
2 2 22 2 2

2 2 2

4 5 63 2 2 3 2 2 3 2 2

5 5 53 3 3
1 1 1 1 1 3

2 2 2

eq y eq eqx z z z z
J r r J r J rr r r r r

y y y
r r r r r r r r r

  
               

= − + − = − + − = − + −          
               

 

where 2 2 2 2 2 2

1 2 3x y zr r r r y y y= + + = + + .  In these equations   and eqr  are the gravitational constant 

and equatorial radius of the Earth, and 2J  is the first order oblateness gravity coefficient. 

 

At the entry interface, the algorithm computes the errors in the target constraints according to 
 

 
h p t

p t

h h





  

= −

= −
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where h is the geodetic altitude and   is the flight path angle relative to a rotating Earth.  In these 

equations, the p subscript indicates the value predicted by the software, and the t subscript is the target 

value provided by the user.  During the solution process, the SNOPT algorithm attempts to drive these 

two errors to zero. 

 

The equations for calculating the relative flight path coordinates from an ECI position and velocity 

vectors is summarized in Appendix D.  The algorithm used to calculate geodetic coordinates can be 

found in Appendix E and Appendix F discusses the coordinate system used to define the pitch and yaw 

orientation angles of the maneuver. 

 

SNOPT algorithm implementation 
 

This section provides details about the MATLAB source code that solve this nonlinear programming 

(NLP) problem using the SNOPT algorithm.  MATLAB versions of SNOPT for several computer 

platforms can be found at Professor Philip Gill’s University of California, San Diego web site which is 

located at http://scicomp.ucsd.edu/~peg/.  Professor Gill’s web site also includes a PDF version of the 

SNOPT software user’s guide. 

 

The SNOPT algorithm requires an initial guess for the control variables.  For this problem they are 

given by 
 

xg(1) = oevpo(6); 

 

xg(2) = dvg(1); 

 

xg(3) = dvg(2); 

 

xg(4) = dvg(3); 

 

xg(5) = dtof; 

 

where xg(1) is the user’s initial guess for the true anomaly on the initial orbit at the time of the 

impulsive maneuver. xg(2), xg(2) and xg(3) are the initial guesses for the ECI components of the 

de-orbit impulse, and dtof is the initial guess for the transfer time from the de-orbit maneuver to the 

entry interface. 

 

The algorithm also requires lower and upper bounds for the control variables.  These are determined 

from the initial guesses and user-defined true anomaly boundaries as follows: 

 
% lower and upper bounds for deorbit true anomaly (radians) 

 

xlwr(1) = ta_lower; 

 

xupr(1) = ta_upper; 

 

% lower and upper bounds for components of 

% deorbit delta-v vector (kilometers/second) 

 

dvm = norm(dvg); 

 

xlwr(2:4) = -(dvm + 0.1 * dvm); 

 

xupr(2:4) = +(dvm + 0.1 * dvm); 

 

% lower and upper bounds for flight time 

% from maneuver to entry interface (seconds) 

http://scicomp.ucsd.edu/~peg/
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xlwr(5) = dtof - 30.0; 

 

xupr(5) = dtof + 30.0; 

 

The algorithm also requires lower and upper bounds on the objective function.  For this problem these 

bounds are given by 

 
% bounds on objective function 

 

flow(1) = 0.0; 

 

fupp(1) = +Inf; 

 

The following MATLAB code sets the lower and upper bounds for the two equality constraints 

(geodetic altitude and relative flight path angle) at the entry interface. 

 
% geodetic altitude at entry interface equality constraint 

 

flow(2) = 0.0; 

fupp(2) = 0.0; 

 

% relative flight path angle at entry interface equality constraint 

 

flow(3) = 0.0; 

fupp(3) = 0.0; 

 

The actual call to the SNOPT MATLAB interface function is as follows 

 
[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, xmul, xstate, ... 

flow, fupp, fmul, fstate, 'deorbit_shoot'); 

 

where deorbit_shoot is the name of the MATLAB function that integrates the spacecraft equations 

of motion and computes the current value of the objective function and the equality constraints at the 

entry interface.  The solution for the control variables is returned in the x vector and f is the converged 

value of the objective function.  Please consult the SNOPT documentation for additional information 

about the syntax of this function. 
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APPENDIX A 
 

Optimization Toolbox Implementation 
 

There is a version of this MATLAB script named deorbit_otb that uses the Mathworks 

Optimization Toolbox to solve this orbital mechanics problem.  This appendix describes the source 

code implementation using the fmincon/interior-point algorithm.  Unlike SNOPT, this version 

requires the mission constraints and objective algorithms reside in two different MATLAB functions. 

 

The following MATLAB source code solves the deorbit trajectory optimization problem. 

 
% load initial guesses for control variables 

  

xg(1) = oevpo(6); 

  

xg(2) = dvg(1); 

  

xg(3) = dvg(2); 

  

xg(4) = dvg(3); 

  

xg(5) = dtof; 

  

% lower and upper bounds for deorbit true anomaly (radians) 

  

xlwr(1) = ta_lower; 

  

xupr(1) = ta_upper; 

  

% lower and upper bounds for components of 

% deorbit delta-v vector (kilometers/second) 

  

dvm = norm(dvg); 

  

xlwr(2:4) = -(dvm + 0.1 * dvm); 

  

xupr(2:4) = +(dvm + 0.1 * dvm); 

  

% lower and upper bounds for flight time 

% from maneuver to entry interface (seconds) 

  

xlwr(5) = dtof - 30.0; 

  

xupr(5) = dtof + 30.0; 

  

% solve trajectory optimization problem 

  

options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point', ... 

    'MaxFunctionEvaluations', 5000, 'FiniteDifferenceType', 'forward'); 

  

% optimize with user-defined mission constraints 

  

[x, fval] = fmincon('deorbit_objective', xg, [], [], [], [], xlwr, xupr, 

'deorbit_constraints', options); 

 

The MATLAB function that evaluates the objective function is named deorbit_objective and 

deorbit_constraints calculates the current mission constraints. 

 

Feel free to experiment with other fmincon non-linear programming algorithms such as sqp, etc. 
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APPENDIX B 
 

De-orbit from a Circular Earth Orbit 
 

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial 

circular orbit can be determined from the following expression 

 

 
( ) ( )

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

− −   
 = − = −   

      
− −      

      
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e
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V
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h

 

 



+
= = =

+

= = =
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+

=

 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radius

 Earth gravitational constant

e

i

e

eq

h

r

r

r



=

=

=

=

=

=

 

 

This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, 

The Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966.  Additional 

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh, 

Busemann and Culp, The University of Michigan Press. 

 

The true anomaly on the de-orbit trajectory at the entry interface e  can be determined from the 

following two equations 

 

 
( ) ( )2 21 1 1

sin cos
d d d d

e e

d d e d
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e e r e
 



− −
= = −  
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and the following four quadrant inverse tangent operation 

 

 ( )1tan sin ,cose e e  −=  

where 

( )2 2 2

2
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 semimajor axis of the de-orbit trajectory

2 1
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d e e d d

d e
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a r r a e
r
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The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e  is 

given by 

 ( )
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 

−
   −− 

= −  
+ +    

 

 

In this equation   is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  . 

 

Therefore, the flight time between the de-orbit impulse and entry interface is given by 

 

 ( ) ( ) ( )180
2

e et t t t


  = − = −  

 

Finally, the orbital speed at the entry interface eV  can be determined from 

 

 
2

e

e d

V
r a

 
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APPENDIX C 
 

De-orbit from an Elliptical Earth Orbit 
 

The scalar magnitude of the impulsive delta-v for de-orbit from an initial elliptical orbit is given by 
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
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where 

 geocentric radius at the entry altitude

 flight path angle at entry

 apogee radius of the initial elliptical orbit

 perigee radius of the initial elliptical orbit

 gravitati

e

a a e

p p e

e

a

p

r

r r r

r r r

r
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The true anomaly at entry can be determined from the following series of equations. 
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where 

( )2 2 2
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 eccentricity of the de-orbit trajectory
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e
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The time-of-flight between perigee and the entry true anomaly e  is given by 
 

 ( )
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
tof

e e
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
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In this equation,   is the orbital period of the de-orbit trajectory. 

 

Therefore, the flight time between the de-orbit impulse time and entry is given by 
 

 ( ) ( ) ( )180
2

e et tof tof tof

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Finally, the speed at reentry eV  can be determined from 
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e d
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APPENDIX D 
 

Flight Path Coordinates 
 

Relative flight path coordinates are defined with respect to a rotating Earth.  This set of coordinates 

consists of the following trajectory elements 
 

 

( )

( )

 geocentric radius

 speed

 flight path angle

 geocentric declination

 geographic longitude  east

 flight azimuth  clockwise from north

r

V


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Please note the sign and direction convention. 

 

The following are several useful equations that summarize the relationships between inertial and 

relative flight path coordinates. 
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where the r subscript denotes relative coordinates and the i subscript inertial coordinates. 

 

The inertial speed can also be computed from the following expression 
 

 
2 2 2 22 cos sin cos cosiv v v r r     = + +  

 

The inertial flight path angle can be computed from 
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The inertial azimuth can be computed from 
 

 
2 2 2 2 2

cos cos cos
cos
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i
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
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where all coordinates on the right-hand-side of these equations are relative to a rotating Earth. 

 

The transformation of an Earth-centered inertial (ECI) position vector ECIr  to an Earth-centered fixed 

(ECF) position vector ECFr  is given by the following vector-matrix operation 

 

  ECF ECI=r T r  
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where the elements of the transformation matrix  T  are given by 

 

  

cos sin 0

sin cos 0

0 0 1

 

 

 
 = −
 
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T  

 

and   is the Greenwich apparent sidereal time at the moment of interest.  Greenwich sidereal time is 

given by the following expression: 

 0g et  = +  

 

where 0g  is the Greenwich sidereal time at 0 hours UTC, e  is the inertial rotation rate of the Earth, 

and t is the elapsed time since 0 hours UTC. 

 

Finally, the flight path coordinates are determined from the following set of equations 
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where 

 

sin cos sin sin cos

sin cos 0
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Please note the two-argument inverse tangent calculation for   and   is a four-quadrant operation. 
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APPENDIX E 
 

Geodetic Coordinates 
 

The following diagram illustrates the geometric relationship between geocentric and geodetic 

coordinates. 

 
 

In this diagram,  is the geocentric declination,   is the geodetic latitude, r is the geocentric distance, 

and h is the geodetic altitude.  The exact mathematical relationship between geocentric and geodetic 

coordinates is given by the following system of two nonlinear equations 
 

 
( )

( )

cos cos 0

sin sin 0

c h r

s h r

 
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where the geodetic constants c and s are given by 
 

 

( )
( )

2

2 2
1

1 2 sin

eqr
c s c f

f f 
= = −

− −
 

 

and eqr  is the Earth equatorial radius (6378.14 kilometers) and f  is the flattening factor for the Earth 

(1/298.257). 

 

In this MATLAB script, the geodetic latitude is determined using the following expression 
 

 2

2

sin 2 1 1
sin 4

4
f f
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which is a series expansion in flattening factor (NASA TN D-7522). 
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The geodetic altitude is calculated from 
 

 ( ) ( ) 21 cos2 1 1ˆ ˆ 1 1 cos4
2 4 16

h r f f




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In these equations,   is the geocentric distance of the satellite, ˆ / eqh h r=  and ˆ / eqr r= . 
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APPENDIX F 
 

Pitch and Yaw Angles 
 

The pitch and yaw angles for the de-orbit impulsive maneuver are computed and displayed in the local-

vertical-local horizontal (LVLH; also called the radial-tangential-normal RTN) coordinate system.  

The following diagram illustrates the geometry of the pitch and yaw angles in this system.  In this 

figure, the radial direction is along the geocentric radius vector directed away from the Earth, the 

tangential direction is tangent to the orbit in the direction of the orbital motion, and the normal 

direction is along the angular momentum vector of the orbit. 

 

The pitch angle is positive above the local horizontal plane formed by the tangential and normal 

directions, and the yaw angle is positive in the direction of the angular momentum vector which is 

perpendicular to the orbit plane.  The pitch angle varies between 90  degrees and the yaw angle can 

have a value between 180  degrees. 

 
 

The following is the MATLAB source code for the function that computes the orientation angles using 

the Earth-centered-inertial (ECI) position and velocity vectors (reci, veci) at the impulse location 

and the unit pointing vector of the impulsive delta-v (ueci). 

 
function [pitch, yaw] = ueci2angles(reci, veci, ueci) 

  

% convect eci unit vector to rtn angles 

  

% input 

  

%  reci = eci position vector (kilometers) 

%  veci = eci velocity vector (kilometers/second) 

%  ueci = eci unit vector 

  

% output 

  

Tu

Ru

Nu





 pitch

= yaw





=
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%  pitch = pitch angle (radians) 

%          positive above the local horizon 

%  yaw   = yaw angle (radians) 

%          positive in the direction of the angular momentum vector 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% compute radial frame unit vectors 

  

rmag = norm(reci); 

  

xrdl = reci / rmag; 

  

zrdl = cross(reci, veci); 

  

hmag = norm(zrdl); 

  

zrdl = zrdl / hmag; 

  

yrdl = cross(zrdl, xrdl); 

  

% unit vector in radial-tangential-normal frame 

  

umee(1) = dot(ueci, xrdl); 

  

umee(2) = dot(ueci, yrdl); 

  

umee(3) = dot(ueci, zrdl); 

  

% pitch angle (radians) 

  

pitch = asin(umee(1)); 

  

% yaw angle (radians) 

  

yaw = atan2(umee(3), umee(2)); 


