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Program leo2geo_ocs 
 

Continuous Low-Thrust LEO-to-GEO Trajectory Optimization 
 

This document is the user’s manual for a Fortran computer program called leo2geo_ocs that uses the 

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the continuous, single-

maneuver, finite-burn low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) orbit transfer 

optimization problem.  The software attempts to maximize the final spacecraft mass.  Since this 

simulation involves a single continuous propulsive maneuver, this is equivalent to minimizing the 

propellant mass required for the orbital maneuver. 

 

The important features of this scientific simulation are as follows: 

 

 single, continuous thrust transfer trajectory 
 

 constant propulsive thrust magnitude 
 

 modified equinoctial equations of motion 
 

 near-circular initial and final orbits 
 

 two types of initial guess algorithms 
 

 numerical verification of the optimal control solution 

 

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of 

trajectory optimization problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 
 

Additional information about the mathematical techniques and numerical methods used in the Sparse 

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation 

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org). 

 

The leo2geo_ocs software consists of Fortran routines that perform the following tasks: 
 

 set algorithm control parameters and call the transcription/optimal control subroutine 
 

 define the problem structure and perform initialization related to scaling, lower and upper 

bounds, initial conditions, etc. 
 

 compute the right-hand-side differential equations 
 

 evaluate any point and path constraints 
 

 display the optimal solution results and create an output file 
 

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal 

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.  

The leo2geo_ocs software allows the user to select the type of initial guess, collocation method, and 

other important algorithm control parameters. 

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/
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Program execution 
 

An input file created by the user can be run from the command line or a simple batch file with a 

statement similar to the following: 

 
leo2geo_ocs leo2geo_jk.in 

 

If the software is executed without an input file on the command line, the computer program will display 

the following title screen and file name prompt: 

 
************************************* 

*        program leo2geo_ocs        * 

*                                   * 

*       low-thrust LEO-to-GEO       * 

*      trajectory optimization      * 

*                                   * 

*           March 20, 2012          * 

************************************* 

 

please input the name of the simulation definition file 

 

The user should respond to this prompt with the name of a compatible input data file including the 

filename extension. 

 

The screen output created by the leo2geo_ocs computer program can be re-directed to a text file with 

a command line similar to 

 
leo2geo_ocs leo2geo_ij.in >leo2geo_jk.txt 

 

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories 

and finally Command Prompt.  The size, font and other characteristics of the screen can be controlled 

by the user with the c:\ icon in the upper left corner of the window.  To log into the subdirectory created 

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory 

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is 

the name of the subdirectory created by the user. 

 

The DOS command line prompt looks similar to C:\leo2geo_ocs>_. 

 

Input file format and contents 
 

The leo2geo_ocs software is “data-driven” by a user-created text file.  Each data item within an input 

file is preceded by one or more lines of annotation text.  Do not delete any of these annotation lines or 

increase or decrease the number of lines reserved for each comment.  However, you may change them to 

reflect your own explanation.  The annotation line also includes the correct units and when appropriate, 

the valid range of the input.  ASCII text input is not case sensitive but must be spelled correctly.  In the 

following discussion the actual input file contents are in courier font and all explanations are in times 

italic font. 

 

The following is a typical input file used by the leo2geo_ocs computer program.  This is a classic 

LEO-to-GEO example taken from the paper, “Minimum-Time Low-Thrust Rendezvous and Transfer 

Using Epoch Mean Longitude Formulation”, Jean A. Kechichian, Journal of Guidance, Control, and 
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Dynamics, Vol. 22, No. 3, May-June 1999.  For this example the initial true longitude is free.  However, 

the optimal control solution includes the effect of propellant mass depletion due to thrusting while the 

example in Dr. Kechichian’s technical paper assumes constant mass and therefore constant thrust 

acceleration.  This example also includes the effect of the Earth’s 
2J  gravity term. 

 

The first six lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with six and only six initial text lines. 

 
*************************************************** 

 ** leo-to-geo low-thrust trajectory optimization 

 ** single phase continous-thrust maneuver 

 ** program leo2geo_ocs - leo-to-geo orbit transfer 

 ** J. Kechichian example - leo2geo_jk.in 

 ************************************************** 

 

The first three program inputs are the initial spacecraft mass, thrust magnitude and specific impulse.  

Please note the proper units for each data item. 
 

initial spacecraft mass (kilograms) 

1000.0 

 

thrust magnitude (newtons) 

98.0 

 

specific impulse (seconds) 

3300.0 

 

The next six numerical inputs are the classical orbital elements of the initial orbit. 
 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

7000.0 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5 

 

argument of perigee (degrees) 

0.0 

 

right ascension of the ascending node (degrees) 

0.0 

 

true anomaly (degrees) 

0.0 

 

The following input determines if the software will constrain or free the initial true longitude. 
 

constrain initial true longitude (1 = yes, 2 = no) 

2 

 

The following five inputs are the user-defined classical orbital elements of the final mission orbit. 
 

*************** 

* FINAL ORBIT * 

*************** 
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semimajor axis (kilometers) 

42000.0 

 

orbital eccentricity (non-dimensional) 

0.001 

 

orbital inclination (degrees) 

1.0 

 

argument of perigee (degrees) 

0.0 

 

right ascension of the ascending node (degrees) 

0.0 

 

The next integer input defines the type of final orbit point constraints.  Please see the “Problem setup” 

section for additional information about this program item. 
 

***************************************** 

* type of final orbit point constraints * 

----------------------------------------- 

1 = modified equinoctial orbital elements (semimajor axis, ecc = 0, inc = 0) 

2 = eci components of final state vector (hx, hy, hz, |r|, sin(gamma)) 

3 = all components of final classical orbital elements 

------------------------------------------------------ 

2 

 

The next program input tells the software what type of gravity model to use during the simulation.  

Option 2 will include the oblateness gravity coefficient  2J  in the equations of motion. 
 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = j2 gravity model 

-------------------- 

2 

 

The next integer input defines the type of initial guess used to estimate the transfer or thrust duration 

time.  Please see the “Creating an initial guess” section later in this document for additional 

information about this program item. 
 

******************************************* 

* type of initial guess for transfer time * 

------------------------------------------- 

1 = numerical integration (coplanar orbits) 

2 = Edelbaum algorithm (non-coplanar orbits) 

3 = user-defined 

---------------- 

2 

 

The following data item is the user’s initial guess for the transfer time, in hours.  This input 

corresponds to option 3 of the previous item. 
 

******************************************************** 

* user-defined initial guess for transfer time (hours) * 

******************************************************** 

4 

 

The next integer input defines the type of initial guess to use for the simulation  Please see the “Initial 

guess” technical discussion for additional information about this program item. 
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************************ 

* initial guess options* 

************************ 

 1 = linear guess with tangential thrusting 

 2 = numerical integration with Edelbaum steering 

 3 = binary data file 

--------------------- 

2 

 

If the user elects to use a binary data file (option 3 above) for the initial guess, the following text input 

specifies the name of the file to use. 
 

name of binary initial guess data file 

leo2geo_jk.rsbin 

 

The following input can be used to create or update an initial guess binary file.  The creation or update 

process uses the filename defined above.  For initial guess option 1, the software will create a binary 

restart file.  For initial guess option 3, an input of yes to this item will update the binary file used to 

initialize the simulation. 
 

****************************** 

* binary restart file option * 

****************************** 

 

create/update binary data file (yes or no) 

no 

 

This next input specifies the type of comma-delimited or comma-separated-variable (CSV) solution data 

file to create.  Option 1 will create a solution file at each collocation point or node determined by the 

Sparse Optimization Suite software.  Options 2 and 3 allow the user to specify either the number of 

nodes or time step size of the data file. 
 

********************************************** 

* type of comma-delimited solution data file * 

********************************************** 

 1 = OCS-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

1 

 

For options 2 or 3, this next input defines either the number of data points or the time step size of the 

data output in the solution file. 
 

number of user-defined nodes or print step size in solution data file 

50 

 

The name of the solution data file is defined in this next line.  Please consult Appendix A for a 

description of the information written to this file. 
 

name of solution output file 

leo2geo_jk.csv 

 

The next series of program inputs are algorithm control options and parameters for the Sparse 

Optimization Suite.  The first input is an integer that specifies the type of collocation method to use 

during the solution process. 
 

******************************** 

* algorithm control parameters * 

******************************** 
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discretization/collocation method 

--------------------------------- 

 1 = trapezoidal 

 2 = separated Hermite-Simpson 

 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

The next input is an integer that defines the number of grid points to use for the initial guess. 
 

number of grid points 

100 

 

The next input defines the relative error in the objective function. 
 

relative error in the objective function (performance index) 

1.0d-5 

 

The next input defines the relative error in the solution of the differential equations. 
 

relative error in the solution of the differential equations 

1.0d-7 

 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 

maximum number of mesh refinement iterations 

20 

 

The next input is an integer that defines the maximum number of function evaluations. 
 

maximum number of function evaluations 

500000 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 

maximum number of algorithm iterations 

1000 

 

The level of output from the NLP algorithm is controlled with the following integer input. 
 

*************************** 

sparse NLP iteration output 

--------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 

 

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the 

following integer input.  Please note that option 4 will create lots of information. 
 

********************** 

optimal control output 

---------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 
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The level of output from the differential equations algorithm is controlled with the following integer 

input.  Please note that option 5 will create lots of information. 
 

**************************** 

differential equation output 

---------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The level of output can be further controlled by the user with this final text input.  This program option 

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s 

manual.  To ignore this special output control, input the simple character string no. 
 

******************* 

user-defined output 

------------------- 

input no to ignore 

------------------ 

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0 

 

The last series of inputs allow the reading and writing of configuration input files.  The user should 

always create a configuration file before attempting to read one.  These configuration files are simple 

text files which can be edited external to the leo2geo_ocs software.  Please consult Appendix B for 

additional information about this program option. 
 

*************************************** 

* optimal control configuration options 

*************************************** 

 

read an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2geo_config.txt 

 

create an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2geo_config1.txt 

 

Optimal control solution and graphics 
 

The following is the program output for this example.  It includes the orbital elements of the initial LEO 

and the final GEO mission orbit.  It also summarizes the total thrust duration, final spacecraft mass, 

propellant mass required for the orbit transfer and the accumulated delta-v. 

 

The leo2geo_ocs software will also create a comma-separated-variable (csv) output file.  This file 

contains the state vector, orbital elements and steering angles during the transfer trajectory.  It has the 

file name specified by the user in the simulation definition (input) data file.  Please consult Appendix A 

for additional information about the contents of this file. 
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 =================== 

 program leo2geo_ocs 

 =================== 

   

 transfer time algorithm 

 ----------------------- 

 Edelbaum algorithm (non-coplanar orbits) 

   

 initial guess type 

 ------------------ 

 linear guess with tangential thrusting 

   

 gravity model type 

 ------------------ 

 j2 earth gravity model 

   

   

 ------------------------ 

 beginning of finite burn 

 ------------------------ 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.700000000000D+04    0.615067684519D-16    0.285000000000D+02    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.206748308333D-14    0.285866456178D+03    0.285866456178D+03    0.971419368695D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.191377284137D+04    -.591734870255D+04    -.321285820480D+04    0.700000000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.725856076669D+01    0.181305405204D+01    0.984408031306D+00    0.754605384101D+01 

   

 ------------------ 

 end of finite burn 

 ------------------ 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.420000000000D+05    0.999999999999D-03    0.100000000000D+01    0.360000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.000000000000D+00    0.423922295262D+02    0.423922295262D+02    0.142768906774D+04 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.309960418384D+05    0.282912582669D+05    0.493825749949D+03    0.419689619582D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.207699129982D+01    0.227794898386D+01    0.397617474165D-01    0.308294103563D+01 

   

   

 transfer time          15.0823889600487       hours 

   

 spacecraft mass        835.576420850925       kilograms 

   

 propellant mass        164.423579149075       kilograms 

   

 delta-v                5813.28840908474       meters/second 

 

The following are typical transfer trajectory, optimal control and orbital element plots for this example.  

They were created with the Grapher plotting program (www.goldensoftware.com). 

 

The first plot is a view of the transfer trajectory from a north pole viewpoint looking down on the 

equatorial plane.  The unit of each trajectory coordinate is Earth radii. 

 

http://www.goldensoftware.com/
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This next plot illustrates the behavior of the pitch and yaw steering angles during the transfer. 
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This plot summarizes the inertial right ascension and declination angles for this maneuver. 

 

 

 
 

 

The next three plots illustrate the behavior of the semimajor axis, orbital eccentricity and orbital 

inclination of the transfer orbit during the continuous low-thrust maneuver. 
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Verification of the optimal control solution 
 

The optimal control solution determined by the software can be verified by numerically integrating the 

orbital equations of motion with the optimal control-computed initial park orbit conditions and the 

optimal control solution.  This is equivalent to solving an initial value problem (IVP) that uses the 

optimal unit thrust vector solution.  This part of the leo2geo_ocs computer program uses a Runge-

Kutta-Fehlberg 7(8) variable step size method to integrate the orbital equations of motion. 

 

The following is a summary of the final optimal solution computed using this explicit numerical 

integration method. 

 
 ======================================== 

 verification of optimal control solution 

 ======================================== 

   

 mission orbit state vector and orbital elements 

 ----------------------------------------------- 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.419999999440D+05    0.100000252738D-02    0.999999595528D+00    0.359999478450D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.359999985471D+03    0.423927660632D+02    0.423922445128D+02    0.142768906488D+04 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.309960417074D+05    0.282912586047D+05    0.493825693260D+03    0.419689620884D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.207699129066D+01    0.227794897693D+01    0.397617220168D-01    0.308294102401D+01 

   

   

 transfer time          15.0823889600487       hours 

   

 spacecraft mass        835.576420851553       kilograms 

   

 propellant mass        164.423579148447       kilograms 

   

 delta-v                5813.28840906505       meters/second 

 

Creating an initial guess 
 

The solution to this classic orbit transfer problem requires a good initial guess for the transfer time along 

with a reasonable guess for the dynamic variables during the orbit transfer. 

 

Transfer time initial guess 

 

The leo2geo_ocs software implements three options for specifying the transfer time initial guess.  The 

first technique simply integrates the coplanar transfer orbit trajectory using tangential thrusting until the 

final orbit radius is reached.  The second method uses Edelbaum’s algorithm.  The first method is best 

for coplanar orbit transfers and the second method should be used for non-coplanar orbit transfers.  The 

third initial guess option is a user-specified transfer time. 

 

For the first technique, the unit thrust vector for tangential steering during the numerical integration is 

simply  0 1 0
T

T u . 
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The Edelbaum algorithm is described in Chapter 14 of the book Orbital Mechanics by V. Chobotov and 

the technical paper, “The Reformulation of Edelbaum's Low-thrust Transfer Problem Using Optimal 

Control Theory” by J. A. Kechichian, AIAA-92-4576-CP.  The original Edelbaum algorithm is 

described in “Propulsion Requirements for Controllable Satellites”, ARS Journal, Aug. 1961, pp. 1079-

1089.  This algorithm is valid for total inclination changes i  given by 0 114.6i    and assumes that 

the thrust acceleration magnitude and spacecraft mass are both constant during the orbit transfer. 

 

The initial thrust vector yaw angle  0 is given by the following expression 
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where the speed on the initial circular orbit is 0 0V r  and the speed on the final circular orbit is 

f fV r .  In these equations 0 0er r h   is the geocentric radius of the initial orbit, f e fr r h   is the 

geocentric radius of the final orbit, re  is the radius of the Earth and   is the gravitational constant of the 

Earth.  The initial altitude is h0  and the final altitude is h f . 

 

The total velocity change required for a low-thrust orbit transfer is given by 
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The total transfer time is given by t V f   where f is the thrust acceleration.  This is the transfer time 

used for the Edelbaum guess option in the leo2geo_ocs software. 

 

Dynamic variables initial guess 

 

The dynamic variables at each grid point of the initial guess are determined by setting the initial guess 

option INIT(1) = 6 with INIT(2) = 2 within the odeinp subroutine for this aerospace trajectory 

optimization problem.  These program options create an initial guess from the numerical integration of 

the equations of motion coded in the oderhs subroutine.  The INIT(1) = 6 program option tells the 

Sparse Optimization Suite to construct an initial guess by solving an initial value problem (IVP) with a 

linear control approximation.  The INIT(2) = 2 program option tells the program to use the Dormand-

Prince variable step size numerical method to solve the initial value problem. 

 

Binary restart file initial guess 

 

Binary restart data files can also be used to initialize a leo2geo_ocs simulation.  A typical scenario is 

 

1. Create a binary restart file from a converged and optimized simulation 
 

2. Modify the original input file with slightly different spacecraft characteristics, propulsive 

parameters or perhaps final mission targets and/or constraints 
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3. Use the previously created binary restart file as the initial guess for the new simulation 

 

This techniques works well provided the two simulations are not dramatically different.  Sometimes it is 

necessary to make successive small changes in the mission definition and run multiples simulations to 

eventually reach the final desired solution. 

 

Problem setup 
 

This part of the user’s manual provides details about the software implementation within the 

leo2geo_ocs computer program.  It defines such things as point and path constraints (boundary 

conditions), bounds on the dynamic variables, and the performance index or objective function. 

 

(1) Performance index – maximize final spacecraft mass 

 

The objective function or performance index J for this simulation is the mass of the spacecraft when it 

reaches the final mission orbit.  This is simply 

 fJ m  

 

The value of the maxmin indicator in the software tells the program whether the user is minimizing or 

maximizing the performance index.  The spacecraft mass at the initial time is fixed to the initial value 

provided by the user. 

 

(2) Path constraint – unit thrust vector scalar magnitude 

 

At any point during the transfer trajectory, the scalar magnitude of the components of the unit thrust 

vector is constrained as follows: 

 2 2 2 1
r t nT T T Tu u u   u  

 

(3) Initial true longitude 

 

The software allows the use to either fix or free the initial true longitude.  For an unconstrained initial 

true longitude, the true longitude bounds are 0 2L   .  Otherwise, the initial true longitude is fixed to 

the value  iL     . 

 

(4) Mission constraint “matching” at the final orbit 

 

The leo2geo_ocs software implements three techniques for “targeting” the final mission orbit.  The 

correct option to use depends on the characteristics of the final mission orbit. 

 

For final orbits that are circular and equatorial, the set of final constraints are specified in terms of the 

final modified equinoctial elements or dynamic variables according to 
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The f subscript indicates values on the user-specified final orbit.  This set of constraints or boundary 

conditions follows from the orbital element definitions 

 

 

   
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These boundary conditions are enforced using lower and upper bounds on the dynamic variables at the 

final time. 

 

For final orbits that may be near-circular and/or inclined, the final mission constraints are enforced using 

point functions.  This set of point functions is given by 

 

 

sin sin

f f fx x y y z z
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f
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where , ,x y zh h h  are the inertial components of the angular momentum vector, r is the geocentric radius 

and   is the flight path angle.  As noted previously, the f subscript indicates mission values on the user-

specified final orbit. 

 

A third program option allows the user to constrain a classical orbital element set consisting of the 

semimajor axis, orbital eccentricity and inclination using point functions.  This set of mission constraints 

is 

 f f fa a e e i i    

 

As before the f subscript indicates values on the user-specified final orbit. 

 

Bounds on the dynamic variables 

 

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial 

dynamic variables during the orbital transfer. 
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where 
iscm  is the initial spacecraft mass, and 

ip  is the semiparameter of the initial orbit and fp  is the 

semiparameter of the final orbit.  The upper bound on true longitude L allows for a maximum of 200 

complete orbits during the transfer. 

 

Finally, the components of the unit thrust vector are constrained as follows: 
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Technical discussion 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These equations 

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.  However, 

two components of the orbital element set are singular for an orbital inclination of 180 degrees. 

 

The relationship between direct modified equinoctial and classical orbital elements is defined by the 

following definitions 
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 where 

 

 semiparameter
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 orbital eccentricity
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The relationship between classical and modified equinoctial orbital elements is: 
 

semimajor axis    
2 21

p
a

f g


 
 

 

orbital eccentricity    
2 2e f g   

 

orbital inclination     1 2 22 tani h k   
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argument of periapsis     1 1tan tang f k h     

 

right ascension of the ascending node  1tan k h   

 

true anomaly        1tanL L g f        

 

The mathematical relationships between an inertial state vector and the corresponding modified 

equinoctial elements are summarized as follows: 

 

position vector 

 

 

 

 

2

2

2

2

2

cos cos 2 sin

sin sin 2 cos

2
sin cos

r
L L hk L

s

r
L L hk L

s

r
h L k L

s





 
  

 
   
 
 
 
  

r  

 

velocity vector 

 

 

 

 

 

2 2

2

2 2

2

2

1
sin sin 2 cos 2

1
cos cos 2 sin 2

2
cos sin

L L hk L g f hk g
s p

L L hk L f ghk f
s p

h L k L f h gk
s p


 


 



 
      

 
 
        
 
 
   
  

v  

 

where 

 

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     

   
 

 

The system of first-order modified equinoctial equations of orbital motion are given by 

 

 
2

t

dp p p
p

dt w 
    

 

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

 

 

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

 



page 18 

 

 
2

cos
2

ndh p s
h L

dt w


   

 

 
2

sin
2

ndk p s
k L

dt w


   

 

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 
 

 

where , ,r t n    are non-two-body perturbations in the radial, tangential and normal directions, 

respectively.  The radial direction is along the geocentric radius vector of the spacecraft measured 

positive in a direction away from the gravitational center, the tangential direction is perpendicular to this 

radius vector measured positive in the direction of orbital motion, and the normal direction is positive in 

the direction of the angular momentum vector of the spacecraft’s orbit. 

 

The equations of orbital motion can also be expressed in vector form as follows: 

 

  
d

dt
  

y
y A y P b  

where 

 

 

    

    

 

2

2

2
0 0

1
sin 1 cos sin cos

1
cos 1 sin sin cos

cos
0 0

2

sin
0 0

2

1
0 0 sin cos

p p

w

p p p g
L w L f h L k L

w w

p p p f
L w L g h L k L

w w

p s L

w

p s L

w

p
h L k L

w



  

  







 
 
 
 
    
 
 
    
  

  
 
 
 
 
 
 
 
 
  

A  

 

and 

 

2

0 0 0 0 0

T

w
p

p


  
   

   

b  

 

The total non-two-body acceleration vector is given by 
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 ˆ ˆ ˆ
r r t t n n     P i i i  

 

where ˆ ˆ ˆ,  and r t ni i i  are unit vectors in the radial, tangential and normal directions.  These unit vectors can 

be computed from the inertial position vector r and velocity vector v according to 

 

 
 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r
 

 

For unperturbed two-body motion, 0P  and the first five equations of motion are simply 

0p f g h k     .  Therefore, for two-body motion these modified equinoctial orbital elements are 

constant.  The true longitude is often called the fast variable of this orbital element set. 

 

Propulsive thrust 

 

The acceleration due to propulsive thrust can be expressed as 
 

 ˆ
T T

T

m
a u  

 

where T is the thrust magnitude, m is the spacecraft mass and ˆ       
r t n

T

T T T Tu u u   u  is the unit pointing 

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system.  The 

components of this unit vector are the control variables. 

 

The propellant mass flow rate is determined from 

 

 
sp

dm T
m

dt g I
   

 

where g is the acceleration of gravity and spI  is the specific impulse of the propulsive system.  The 

product spg I  is also called the exhaust velocity.  This differential equation and the modified equinoctial 

differential equations are included in the right-hand-side subroutine required by the software. 

 

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt   where 

iscm  is the initial 

mass of the spacecraft. 

 

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle   and 

the out-of-plane yaw angle   as follows: 

 

 sin cos cos cos sin
r t nT T Tu u u        

 

The pitch and yaw angles can be determined from the components of the unit thrust vector according to 
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 

 

1

1

sin

tan ,

r

n t

T

T T

u

u u













 

 

The pitch angle is positive above the “local horizontal” and the yaw angle is positive in the direction of 

the angular momentum vector of the transfer orbit. 

 

The relationship between a unit thrust vector in the Earth-centered-inertial (ECI) coordinate system ˆ
ECITu  

and the corresponding unit thrust vector in the modified equinoctial (MEE) system ˆ
MEETu  is given by 

 

 ˆ ˆ ˆˆ ˆ
ECI MEET r t n T

 
 

u i i i u  

where 

 

 
 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r
 

 

This relationship can also be expressed as 

 

  

 

 

 

ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ECI MEE MEE

x x
x

T T y y T
y

z z
z

 
 
 

  
 
 

  

r h r h

u Q u r h r h u

r h r h

 

 

Finally, the transformation of the unit thrust vector in the ECI system to the modified equinoctial 

coordinate system is given by 

  ˆ ˆ
MEE ECI

T

T Tu Q u  

 

For the case of tangential steering 
 

      ˆ ˆ ˆˆ ˆ ˆˆ
ECI

T

T
x y z

    
  

u h r h r h r  

 

In the leo2geo_ocs computer program, the components of the inertial unit thrust vector are defined in 

terms of the right ascension   and the declination angle   as follows: 

 

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u        

 

Finally, the right ascension and declination angles can be determined from the components of the ECI 

unit thrust vector according to 

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u     

 

where the calculation for right ascension is a four quadrant inverse tangent operation. 
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Gravitational acceleration 

 

The non-spherical gravitational acceleration vector can be expressed as 
 

 ˆ ˆ
N N r rg g g i i  

 

 where 

 
 
 

ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ

T

N N r r

N
T

N N r r






e e i i
i

e e i i
 

and 

  ˆ 0 0 1
T

N e  

 

In these equations the north direction component is indicated by subscript N and the radial direction 

component is subscript r. 

 

The contributions due to a zonal gravity model of order n are as follows: 
 

 
'

2
2

cos
kn

e
N k k

k

R
g P J

r r

 



 
   

 
  

 

  
2

2

1

kn
e

r k k

k

R
g k P J

r r





 
    

 
  

 

 where 

 

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k  order Legendre polynomial

e

k

k

r

R

J

P

















 

 

For a zonal only Earth gravity model, the east component is identically zero. 

 

Finally, the zonal gravity perturbation contribution is 

 

 T

g a Q g  

 

where ˆ ˆ ˆ      r t n
 
 

Q i i i . 

 

For 2J  effects only, the three components are as follows: 
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 

 

 

 
  

 
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24 2 2

1 sin cos6

1
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e
J
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
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These are the equations implemented in this computer program. 
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APPENDIX A 
 

Contents of the Simulation Summary and CSV Files 
 

This appendix is a brief summary of the information contained in the simulation summary screen 

displays and the CSV data files produced by the leo2geo_ocs software. 

 

The simulation summary screen display contains the following information: 

 
sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers 

 

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second 

 

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per 

second 

 

transfer time = total thrust duration in hours 

 

final mass = final spacecraft mass in kilograms 

 

propellant mass = expended propellant mass in kilograms 

 

thrust duration = maneuver duration in seconds 

 

delta-v = scalar magnitude of the accumulated delta-v in meters/seconds 

 

The delta-v is determined using a cubic spline integration of the thrust acceleration data at each 

collocation node. 

 

The comma-separated-variable disk file is created by the odeprt subroutine and contains the following 

information: 

 
time (hrs) = simulation time since ignition in hours 
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time (days) = simulation time since ignition in days 

 

semimajor axis (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argument of perigee (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly = true anomaly in degrees 

 

period (min) = orbital period in minutes 

 

mass (kg) = spacecraft mass in kilograms 

 

T/W = thrust-to-weight ratio 

 

yaw = thrust vector yaw angle in degrees 

 

pitch = thrust vector pitch angle in degrees 

 

perigee altitude = perigee altitude in kilometers 

 

apogee altitude = apogee altitude in kilometers 

 

ut-radial = radial component of unit thrust vector 

 

ut-tangential = tangential component of unit thrust vector 

 

ut-normal = normal component of unit thrust vector 

 

semi-parameter = orbital semiparameter in kilometers 

 

f equinoctial element = modified equinoctial orbital element 

 

g equinoctial element = modified equinoctial orbital element 

 

h equinoctial element = modified equinoctial orbital element 

 

k equinoctial element = modified equinoctial orbital element 

 

true longitude = true longitude in degrees 

 

rx (er) = x-component of the spacecraft’s position vector in Earth radii 

 

ry (er) = y-component of the spacecraft’s position vector in Earth radii 

 

rz (er) = z-component of the spacecraft’s position vector in Earth radii 

 

fpa (deg) = flight path angle in degrees 

 

dvacc (mps) = accumulative delta-v in meters per second 
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APPENDIX B 
 

Typical Sparse Optimization Suite Configuration File 
 

The leo2geo_ocs computer progran can read and use a user-defined configuration file.  A description 

of each element in this file can be found in the INOCS routine in section 6.2, Subprograms for Optimal 

Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization  of the Sparse 

Optimization Suite user’s manual.  Please note that the leo2geo_ocs software can read and use a 

subset of the information in this file.  For example, a subset configuration file might contain only the 

following information; 

 
ODETOL=0.1D-06 

INSNLP:IOFLAG=5 

SOCOUT=I4K4 

 

The following is a typical “full version” configuration file created during the execution of the 

leo2geo_ocs software. 

 
AEQTOL=0.1000000000000000D-02     

DTAUX=0.0000000000000000D+00      

OBJCTL=0.1000000000000000D-04     

ODETOL=0.1000000011686097D-06     

PGDCTL=0.1000000000000000D-02     

PRTMSD=0.1490116119384766D-07     

PRTMXD=0.1000000000000000D-02     

PRTSFD=0.1000000000000000D-04     

QDRTOL=0.1000000000000000D-02     

RESTOL=0.1000000000000000D-04     

SMLTOL=0.1490116119384766D-10     

TOLJSD=0.1000000000000000D-05     

TOLM5A=0.1490116119384766D-07     

TOLM5R=0.1490116119384766D-07     

IDSCPH=0                 

IDSCND=0                 

IDSCVR=0                 

IDSCFN=0                 

IDTSFD=-1                

IPFAUX=0                 

IPFSFD=0                 

IPRSFD=1                 

IPGRD=0                  

IPNLP=10                 

IPODE=0                  

IPUAUX=0                 

IPUOCP=6                 

IRSTRT=2                 

ISCALE=0                 

ISFHES=41                

ISFINP=42                

ISFRST=43                

ISFSCL=44                

ITSWCH=2                 

M5DTYP=0                 

MITODE=20                

MTSWCH=-1                

MXDATA=0                 

MXPARM=10                

MXPCON=20                

MXSTAT=20                

MXTERM=50                

NPTAUX=100               

NSSWCH=-1                

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0                      

SPRTHS=SPARSE                                                                    

NLPALG=SNLPMN                                                                    

NLPOMR=M                                                                         

KEYDPL=.lueiLUE                                                                  
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RHSTMP=RHSTMPLT                                                                  

RSTFIL=hyper1.rsbin                                                              

SCLFIL=scalewgt.fil                                                              

INSNLP:ALFLWR=0.0000000000000000D+00     

INSNLP:ALFUPR=0.1000000000000000D+01     

INSNLP:CONTOL=0.1490116119384766D-07     

INSNLP:EPSRLF=0.1490116119384766D-07     

INSNLP:OBJTOL=0.9999999747378752D-05     

INSNLP:PGDTOL=0.1000000000000000D-04     

INSNLP:SLPTOL=0.9000000000000000D+00     

INSNLP:SFZTOL=0.1000000000000000D-01     

INSNLP:TOLFIL=0.2000000000000000D+01     

INSNLP:TOLKTC=0.1110953834938985D+26     

INSNLP:TOLPVT=0.1000000000000000D-02     

INSNLP:IHESHN=0                 

INSNLP:IOFLAG=5                 

INSNLP:IOFLIN=-1                

INSNLP:IOFMFR=0                 

INSNLP:IOFPAT=0                 

INSNLP:IOFSHR=0                 

INSNLP:IOFSRC=0                 

INSNLP:IPUDRF=0                 

INSNLP:IPUFZF=0                 

INSNLP:IPUMF1=11                

INSNLP:IPUMF2=12                

INSNLP:IPUMF3=13                

INSNLP:IPUMF4=14                

INSNLP:IPUMF5=15                

INSNLP:IPUMF6=16                

INSNLP:IPUMF7=17                

INSNLP:IPUNLP=6                 

INSNLP:IPUSTF=0                 

INSNLP:IRELAX=1                 

INSNLP:ITDRQP=-1                

INSNLP:ITFZQP=-1                

INSNLP:IT1MAX=20                

INSNLP:JACPRM=0                 

INSNLP:LYNFNC=0                 

INSNLP:LYNOUT=0                 

INSNLP:LYNPLT=0                 

INSNLP:LYNPNT=101               

INSNLP:LYNVAR=0                 

INSNLP:MAXLYN=5                 

INSNLP:MAXNFE=50000             

INSNLP:MNSAME=2                 

INSNLP:NEWTON=0                 

INSNLP:NITMAX=1000              

INSNLP:NITMIN=0                 

INSNLP:NORMAL=0                 

INSNLP:ALGOPT=FM     

INSNLP:KTOPTN=SMALL  

INSNLP:QPOPTN=SPARSE 

INSNLP:BIGCON=-0.1000000000000000D+01    

INSNLP:FEATOL=0.1000000000000000D-01     

INSNLP:PMULWR=0.1000000000000000D+00     

INSNLP:PTHTOL=0.1000000000000000D+02     

INSNLP:RHOLWR=0.1000000000000000D+03     

INSNLP:IMAXMU=10                

INSNLP:MUCALC=3                 

INSNLP:MXQPIT=1                 
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Program aeroassist_ocs 
 

Aero-assist Trajectory Optimization 
 

This document is the user’s manual for a Fortran computer program called aeroassist_ocs that uses 

the Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the aero-assist 

trajectory optimization problem.  The trajectory is modeled as a single phase with several types of user-

defined initial and final boundary conditions.  The software attempts to maximize the speed of the 

vehicle at atmospheric exit or maximize the orbital plane change during the atmospheric phase of the 

mission.  The type of optimization is selected by the user. 

 

The important features of this scientific simulation are as follows: 
 

 Normalized lift coefficient and bank angle control variables 
 

 3-DOF flight path equations of motion relative to a spherical, rotating Earth 
 

 U.S. Standard 1976 atmosphere model and fourth-order zonal gravity model 
 

 User-defined aerodynamic characteristics and point-mass vehicle properties 
 

 User-defined path constraints such as heat rate and dynamic pressure 
 

The Sparse Optimization Suite software suite is a direct transcription method that can be used to solve a 

variety of trajectory optimization problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 
 

Additional information about the mathematical techniques and numerical methods used in the Sparse 

Optimization Suite software can be found in the book, Practical Methods for Optimal Control and 

Estimation Using Nonlinear Programming by John. T. Betts, SIAM, 2010. 

 

The aeroassist_ocs software consists of Fortran routines that perform the following tasks: 
 

 set algorithm control parameters and call the transcription/optimal control subroutine 
 

 define the problem structure and perform initialization related to scaling, lower and upper 

bounds, initial conditions, etc. 
 

 compute the right-hand-side differential equations 
 

 evaluate any point and path constraints 
 

 display the optimal solution results and create an output file 
 

The Sparse Optimization Suite software will use this information to automatically transcribe the user’s 

problem and perform the optimization using a sparse nonlinear programming method.  The software 

allows the user to select the type of collocation method and other important algorithm control 

parameters. 

http://www.appliedmathematicalanalysis.com/
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Program execution 
 

An input file created by the user can be run from the command line or a simple batch file with a 

statement similar to the following: 

 
Aeroassist_ocs geo2leo_max_speed.in 

 

If the software is executed without an input file on the command line, the computer program will display 

the following information screen and file name prompt: 

 
************************************ 

*      Program aeroassist_ocs      * 

*                                  * 

*      aeroassist trajectory       * 

*           optimization           * 

*                                  * 

*           June 9, 2011           * 

************************************ 

 

please input the name of the simulation definition file 

 

The user should respond to this prompt with the name of a compatible input data file including the 

filename extension. 

 

Input file format and contents 
 

The aeroassist_ocs software is “data-driven” by a user-created text file.  The following is a typical 

input file used by this computer program.  In the following discussion the actual input file contents are 

in courier font and all explanations are in times italic font. 

 

This data file defines a simulation that maximizes the speed at atmospheric exit while enforcing a heat 

rate path constraint.  The simulation starts in a geosynchronous equatorial orbit (GEO) and finishes in an 

elliptical low Earth orbit (LEO) with a final orbital inclination of 28.5 degrees.  The heat rate path 

constraint enforces a value <= 600 2BTU/foot -second . 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 

 

The first six lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with six and only six initial text lines. 

 
******************************************************** 

aeroassist trajectory optimization 

simulation definition data file ==> geo2leo_max_speed.in 

geo-to-leo w/ plane change and aeroheating constraints 

maximize speed at atmospheric exit - June 9, 2011 

******************************************************** 
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The first program input is an integer that defines the type of entry interface conditions to use.  Please 

consult the “Problem setup” section later in this document for an explanation of these three program 

options. 
 

*********************** 

initial conditions type 

*********************** 

 1 = user input of flight path coordinates at entry interface 

 2 = derived from deorbit maneuver; fixed entry conditions 

 3 = derived from deorbit maneuver; bounded entry conditions 

------------------------------------------------------------ 

3 

 

The next program input is an integer that defines the type of mission to simulate.  Please note that 

program option 0 (no optimization) will solve the two-point boundary value problem (TPBVP). 
 

*************** 

simulation type 

*************** 

 0 = no optimization 

 1 = maximize final speed 

 2 = maximize inclination change 

-------------------------------- 

1 

 

This section allows the user to define the vehicle weight, aerodynamic reference area, the nose radius 

used in the aero-heating calculations, and other vehicle aerodynamic properties. 
 

*********************************************** 

vehicle weight and aerodynamics characteristics 

*********************************************** 

 

vehicle weight (pounds) 

5000.0 

 

aerodynamic reference area (square feet) 

125.84 

 

nose radius (feet) 

1.0 

 

drag coefficient at zero angle-of-attack; cd0 (nondimensional) 

0.032 

 

drag polar constant k (non-dimensional) 

1.4 

 

The next set of inputs defines the conditions at the deorbit point in the initial circular orbit.  The 

calendar date and universal time are required in order to transform coordinates. 
 

****************** 

deorbit conditions 

****************** 

 

calendar date at deorbit maneuver (month, day, year) 

1,1,2001 

 

universal time at deorbit maneuver (hours, minutes, seconds) 

0,0,0 

 

altitude at deorbit maneuver (nautical miles) 

19323.0 
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orbital inclination at deorbit maneuver (degrees) 

0.0 

 

right ascension of the ascending node at deorbit maneuver (degrees) 

0.0 

 

true anomaly at deorbit maneuver (degrees) 

30.0 

 

The following series of data items are reserved for the initial conditions at the entry interface (EI) or 

point of atmospheric entry.  To constrain one or more initial conditions, the user should input identical 

lower and upper bounds.  To free or un-constrain one or more initial states, set the lower and/or upper 

bounds to 1.0d99.  Please note the units and valid data range for each item. 
 

************************************************* 

flight conditions and bounds at atmospheric entry 

************************************************* 

NOTE 1: set upper and lower bounds to 

the initial value to constrain or 

"fix" a flight condition. 

NOTE 2: set bound to 1.0d99 to ignore 

------------------------------------- 

 

calendar date at entry interface (month, day, year) 

1,1,2001 

 

universal time at entry interface (hours, minutes, seconds) 

0,0,0 

 

initial time (seconds) 

0.0 

 

upper bound for initial time (seconds) 

0.0 

 

lower bound for initial time (seconds) 

0.0 

 

 

initial altitude (feet) 

400000.0 

 

upper bound for initial altitude (feet) 

400000.0 

 

lower bound for initial altitude (feet) 

400000.0 

 

 

initial velocity (feet/second) 

32268.637 

 

upper bound for initial velocity (feet/second) 

35000.0 

 

lower bound for initial velocity (feet/second) 

20000.0 

 

 

initial flight path angle (-90 <= fpa <= +90; degrees) 

-4.0 

 

upper bound for initial flight path angle (-90 <= fpa <= +90; degrees) 

-0.5 
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lower bound for initial flight path angle (-90 <= fpa <= +90; degrees) 

-10.0 

 

 

initial flight azimuth (0 <= azimuth <= 360; degrees) 

94.0 

 

upper bound for initial flight azimuth (0 <= azimuth <= 360; degrees) 

1.0d99 

 

lower bound for initial flight azimuth (0 <= azimuth <= 360; degrees) 

1.0d99 

 

 

initial declination (-90 <= declination <= +90; degrees) 

0.0 

 

upper bound for initial declination (-90 <= declination <= +90; degrees) 

1.0d99 

 

lower bound for initial declination (-90 <= declination <= +90; degrees) 

1.0d99 

 

 

initial east longitude (0 <= longitude <= 360; degrees) 

18.0 

 

upper bound for initial east longitude (0 <= longitude <= 360; degrees) 

0.0 

 

lower bound for initial east longitude (0 <= longitude <= 360; degrees) 

0.0 

 

The following series of data items allow the user to define the flight conditions at atmospheric exit.  To 

constrain one or more conditions, the user should input identical lower and upper bounds.  To free or 

un-constrain one or more final states, set the lower and/or upper bounds to 1.0d99.  Please note the 

units and valid data range for each item. 
 

************************************************ 

flight conditions and bounds at atmospheric exit 

************************************************ 

NOTE 1: set upper and lower bounds 

to the final value to constrain or 

"fix" a flight condition. 

NOTE 2: set bound to 1.0d99 to ignore 

------------------------------------- 

 

final time (seconds) 

750.0 

 

upper bound for final time (seconds) 

10000.0 

 

lower bound for final time (seconds) 

100.0 

 

 

final altitude (feet) 

400000.0 

 

upper bound for final altitude (feet) 

400000.0 
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lower bound for final altitude (feet) 

400000.0 

 

 

final velocity (feet/second) 

24314.43 

 

upper bound for final velocity (feet/second) 

35000.0 

 

 

lower bound for final velocity (feet/second) 

1000.0 

 

 

final flight path angle (-90 <= fpa <= +90; degrees) 

1.25 

 

upper bound for final flight path angle (-90 <= fpa <= +90; degrees) 

+20.0 

 

lower bound for final flight path angle (-90 <= fpa <= +90; degrees) 

-20.0 

 

 

final flight azimuth (0 <= azimuth <= 360; degrees) 

90.0 

 

upper bound for final flight azimuth (0 <= azimuth <= 360; degrees) 

1.0d99 

 

lower bound for final flight azimuth (0 <= azimuth <= 360; degrees) 

1.0d99 

 

 

final declination (-90 <= declination <= +90; degrees) 

+10.0 

 

upper bound for final declination (-90 <= declination <= +90; degrees) 

1.0d99 

 

lower bound for final declination (-90 <= declination <= +90; degrees) 

1.0d99 

 

 

final east longitude (0 <= longitude <= 360; degrees) 

30.0 

 

upper bound for final east longitude (0 <= longitude <= 360; degrees) 

1.0d99 

 

lower bound for final east longitude (0 <= longitude <= 360; degrees) 

1.0d99 

 

The next series of data inputs define lower and upper bounds on the state variables during the aero-

assist phase.  To free or un-constrain one or more states, set the lower and/or upper bounds to 1.0d99. 
 

************************************************************ 

upper and lower bounds on the flight conditions during phase 

************************************************************ 

NOTE: set bound to 1.0d99 to ignore 

----------------------------------- 

 

upper bound for altitude (feet) 

450000.0d0 
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lower bound for altitude (feet) 

10000.0 

 

 

upper bound for velocity (feet/second) 

35000.0d0 

 

lower bound for velocity (feet/second) 

1000.0 

 

 

upper bound for flight path angle (-90 <= fpa <= +90; degrees) 

+20.0 

 

lower bound for flight path angle (-90 <= fpa <= +90; degrees) 

-20.0 

 

 

upper bound for flight azimuth (0 <= azimuth <= 360; degrees) 

1.0d99 

 

lower bound for flight azimuth (0 <= azimuth <= 360; degrees) 

1.0d99 

 

 

upper bound for declination (-90 <= declination <= +90; degrees) 

1.0d99 

 

lower bound for declination (-90 <= declination <= +90; degrees) 

1.0d99 

 

 

upper bound for east longitude (0 <= longitude <= 360; degrees) 

1.0d99 

 

lower bound for east longitude (0 <= longitude <= 360; degrees) 

1.0d99 

 

This section of the input file defines the initial guesses and bounds for the control variables.  To free or 

un-constrain one or more control variables, set the lower and/or upper bounds to 1.0d99. 
 

********************************** 

initial flight controls and bounds 

********************************** 

NOTE 1: set upper and lower bounds 

to the initial value to constrain 

or "fix" a flight control. 

NOTE 2: set bound to 1.0d99 to ignore 

------------------------------------- 

 

initial normalized lift coefficient 

0.5 

 

upper bound for initial normalized lift coefficient 

+2.0 

 

lower bound for initial normalized lift coefficient 

+0.0d0 

 

 

initial bank angle (degrees) 

-90.0d0 

 

upper bound for initial bank angle (degrees) 

+0.0d0 
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lower bound for initial bank angle (degrees) 

-180.0d0 

 

This section of the input file defines the final guesses and bounds for the control variables.  To free one 

or more control variables, set the lower and/or upper bounds to 1.0d99. 
 

******************************** 

final flight controls and bounds 

******************************** 

NOTE 1: set upper and lower bounds 

to the final value to constrain 

or "fix" a flight control. 

NOTE 2: set bound to 1.0d99 to ignore 

------------------------------------- 

 

final normalized lift coefficient 

0.5 

 

upper bound for final normalized lift coefficient 

+2.0 

 

lower bound for final normalized lift coefficient 

+0.0 

 

 

final bank angle (degrees) 

-90.0d0 

 

upper bound for final bank angle (degrees) 

+0.0d0 

 

lower bound for final bank angle (degrees) 

-180.0d0 

 

This section of the input file defines the bounds for the control variables during the aero-assist phase.  

To free or un-constrain one or more control variables, set the lower and/or upper bounds to 1.0d99. 
 

********************************************************** 

upper and lower bounds on the flight controls during phase 

********************************************************** 

NOTE: set bound to 1.0d99 to ignore 

----------------------------------- 

 

upper bound for normalized lift coefficient 

+2.0d0 

 

lower bound for normalized lift coefficient 

+0.0d0 

 

 

upper bound for bank angle (degrees) 

+0.0d0 

 

lower bound for bank angle (degrees) 

-180.0d0 

 

This next section allows the user to define and enforce one or more point and path constraints during 

the atmospheric phase.  Path constraints are enforced at all points along the trajectory and point 

constraints are enforced at atmospheric exit only.  The user should be careful not to enforce constraints 

that are inconsistent with either the initial and/or final boundary conditions.  For example, while 

maximizing the final orbital inclination do not enforce an orbital inclination point constraint. 
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****************** 

flight constraints 

****************** 

 

enforce an orbital inclination constraint (yes or no) 

yes 

 

orbital inclination constraint value (degrees) 

28.5d0 

 

 

enforce a heating rate constraint (yes or no) 

yes 

 

heating rate upper bound constraint value (BTU/foot**2-second) 

600.0d0 

 

 

enforce a dynamic pressure constraint (yes or no) 

no 

 

dynamic pressure upper bound constraint value (pounds per square foot) 

700.0d0 

 

The type of trajectory initial guess or restart is specified by the next integer input.  Program option 1 

will use a simple linear initial guess created from the initial and final values provided by the user.  

Option 2 will read and use a binary file to initialize the simulation.  Be sure to create a binary file first. 
 

**************************** 

initial guess/restart option 

**************************** 

 1 = linear guess 

 2 = binary data file 

--------------------- 

1 

 

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input 

specifies the name of the file to use. 
 

name of binary restart file 

geo2leo_max_speed.rsbin 

 

The following input can be used to create or update an initial guess binary file.  The creation or update 

process uses the filename defined above.  For initial guess options 1, the software will create a binary 

restart file.  For initial guess option 2, an input of yes to this item will update the binary file used to 

initialize the simulation. 
 

************************** 

binary restart file option 

************************** 

 

create/update binary restart file (yes or no) 

no 

 

This next input specifies the type of comma-delimited or comma-separated-variable (CSV) solution data 

file to create.  Option 1 will create a solution file at each collocation point or node determined by the 

Sparse Optimization Suite.  Options 2 and 3 allow the user to specify either the number of nodes (option 

2) or time step size of the data file (option 3). 
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****************************************** 

type of comma-delimited solution data file 

****************************************** 

 1 = OC-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

1 

 

For options 2 or 3, this next input defines either the number of data points (option 2) or the time step 

size of the data output in the solution file (option 3). 
 

number of user-defined nodes or print step size in solution data file 

10.0 

 

The software also creates a comma-separated-variable (csv) ASCII data file that contains the optimal 

control solution and many other flight parameters.  The name of this output file is specified in the next 

line of information.  Please consult Appendix A for additional information about the contents of this file. 
 

name of solution output file 

geo2leo_max_speed.csv 

 

The next series of program inputs are algorithm control options and parameters for the Sparse 

Optimization Suite.  The first input is an integer that specifies the type of collocation method to use 

during the solution process.  For most simulations, the trapezoidal method is recommended. 
 

********************************* 

discretization/collocation method 

********************************* 

 1 = trapezoidal 

 2 = separated Hermite-Simpson 

 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

This input defines the relative error in the objective function. 
 

relative error in the objective function (performance index) 

1.0d-5 

 

The next input defines the relative error in the solution of the differential equations. 
 

relative error in the solution of the differential equations 

1.0d-7 

 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 

maximum number of mesh refinement iterations 

20 

 

The next input is an integer that defines the maximum number of function evaluations. 
 

maximum number of function evaluations 

100000 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 

maximum number of algorithm iterations 

10000 

 

The level of output from the NLP algorithm is controlled with the following integer input. 
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*************************** 

sparse NLP iteration output 

*************************** 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 

 

The level of output from the optimal control algorithm is controlled with the following integer input.  

Please note that option 4 will create lots of information. 
 

********************** 

optimal control output 

********************** 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 

 

The level of output from the differential equations algorithm is controlled with the following integer 

input.  Please note that option 5 will create lots of information. 
 

**************************** 

differential equation output 

**************************** 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The level of output can be further controlled by the user with this final text input.  This program option 

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite software 

user’s manual.  To ignore this special output control, input the simple character string no. 
 

******************* 

user-defined output 

------------------- 

input no to ignore 

******************* 

a0b0c0d0e0f0g0h0i0j1k0l0m0n0o0p0q0r0 

 

The last series of inputs allow the reading and writing of configuration input files.  The user should 

create a configuration file before attempting to read one.  These configuration files are simple text files 

which can be edited external to the aeroassist_ocs software.  Please consult Appendix F. 
 

*************************************** 

* optimal control configuration options 

*************************************** 

 

read an optimal control configuration file (yes or no) 

no 
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name of optimal control configuration file 

aeroassist_config1.txt 

 

create an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

aeroassist_config1.txt 

 

Atmosphere model and constants data file 

 

The aeroassist_ocs software also requires a user-created ASCII data file with the name 

tutility.dat that defines the fundamental constants that will be used during the simulation.  The 

following is the companion data file for this example.  If the user provides a value of zero for the Earth’s 

rotation rate, the simulation results will be with respect to a non-rotating, spherical Earth. 

 
************************** 

simulation environment and 

planet/utility constants 

************************** 

 

radius of the earth (feet) 

20925656.8d0 

 

gravitational constant of the earth (feet**3/second**2) 

1.407644381252d16 

 

surface gravity (feet/second**2) 

32.174d0 

 

earth rotation rate (radians/second) 

7.2921151467d-5 

 

atmospheric surface density (slugs/feet**3) 

0.0023765d0 

 

j2 gravity coefficient (non-dimensional) 

1.08262668355d-3 

 

j3 gravity coefficient (non-dimensional) 

0.0d0 

 

j4 gravity coefficient (non-dimensional) 

0.0d0 

 

The user’s input for j2, j3 and j4 control the type of gravity model used during the simulation. 

 

 

Optimal control solution and graphics 
 

After the aeroassist_ocs scientific simulation has converged, it will display a complete summary of 

the initial conditions and the optimized trajectory.  It also provides a summary of the relative flight path 

coordinates and the aerodynamic characteristics of the vehicle.  The classical orbital elements at 

atmospheric exit are determined from the inertial state vector which is computed using the relative flight 

path coordinates at exit. 

 

The following is a summary of the solution for this example. 
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 program aeroassist_ocs 

 ====================== 

 

 input file ==> geo2leo_max_speed.in 

 

 bounded entry conditions derived from deorbit maneuver 

 

 maximize speed at atmospheric exit 

 

 

 orbital elements and state vector prior to deorbit impulse 

 ---------------------------------------------------------- 

 

 calendar date           January    1, 2001 

 

 universal time          00:00:00.000 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.227669201902D+05    0.111022302463D-15    0.000000000000D+00    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.000000000000D+00    0.300000000000D+02    0.300000000000D+02    0.143607658003D+04 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.227669201902D+05    0.193230000000D+05    0.227669201902D+05    0.193230000000D+05 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  0.119801136085D+09    0.691672181680D+08    0.000000000000D+00    0.138334436336D+09 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  -.504372416457D+04    0.873598651240D+04    0.000000000000D+00    0.100874483291D+05 

 

 

 orbital elements and state vector after deorbit impulse 

 ------------------------------------------------------- 

 

 calendar date           January    1, 2001 

 

 universal time          00:00:00.000 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.131213107012D+05    0.735110211827D+00    0.000000000000D+00    0.210000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.000000000000D+00    0.180000000000D+03    0.300000000000D+02    0.628328849946D+03 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.347570121219D+04    0.317810220239D+02    0.227669201902D+05    0.193230000000D+05 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  0.119801136085D+09    0.691672181680D+08    0.000000000000D+00    0.138334436336D+09 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  -.259587595393D+04    0.449618904236D+04    0.000000000000D+00    0.519175190787D+04 

 

 

 flight path coordinates at atmospheric entry 

 -------------------------------------------- 

 

 altitude              400000.000000000       feet 

 velocity              32268.5194754447       feet/second 

 declination          2.637383834618052E-013  degrees 

 longitude             18.8080427045337       degrees 

 azimuth               90.0000000000005       degrees 

 flight path angle    -5.45162080704044       degrees 
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 inertial fpa         -5.20130119814137       degrees 

 

 

 orbital elements and state vector at atmospheric entry 

 ------------------------------------------------------ 

 

 calendar date           January    1, 2001 

 

 universal time          05:11:55.842 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.131213104261D+05    0.735110206972D+00    0.581675704578D-12    0.210000003999D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.000000000000D+00    0.347714838486D+03    0.197714842485D+03    0.628328830184D+03 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.347570120302D+04    0.317810128543D+02    0.227669196491D+05    0.193229994589D+05 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  -.203144515089D+08    -.648896739412D+07    0.981641981048D-07    0.213256568000D+08 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  0.131677427163D+05    -.311479253279D+05    -.318848277882D-09    0.338168996284D+05 

 

 

 flight path coordinates at atmospheric exit 

 ------------------------------------------- 

 

 altitude              400000.000000000       feet 

 velocity              25600.1592225824       feet/second 

 declination           11.8749410000429       degrees 

 longitude             59.7589681113454       degrees 

 azimuth               62.4006932817757       degrees 

 flight path angle     2.85290494398532       degrees 

 

 

 orbital elements and state vector at atmospheric exit 

 ----------------------------------------------------- 

 

 calendar date           January    1, 2001 

 

 universal time          05:21:20.255 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.390347950906D+04    0.111289864741D+00    0.285000000002D+02    0.357704478388D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.218238520146D+03    0.278426340657D+02    0.255471124534D+02    0.101952769539D+03 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.346906180248D+04    0.251416123121D+02    0.433789721564D+04    0.893977025480D+03 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  -.101099984601D+08    -.182568968034D+08    0.438831268249D+07    0.213256568000D+08 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  0.217306749776D+05    -.106726700692D+05    0.118541683058D+05    0.269564357364D+05 

 

 

aerodynamic characteristics 

 --------------------------- 

 

 drag coefficient at aoa = 0 degrees   3.200000000000000E-002 

 

 drag coefficient at max L/D           6.400000000000000E-002 
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 lift coefficient at max L/D           0.151185789203691 

 

 maximum lift-to-drag ratio            2.36227795630767 

 

The following are plots created from the trajectory summary file.  The first plot illustrates the behavior 

of the normalized lift coefficient and bank angle during the atmospheric pass. 

 

 
 

 

This next plot summarizes the altitude and relative velocity of the vehicle as a function of time since the 

entry interface (EI). 

 

 
 

 

The next plot illustrates the behavior of the relative flight path and azimuth angles during the aero-assist 

pass through the atmosphere. 
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This plot illustrates the behavior of the heat rate and heat load during the atmospheric portion of the 

trajectory.  It confirms that the solution has satisfied the maximum heat rate path constraint. 

 

 
 

 

This final plot summarizes the behavior of the orbital eccentricity and inclination during the atmospheric 

phase of the mission. 
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Problem setup 
 

This section provides additional details about the Sparse Optimization Suite implementation.  It briefly 

explains such things as initial conditions, path constraints and the performance index options. 

 

(1) Entry interface initial conditions 

 

The aeroassist_ocs computer program includes three options for specifying initial conditions at the 

entry interface (EI).  This section summarizes these options and describes how the user invokes each. 

 

(a) user input of flight path coordinates at entry interface 

 

For this option, all Earth relative coordinates at the entry interface are defined by the user.  The user can 

provide initial guesses and lower and upper bounds for these coordinates in the flight conditions 

and bounds at atmospheric entry part of the input data file. 

 

(b) derived from deorbit maneuver; fixed entry conditions 

 

For this program option, the software uses the flight path angle and entry altitude provided in the input 

data file to constrain the entry altitude and inertial flight path angle.  The software then uses the deorbit 

algorithm described later in this section to compute the Earth relative flight path angle, speed and other 

flight path coordinates at the entry interface.  This option is valid for initial circular orbits. 

 

(c) derived from deorbit maneuver; bounded entry conditions 

 

For this program option, the software will use the entry altitude provided in the input data file to 

constrain the entry altitude.  The flight path angle provided in the data file is used for an inertial flight 

path angle initial guess.  During the trajectory optimization, the software will change the inertial flight 

path angle between the lower and upper bounds provided by the user (the inertial flight path angle is 
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treated as a problem parameter).  The software then uses the deorbit algorithm described later in this 

section to compute the Earth relative flight path angle, speed and other coordinates at the entry interface.  

This option is valid for initial circular orbits. 

 

For the second and third initial conditions options, the aeroassist_ocs computer program calculates 

the single impulsive maneuver required to establish an entry interface altitude and flight path angle 

relative to the user-defined initial circular orbit.  The algorithm uses a tangential V  applied opposite to 

the velocity vector to establish the deorbit trajectory.  The entry altitude and flight path angle initial 

guesses are provided by the user. 

 

The algorithm used to compute the scalar magnitude of the deorbit maneuver along with other important 

flight characteristics is described in Appendix E. 

 

(2) Performance index 

 

This section describes the two types of trajectory optimization performed by the aeroassist_ocs 

software. 

 

(a) maximize final speed 

 

The performance index for this type of optimization is simply 

 

 fJ v  

 

where fv  is the relative speed of the vehicle as it exits from the atmosphere.  For this program option, 

the optimization indicator is set to maxmin = +1.  This option minimizes the energy loss during the 

aero-assist maneuver. 

 

(b) maximize inclination change 

 

The performance index for this program option is given by 

 

 1cos zh
J

h

  
  

 
 

 

where zh  is the z-component of the ECI angular momentum vector and h is the angular momentum 

magnitude of the vehicle at exit from the atmosphere at the user-defined altitude.  For this program 

option, the optimization indicator is also set to maxmin = +1. 

 

(3) Path and point constraints 

 

This section summarizes how the software computes the heat rate and dynamic pressure path 

constraints, and the orbital inclination point constraint. 

 

(a) Dynamic pressure 

 

To enforce this path constraint, the software ensures that 
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maxq q  

 

where 
maxq  is the user-defined value of the maximum dynamic pressure.  The dynamic pressure at any 

simulation time is given by 

 21

2
q v  

 

where   is the atmospheric density and v is the relative speed at the current flight condition. 

 

(b) Heat rate 

 

To enforce this path constraint, the software ensures that 

 

 
maxQ Q  

 

where maxq  is the user-defined value of the maximum heat rate.  The heat rate at any simulation time is 

computed from Chapman’s stagnation point equation given by 
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(c) Orbital inclination 

 

A final orbital inclination point constraint is enforced as follows 

 

 cos zh
i

h
  

 

where zh  is the z-component of the angular momentum vector and h is the angular momentum 

magnitude at the atmospheric exit.  In this equation, i is the user-defined final orbit inclination. 
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Technical Discussion 
 

This section describes the numerical algorithms implemented in the aeroassist_ocs computer 

program.  It summarizes the equations of motion, Earth gravity model, vehicle aerodynamics, coordinate 

conversions and other important software features. 

 

Flight path equations of motion 

 

The first-order flight path equations of motion of an aerospace vehicle relative to a rotating spherical 

Earth and a zonal gravity model are summarized as follows: 
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where 
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The bank angle is the angle between the instantaneous orbit plane and the aerodynamic lift vector.  The 

bank angle is positive for a right turn as viewed from the rear of the vehicle. 

 

Earth gravity model 

 

The components of the gravity vector can be determined from the gradient of the potential function 

according to 
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where 
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For a zonal-only gravity model of order four, the Legendre functions and their partial derivatives are 

given by 
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This is the Earth gravity model implemented in the aeroassist_ocs computer program. 

 

Coordinate systems and transformations 

 

This section describes the relationship between flight path coordinates and inertial position and velocity.  

Flight path coordinates are used during the aero-assist pass and inertial coordinates are used to model the 

deorbit-to-entry portion of the flight. 

 

(1) converting an ECI state vector to flight path coordinates 

 

This coordinate conversion is necessary for aeroassist_ocs simulations that determine entry 

interface conditions from an impulsive deorbit maneuver from an initial circular orbit. 

 

The transformation of an ECI position vector ecir  to an ECF position vector ecfr  is given by the 

following vector-matrix operation 

  ECF ECIr T r  

 

where the elements of the transformation matrix  T  are given by 
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  
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T  

 

and   is the Greenwich apparent sidereal time at the moment of interest.  Greenwich apparent sidereal 

time is given by the following expression: 

 

 
0g et     

 

where 0g  is the Greenwich apparent sidereal time at 0 hours UT, e  is the inertial rotation rate of the 

Earth, and t is the elapsed time since 0 hours UT. 

 

Finally, the flight path coordinates are determined from the following set of equations 
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(2) converting flight path coordinates to an ECI state vector 

 

This coordinate conversion is necessary in order to determine the orbital inclination and other orbital 

characteristics at exit from the atmosphere. 

 

The Earth-centered-fixed (ECF) position and velocity vectors of the aero-assist vehicle can be 

determined from the flight path coordinates with the following set of equations: 
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where 90   . 

 

The transformation from ECF to ECI coordinates involves the transpose of the ECI-to-ECF 

transformation matrices described above as follows: 
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The ECF velocity vector is determined by differentiating this expression 
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The elements of the   T  matrix are as follows: 
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Aerodynamic characteristics of aero-assist vehicles 

 

This section provides general information about vehicle aerodynamics.  It also describes the type of 

aerodynamic modeling used in the aeroassist_ocs computer program. 
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Lift coefficient at maximum lift-to-drag ratio 
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In general, 
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For a parabolic drag polar  2n  , 
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In the aeroassist_ocs computer program, the vehicle aerodynamics are modeled using a parabolic 

drag polar  2n  .  The normalized lift coefficient is given by L LC C   where LC  is the lift 

coefficient at any simulation time and LC  is the lift coefficient corresponding to maximum L D . 

 

In this computer program, the control variables are the normalized lift coefficient and bank angle. 
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The following is a graphic display of a typical parabolic drag polar. 
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APPENDIX A 
 

Contents of the Simulation Summary CSV File 
 

This appendix is a brief summary of the information contained in the CSV data file produced by the 

aeroassist_ocs software.  The comma-separated-variable disk file is created by the odeprt 

subroutine and contains the following information: 

 
time (min) = simulation time since entry interface in minutes 

 

altitude (ft) = altitude relative to a spherical Earth in feet 

 

velocity (fps) = Earth-relative velocity in feet per second 

 

flight path angle (d) = Earth-relative flight path angle in degrees 

 

azimuth (deg) = Earth-relative azimuth angle in degrees 

 

declination (deg) = geocentric declination in degrees 

 

longitude (deg) = geographic longitude in degrees 

 

mach number = Mach number (non-dimensional) 

 

dynamic pressure (psf) = dynamic pressure in pounds per square foot 

 

bank angle (deg) = bank angle in degrees 

 

heat rate (btu/ft^2-s) = heat rate in BTU/ft^2-second 

 

heat load (btu/ft^2) = accumulated heat load in BTU/ft^2 

 

lift-to-drag = lift-to-drag ratio (non-dimensional) 

 

lift coefficient = lift coefficient (non-dimensional) 

 

drag coefficient = drag coefficient (non-dimensional) 

 

lift force (lbf) = lift force in pounds 

 

drag force (lbf) = drag force in pounds 

 

density (slugs/ft^3) = atmospheric density in slugs per cubic feet 

 

pressure (psf) = atmospheric pressure in pounds per square foot 

 

temperature (deg K) = atmospheric temperature in degrees K 

 

crossrange (nm) = crossrange distance in nautical miles 

 

downrange (nm) = downrange distance in nautical miles 

 

altitude rate (fps) = rate of change of altitude in feet per second 

 

longitude rate (dps) = rate of change of longitude in degrees per second 

 

declination rate (dps) = rate of change of declination in degrees per second 

 

velocity rate (fps/s) = rate of change of velocity in feet per second per second 

 

fpa rate (dps) = rate of change of flight path angle in degrees per second 

 

azimuth rate (dps) = rate of change of azimuth angle in degrees per second 
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perigee altitude (nm) = perigee altitude in nautical miles 

 

perigee radius (nm) = perigee radius in nautical miles 

 

apogee altitude (nm) = apogee altitude in nautical miles 

 

apogee radius (nm) = apogee radius in nautical miles 

 

 

Notes: 

 

(1) The accumulated heat load is determined from a cubic spline integration of the heat rate of the 

optimized solution at all collocation nodes. 

 

(2) The rate of change of the flight variables is determined from the equations of motion. 
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APPENDIX B 
 

Fortran Functions and Subroutines 
 

This appendix is a brief summary of the major Fortran functions and subroutines included in the 

aeroassist_ocs computer program. 

 
Aeroassist_ocs.f - main executive program 

 

atan3.for    - four quadrant inverse tangent function 

 

atmos76.for  - U.S. Standard 1976 atmosphere model 

 

cdeorbit.for – impulsive deorbit from a circular orbit subroutine 

 

crdr.for     - subroutine that calculates crossrange and downrange 

 

csint.for    - cubic spline integration of tabular data subroutine 

 

gast.for     - Greenwich apparent sidereal time subroutine 

 

gravity.for  - fourth-order zonal gravity model subroutine 

 

odeinp.for   - simulation input subroutine 

 

odepf.for    - point functions subroutine 

 

odeprt.for   - print subroutine – creates comma-separated-variable file 

 

oderhs.for   - subroutine that evaluates the equations of motion and any algebraic 

equations 

 

readfpn.for  - read and echo floating point number from an input file subroutine 

 

readint.for  - read and echo an integer from an input file subroutine 

 

readtext.for - read and echo text from an input file subroutine 

 

twobody2.for – two-body orbit propagation subroutine 

 

utility.for  - number and text manipulation functions and subroutines 

 

us76.for     - U.S. standard 1976 atmosphere subroutine 

 

uvector.for  - unit vector subroutine 

 

vcross.for   - vector cross product subroutine 

 

vdot.for     - vector dot product subroutine 

 

vecmag.for   - vector scalar magnitude function 

 

xmod.for     - modulo 2 pi function 
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APPENDIX C 
 

Example Fortran Subroutine 
 

This appendix contains the source code for a single Fortran 77 subroutine and illustrates typical 

programming conventions used in the aeroassist_ocs software.  This subroutine is the point 

function routine required by the Sparse Optimization Suite. 

 
      subroutine odepf(iphase, iphend, time, ydyn, nydyn, parm, 

     &                 nparm, ptf, nptf, iferr) 

 

c     aeroassist point functions 

 

c     ************************************ 

 

      implicit double precision (a-h, o-z) 

 

      include 'socscom1.inc' 

 

      include 'pconstr.inc' 

 

      parameter (zero = 0.0d0, one = 1.0d0) 

 

      dimension ydyn(nydyn), parm(nparm), ptf(nptf), ywrk(6) 

 

      dimension reci(3), veci(3), fpc(6), hv(3), oev(6) 

 

      iferr = 0 

 

c     --------------------------------------- 

c     extract current flight path coordinates 

c     --------------------------------------- 

 

c     altitude (feet) 

 

      xalt = ydyn(1) 

 

c     longitude (radians) 

 

      elon = ydyn(2) 

 

c     geocentric declination 

 

      dec = ydyn(3) 

 

c     relative speed (feet/second) 

 

      vrel = ydyn(4) 

 

c     flight path angle (radians) 

 

      fpa = ydyn(5) 

 

c     flight azimuth (radians) 

 

      azim = ydyn(6) 

 

c     geocentric radius (feet) 

 

      rmag = xalt + req 

 

      if (iphase .eq. 1 .and. iphend .eq. -1 

     &    .and. ic_type .eq. 3) then 
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c        --------------------------------------------- 

c        beginning of phase 1 - atmospheric entry 

c        (parameter #1 ==> inertial flight path angle) 

c        --------------------------------------------- 

 

c        current inertial flight path angle 

 

         fpae = parm(1) 

 

c        compute flight path coordinates at entry interface 

c        using user-defined entry altitude and orbital elements 

 

         call cdeorbit(fpae, ywrk) 

 

c        --------------------------------- 

c        match states at atmospheric entry 

c        --------------------------------- 

 

c        east longitude (radians) 

 

         ptf(1) = ydyn(2) - ywrk(2) 

 

c        declination (radians) 

 

         ptf(2) = ydyn(3) - ywrk(3) 

 

c        velocity (feet/second) 

 

         ptf(3) = ydyn(4) - ywrk(4) 

 

c        flight path angle (radians) 

 

         ptf(4) = ydyn(5) - ywrk(5) 

 

c        azimuth (radians) 

     

         ptf(5) = ydyn(6) - ywrk(6) 

 

      end if 

 

      if (iphase .eq. 1 .and. iphend .eq. +1) then 

 

c        --------------------------------- 

c        end of phase 1 - atmospheric exit 

c        --------------------------------- 

 

c        compute inertial state vector at end of phase 1 

 

         fpc(1) = elon 

 

         fpc(2) = dec 

 

         fpc(3) = fpa 

 

         fpc(4) = azim 

 

         fpc(5) = rmag 

 

         fpc(6) = vrel 

 

         call fpc2eci(time, fpc, reci, veci) 

 

c        compute angular momentum vector and magnitude 

 

         call vcross(reci, veci, hv) 



page 33 

 

         hmag = vecmag(hv) 

 

         if (ic_inc .eq. 1) then 

 

c           ------------------------------------------------------ 

c           final orbit inclination constraint at atmospheric exit 

c           (constrain cosine of final orbit inclination) 

c           ------------------------------------------------------ 

 

            ptf(1) = hv(3) / hmag 

 

         end if 

 

         if (iopt .eq. 2) then 

 

c           ------------------------------------------------ 

c           maximize orbital inclination at atmospheric exit 

c           ------------------------------------------------ 

 

            ptf(1) = acos(hv(3) / hmag) 

 

         end if 

 

      end if 

 

      return 

      end 
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APPENDIX D 
 

Maximize Orbital Inclination Example 
 

This appendix contains graphics and a simulation summary for an aero-assist trajectory that maximizes 

the orbital inclination change.  The mission starts in a 500 nautical mile circular Earth orbit with an 

initial inclination equal to 5 degrees.  The speed at atmospheric exit is constrained to be >= 15,000 feet 

per second. 

 

For this type of trajectory optimization make sure the orbital inclination at the atmospheric exit is not 

constrained by using the following statement in the input file 
 

enforce an orbital inclination constraint (yes or no) 

no 

 

The following are plots of the important trajectory parameters for this example. 
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The following is the aeroassist_ocs program output for this example. 

 
 program aeroassist_ocs 

 ====================== 

 

 input file ==> leo2leo_max_inc.in 

 

 bounded entry conditions derived from deorbit maneuver 

 

 maximize orbital inclination change 

 

 

 orbital elements and state vector prior to deorbit impulse 

 ---------------------------------------------------------- 

 

 calendar date           January    1, 2001 
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 universal time          00:00:00.000 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.394392019016D+04    0.248334991895D-15    0.500000000000D+01    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.431780632080D-14    0.300000000000D+02    0.300000000000D+02    0.103541236919D+03 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.394392019016D+04    0.500000000000D+03    0.394392019016D+04    0.500000000000D+03 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  0.207531855633D+08    0.119362626872D+08    0.104428766999D+07    0.239637145430D+08 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  -.121182361413D+05    0.209095296884D+05    0.182934680739D+04    0.242364722827D+05 

 

 

 orbital elements and state vector after deorbit impulse 

 ------------------------------------------------------- 

 

 calendar date           January    1, 2001 

 

 universal time          00:00:00.000 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.357017458724D+04    0.104685525536D+00    0.500000000000D+01    0.210000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.456326147825D-14    0.180000000000D+03    0.300000000000D+02    0.891775123771D+02 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.319642898432D+04    -.247491205844D+03    0.394392019016D+04    0.500000000000D+03 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  0.207531855633D+08    0.119362626872D+08    0.104428766999D+07    0.239637145430D+08 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  -.114664033296D+05    0.197848183550D+05    0.173094731598D+04    0.229328066592D+05 

 

 

 flight path coordinates at atmospheric entry 

 -------------------------------------------- 

 

 altitude              400000.000000000       feet 

 velocity              24368.0971648879       feet/second 

 declination           4.17633335544806       degrees 

 longitude             16.1785108288942       degrees 

 azimuth               92.9277990467808       degrees 

 flight path angle    -6.30689859387635       degrees 

 

 inertial fpa         -5.93056753615202       degrees 

 

 

 orbital elements and state vector at atmospheric entry 

 ------------------------------------------------------ 

 

 calendar date           January    1, 2001 

 

 universal time          00:26:03.919 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.357017458725D+04    0.104685525537D+00    0.500000000013D+01    0.209999999997D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.373173703543D-06    0.273322949484D+03    0.123322949481D+03    0.891775123775D+02 
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    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.319642898433D+04    -.247491205835D+03    0.394392019018D+04    0.500000000016D+03 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  -.117154107210D+08    0.177516413688D+08    0.155306738546D+07    0.213256568000D+08 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  -.200622216447D+05    -.163311939918D+05    -.142879432473D+04    0.259083401194D+05 

 

 

 flight path coordinates at atmospheric exit 

 ------------------------------------------- 

 

 altitude              400000.000000000       feet 

 velocity              15000.0000000000       feet/second 

 declination           8.99670339727738       degrees 

 longitude             29.5623003632225       degrees 

 azimuth               48.8880628810677       degrees 

 flight path angle    3.984582451546240E-002  degrees 

 

 

 orbital elements and state vector at atmospheric exit 

 ----------------------------------------------------- 

 

 calendar date           January    1, 2001 

 

 universal time          00:31:05.462 

 

      sma (nm)             eccentricity       inclination (deg)       argper (deg) 

  0.218954752865D+04    0.602957760689D+00    0.384433270708D+02    0.194591552768D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.126562332360D+03    0.179975688582D+03    0.145672413500D+02    0.428304598571D+02 

 

    r-perigee (nm)         h-perigee (nm)       r-apogee (nm)         h-apogee (nm) 

  0.869342853852D+03    -.257457733631D+04    0.350975220345D+04    0.658320132855D+02 

 

      rx (ft)                 ry (ft)              rz (ft)              rmag (ft) 

  -.156695378708D+08    0.140757933205D+08    0.333485580891D+07    0.213256568000D+08 

 

      vx (fps)               vy (fps)              vz (fps)             vmag (fps) 

  -.743898214339D+04    -.105738521023D+05    0.974327143645D+04    0.161887659164D+05 

 

 

 aerodynamic characteristics 

 --------------------------- 

 

 drag coefficient at aoa = 0 degrees   5.000000000000000E-002 

 

 drag coefficient at max L/D           0.100000000000000 

 

 lift coefficient at max L/D           0.188982236504614 

 

 maximum lift-to-drag ratio            1.88982236504614 
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APPENDIX E 
 

De-orbit from a Circular Earth Orbit 
 

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial 

circular orbit can be determined from the following expression 
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This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, The 

Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966.  Additional 

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh, 

Busemann and Culp, The University of Michigan Press. 

 

The true anomaly on the de-orbit trajectory at the entry interface e  can be determined from the 

following two equations 
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and the following four quadrant inverse tangent operation 
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The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e  is 

given by 
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In this equation   is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  . 

 

Therefore, the flight time between the de-orbit impulse and entry interface is given by 
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Finally, the orbital speed at the entry interface eV  can be determined from 
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APPENDIX F 
 

Typical Sparse Optimization SuiteConfiguration File 
 

The aeroassist_ocs computer progran can read and use a user-defined configuration file.  A 

description of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms 

for Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization  of the 

Sparse Optimization Suite user’s manual.  Please note that the aeroassist_ocs software can read and 

use a subset of the information in this file.  For example, a subset configuration file might contain only 

the following information; 

 
ODETOL=0.1D-06 

INSNLP:IOFLAG=5 

SOCOUT=I4K4 

 

The following is a typical “full version” configuration file created during the execution of the 

aeroassist software. 

 
AEQTOL=0.1000000000000000D-02     

DTAUX=0.0000000000000000D+00      

OBJCTL=0.1000000000000000D-04     

ODETOL=0.1000000011686097D-06     

PGDCTL=0.1000000000000000D-02     

PRTMSD=0.1490116119384766D-07     

PRTMXD=0.1000000000000000D-02     

PRTSFD=0.1000000000000000D-04     

QDRTOL=0.1000000000000000D-02     

RESTOL=0.1000000000000000D-04     

SMLTOL=0.1490116119384766D-10     

TOLJSD=0.1000000000000000D-05     

TOLM5A=0.1490116119384766D-07     

TOLM5R=0.1490116119384766D-07     

IDSCPH=0                 

IDSCND=0                 

IDSCVR=0                 

IDSCFN=0                 

IDTSFD=-1                

IPFAUX=0                 

IPFSFD=0                 

IPRSFD=1                 

IPGRD=0                  

IPNLP=10                 

IPODE=0                  

IPUAUX=0                 

IPUOCP=6                 

IRSTRT=0                 

ISCALE=0                 

ISFHES=41                

ISFINP=42                

ISFRST=43                

ISFSCL=44                

ITSWCH=2                 

M5DTYP=0                 

MITODE=20                

MTSWCH=-1                

MXDATA=0                 

MXPARM=10                

MXPCON=20                

MXSTAT=20                

MXTERM=50                

NPTAUX=100               
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NSSWCH=-1                

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0                      

SPRTHS=SPARSE                                                                    

NLPALG=SNLPMN                                                                    

NLPOMR=M                                                                         

KEYDPL=.lueiLUE                                                                  

RHSTMP=RHSTMPLT                                                                  

RSTFIL=socx.restart                                                              

SCLFIL=scalewgt.fil                                                              

INSNLP:ALFLWR=0.0000000000000000D+00     

INSNLP:ALFUPR=0.1000000000000000D+01     

INSNLP:CONTOL=0.1490116119384766D-07     

INSNLP:EPSRLF=0.1490116119384766D-07     

INSNLP:OBJTOL=0.9999999747378752D-05     

INSNLP:PGDTOL=0.1000000000000000D-04     

INSNLP:SLPTOL=0.9000000000000000D+00     

INSNLP:SFZTOL=0.1000000000000000D-01     

INSNLP:TOLFIL=0.2000000000000000D+01     

INSNLP:TOLKTC=0.1110953834938985D+26     

INSNLP:TOLPVT=0.1000000000000000D-02     

INSNLP:IHESHN=0                 

INSNLP:IOFLAG=5                 

INSNLP:IOFLIN=-1                

INSNLP:IOFMFR=0                 

INSNLP:IOFPAT=0                 

INSNLP:IOFSHR=0                 

INSNLP:IOFSRC=0                 

INSNLP:IPUDRF=0                 

INSNLP:IPUFZF=0                 

INSNLP:IPUMF1=11                

INSNLP:IPUMF2=12                

INSNLP:IPUMF3=13                

INSNLP:IPUMF4=14                

INSNLP:IPUMF5=15                

INSNLP:IPUMF6=16                

INSNLP:IPUMF7=17                

INSNLP:IPUNLP=6                 

INSNLP:IPUSTF=0                 

INSNLP:IRELAX=1                 

INSNLP:ITDRQP=-1                

INSNLP:ITFZQP=-1                

INSNLP:IT1MAX=20                

INSNLP:JACPRM=0                 

INSNLP:LYNFNC=0                 

INSNLP:LYNOUT=0                 

INSNLP:LYNPLT=0                 

INSNLP:LYNPNT=101               

INSNLP:LYNVAR=0                 

INSNLP:MAXLYN=5                 

INSNLP:MAXNFE=500000            

INSNLP:MNSAME=2                 

INSNLP:NEWTON=0                 

INSNLP:NITMAX=50000             

INSNLP:NITMIN=0                 

INSNLP:NORMAL=0                 

INSNLP:ALGOPT=FM     

INSNLP:KTOPTN=SMALL  

INSNLP:QPOPTN=SPARSE 

INSNLP:BIGCON=-0.1000000000000000D+01    

INSNLP:FEATOL=0.1000000000000000D-01     

INSNLP:PMULWR=0.1000000000000000D+00     

INSNLP:PTHTOL=0.1000000000000000D+02     

INSNLP:RHOLWR=0.1000000000000000D+03     

INSNLP:IMAXMU=10                

INSNLP:MUCALC=3                 

INSNLP:MXQPIT=1                 



Orbital Mechanics with MATLAB 

page 1 

 

Single Impulse De-orbit 
 

This document describes two MATLAB scripts that be used to compute the characteristics of single 

impulse de-orbit from Earth orbits.  Scripts are provided for calculating the impulsive maneuver 

required to de-orbit from both circular and elliptical orbits. 

 

cdeorbit.m – single impulse de-orbit from a circular orbit 

 

This MATLAB script calculates the single impulsive maneuver required to establish a reentry altitude 

and flight path angle relative to a non-rotating, spherical Earth.  The algorithm uses a tangential delta-v 

applied opposite to the velocity vector of an initial circular orbit to establish the de-orbit trajectory. 

 

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial 

circular orbit can be determined from the following expression 
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This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, The 

Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966.  Additional 

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh, 

Busemann and Culp, The University of Michigan Press. 

 

The true anomaly on the de-orbit trajectory at the entry interface 
e  can be determined from the 

following two equations 
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and the following four quadrant inverse tangent operation 
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The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e  is 

given by 
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In this equation   is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  . 

 

Therefore, the flight time between the de-orbit impulse and entry interface is given by 
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Finally, the orbital speed at the entry interface eV  can be determined from 
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This MATLAB script will prompt you for the altitude of the initial circular orbit, and the entry altitude 

and flight path angle.  The following is a typical user interaction with this script. 

 
             program cdeorbit  

 

< single impulse deorbit from circular orbits >  

 

 

please input the initial altitude (kilometers) 

? 1000 

 

please input the entry altitude (kilometers) 

? 100 

 

please input the entry flight path angle (degrees) 

? -2 

 

The following is the script output created for this example. 

 
             program cdeorbit  

 

< single impulse deorbit from circular orbits >  

 

 

initial altitude      1000.000000  kilometers  

 

entry altitude         100.000000  kilometers  

 

entry fpa               -2.000000  degrees  

 

 

entry trajectory  

 

semimajor axis              6896.07935765  kilometers  

 

eccentricity                   0.06990358   

 

argument of perigee          180.00000000  degrees  

 

perigee altitude              35.87871531  kilometers  

 

apogee altitude             1000.00000000  kilometers  

 

entry true anomaly           328.04948058  degrees  

 

entry velocity              8078.31275892  meters/second  

 

impulse-to-entry time         40.13350666  minutes  

 

deorbit delta-v              261.55416617  meters/second 

 

The software will also calculate and display the entry velocity and flight path angle relative to a rotating 

spherical Earth.  The following is the relative flight information for this example. 
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relative flight path coordinates  

 

flight path angle             -2.12418719  degrees  

 

velocity magnitude             7.60622497  kilometers/second  

 

Finally, the software will graphically display the initial circular orbit and the de-orbit trajectory.  The 

graphic display for this example is as follows where the red dots represent the original circular orbit and 

the blue dots represent the de-orbit trajectory, both at one minute intervals.  The black circle is the 

surface of a spherical Earth and the distances are in Earth radii. 

 

 
The maneuver creates an elliptical de-orbit trajectory with an apogee located at the maneuver point.  The 

apogee altitude of this trajectory is equal to the altitude of the initial circular orbit. 

 

edeorbit.m – single impulse de-orbit from an elliptical orbit 

 

This MATLAB script calculates the single impulsive maneuver required to establish a reentry altitude 

and flight path angle relative to a non-rotating spherical Earth.  The algorithm uses a tangential V  

applied opposite to the velocity vector at apogee of the initial elliptical orbit to establish the de-orbit 

trajectory that enters the Earth’s atmosphere. 

 

The scalar magnitude of this de-orbit delta-v is given by 
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The true anomaly at entry can be determined from the following series of equations: 
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and the inverse tangent is a four quadrant operation. 

 

The time of flight between perigee and the entry true anomaly e  is given by: 
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In this equation   is the orbital period of the de-orbit trajectory. 

 

Therefore, the flight time between the de-orbit impulse time and entry is given by 
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Finally, the speed at reentry eV  can be determined from 

 

 
2

e
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V
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   

 

Please note that these equations are also valid for the case of de-orbit from an initial circular orbit as 

described in the previous cdeorbit.m script. 

 

The following is a typical user interaction with this script. 

 
              program edeorbit  

 

< single impulse deorbit from elliptical orbits >  

 

 

please input the perigee altitude (kilometers) 

? 285.798 

 

please input the apogee altitude (kilometers) 

? 35785.922 

 

 

please input the entry altitude (kilometers) 

? 111.252 

 

please input the entry flight path angle (degrees) 

? -4 

 

The following is the script output created for this example. 

 
              program edeorbit  

 

< single impulse deorbit from elliptical orbits >  

 

initial orbit 

 

perigee altitude       285.798000  kilometers  

 

apogee altitude      35785.922000  kilometers  

 

semimajor axis       24414.000000  kilometers  

 

eccentricity             0.727044   

 

entry altitude         111.252000  kilometers  

 

entry fpa               -4.000000  degrees  

 

 

entry trajectory  

 

semimajor axis             24308.08290588  kilometers  

 

eccentricity                   0.73456961   
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perigee altitude              73.96381175  kilometers  

 

apogee altitude            35785.92200000  kilometers  

 

entry true anomaly           350.55084585  degrees  

 

entry velocity             10317.40933180  meters/second  

 

entry fpa                     -4.00000000  degrees  

 

impulse-to-entry time        312.58844372  minutes  

 

deorbit delta-v               22.29796787  meters/second 

 

The software will also calculate and display the entry velocity and flight path angle relative to a rotating 

spherical Earth.  The following is the relative flight path information for this example. 

 
relative flight path coordinates  

 

entry velocity              9845.40345708  meters/second  

 

entry fpa                     -4.19210209  degrees 

 

This MATLAB script will also graphically display the initial elliptic orbit and the de-orbit trajectory.  

The graphic display for this example is as follows where the red dots represent the original elliptical 

orbit and the blue dots represent the de-orbit trajectory, both at one minute intervals.  The black circle is 

the surface of a spherical Earth and the distances are in Earth radii. 
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Program deorbit_ocs 
 

Finite-Burn De-orbit Trajectory Optimization 
 

This document is the user’s manual for a Fortran computer program called deorbit_ocs that uses the 

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the de-orbit trajectory 

optimization problem.  The software models the trajectory as a single, finite-burn propulsive maneuver 

followed by a user-defined, time-bounded final coast phase. This computer attempts to maximize the 

final spacecraft mass.  Since this simulation involves a single continuous maneuver, this is equivalent to 

minimizing the required propellant mass. 

 

The important features of this scientific simulation are as follows: 
 

 single, continuous thrust orbital maneuver 
 

 variable inertial attitude steering 
 

 constant propulsive thrust magnitude 
 

 modified equinoctial equations of motion with oblate Earth gravity model 
 

 user-specified final coast phase and entry interface (EI) target conditions 
 

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of 

trajectory optimization problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 

 

Additional information about the mathematical techniques and numerical methods used in the Sparse 

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation 

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org). 

 

The deorbit_ocs software consists of Fortran routines that perform the following tasks: 
 

 set algorithm control parameters and call the transcription/optimal control subroutine 
 

 define the problem structure and perform initialization related to scaling, lower and upper 

bounds, initial conditions, etc. 
 

 compute the right-hand-side differential equations 
 

 evaluate any point and path constraints 
 

 display the optimal solution results and create an output file 

 

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal 

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.  

The deorbit_ocs software allows the user to select the type of initial guess, collocation method, and 

other important algorithm control parameters. 

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/
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Program Execution 
 

An input file created by the user can be run from the command line or a simple batch file with a 

statement similar to the following: 
 

deorbit_ocs cleo2ei.in 
 

If the software is executed without an input file on the command line, the computer program will display 

the following information screen and file name prompt: 

 
*********************************** 

*       program deorbit_ocs       * 

*                                 * 

* deorbit trajectory optimization * 

*                                 * 

*          May 10, 2012           * 

*********************************** 

 

please input the name of the simulation definition file 

 

The user should respond to this prompt with the name of a compatible input data file including the 

filename extension. 

 

The screen output created by the deorbit_ocs computer program can be re-directed to a text file with 

a command line similar to 
 

deorbit_ocs cleo2ei.in >cleo2ei.txt 
 

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories 

and finally Command Prompt.  The size, font and other characteristics of the screen can be controlled 

by the user with the c:\ icon in the upper left corner of the window.  To log into the subdirectory created 

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory 

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is 

the name of the subdirectory created by the user. 

 

The DOS command line prompt looks similar to C:\deorbit_ocs>_. 

 

Input File Format and Contents 
 

The deorbit_ocs software is “data-driven” by a user-created text file.  This text file should be simple 

ASCII format with no special characters. 

 

The following is a typical input file used by this computer program.  In the following discussion the 

actual input file contents are in courier font and all explanations are in times italic font.  This example 

attempts to optimize the maneuver required to de-orbit a spacecraft from a circular Earth orbit (LEO) to 

typical entry interface (EI) conditions. 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 
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The first six lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with six and only six initial text lines. 
 

************************************************ 

** de-orbit trajectory optimization 

** single finite-burn maneuver with final coast 

** program deorbit_ocs 

** cleo2ei.in - May 11, 2012 

************************************************ 

 

The first two inputs define the calendar date and Universal Coordinated Time (UTC) of the de-orbit 

maneuver.  Please be sure to provide all four digits of the calendar year. 
 

maneuver calendar date (month, day, year) 

----------------------------------------- 

3, 18, 2010 

 

maneuver UTC (hour, minute, second) 

----------------------------------- 

12, 30, 45.875 

 

The next three inputs define the initial mass prior to the propulsive maneuver, and the thrust magnitude 

and specific impulse of the upper stage or spacecraft propulsion system. 
 

initial spacecraft mass (kilograms) 

8000.0 

 

thrust magnitude (newtons) 

2000.0 

 

specific impulse (seconds) 

325.0 

 

This next integer input defines the type of initial guess for the propulsive maneuver. 
 

************************************ 

* type of propulsive initial guess * 

************************************ 

1 = thrust duration 

2 = delta-v 

----------- 

2 

 

The next two numeric inputs define either the user’s initial guess for the delta-v magnitude or the 

maneuver duration, and should be consistent with the previous input. 
 

initial guess for delta-v (meters/second) 

150.0 

 

initial guess for thrust duration (seconds) 

700.0 

 

The next two inputs define the lower and upper bounds for the thrust duration.  These inputs are 

required for either type of propulsive initial guess. 
 

lower bound for thrust duration (seconds) 

10.0 

 

upper bound for thrust duration (seconds) 

1000.0 
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The next section of the input data file lets the user define the characteristics of a final coast phase that 

follows the propulsive maneuver.  These three inputs define an initial guess for the coast duration as 

well as lower and upper bounds on the coast duration.  All inputs are in minutes. 
 

****************** 

* coast maneuver * 

****************** 

 

initial guess for coast duration (minutes) 

30.0 

 

lower bound for coast duration (minutes) 

20.0 

 

upper bound for coast duration (minutes) 

40.0 

 

The next six inputs define the classical orbital elements of the initial park orbit.  These elements are 

defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

6878.14d0 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5d0 

 

argument of perigee (degrees) 

100.0 

 

right ascension of the ascending node (degrees) 

220.0d0 

 

true anomaly (degrees) 

180.0 

 

This next integer input allows the user to define the type of initial orbit constraints to use during the 

simulation. 
 

************************************ 

* initial orbit constraint options * 

************************************ 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all initial orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

The next series of inputs define the entry interface (EI) mission constraints.  These elements are defined 

with respect to the relative coordinate system.  Please note the proper units for each mission constraint.  

Important note: To disregard a mission constraint, input the value 1.0d99 for that constraint. 
 

********************************************************* 

* entry interface constraints (set to 1.0d99 to ignore) * 

********************************************************* 
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geodetic altitude (kilometers) 

121.92d0 

 

relative flight path angle (degrees) 

-2.0d0 

 

geodetic latitude (degrees) 

-14.0 

 

east longitude (degrees) 

181.0 

 

relative azimuth (degrees) 

1.0d99 

 

relative velocity (meters/second) 

1.0d99 

 

This integer input specifies the type of gravity model to use during the simulation.  Option 2 will use a 

2J  gravity model in the spacecraft equations of motion. 
 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 

 

This next input specifies the type of solution data file to create. 
 

********************************************** 

* type of comma-delimited solution data file * 

********************************************** 

 1 = OCS-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

2 

 

For options 2 or 3, this input defines either the number of data points or the time step size of the data 

output in the solution file. 
 

number of user-defined nodes or print step size in solution data file 

100 

 

The name of the comma-separated-variable solution data file is defined in this next line. 
 

name of solution output file 

cleo2ei.csv 

 

The next series of program inputs are algorithm control options and parameters for the Sparse 

Optimization Suite.  The first input is an integer that specifies the type of collocation method to use 

during the solution process.  For most simulations, the trapezoidal method is recommended. 
 

******************************** 

* algorithm control parameters * 

******************************** 

 

discretization/collocation method 

--------------------------------- 

 1 = trapezoidal 

 2 = separated Hermite-Simpson 
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 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

The next input defines the relative error in the objective function. 
 

relative error in the objective function (performance index) 

1.0d-5 

 

The next input defines the relative error in the solution of the differential equations. 
 

relative error in the solution of the differential equations 

1.0d-7 

 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 

maximum number of mesh refinement iterations 

20 

 

The next input is an integer that defines the maximum number of function evaluations. 
 

maximum number of function evaluations 

50000 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 

maximum number of algorithm iterations 

10000 

The level of output from the Sparse Optimization Suite NLP algorithm is controlled with the following 

integer input. 
 

*************************** 

sparse NLP iteration output 

--------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 

 

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the 

following integer input.  Please note that option 4 will create lots of information. 
 

********************** 

optimal control output 

---------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 

 

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled 

with the following integer input.  Please note that option 5 will create lots of information. 
 

**************************** 

differential equation output 

---------------------------- 

 1 = none 

 2 = terse 



page 7 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The level of output can be further controlled by the user with this final text input.  This program option 

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s 

manual.  To ignore this special output control, input the simple character string no. 
 

******************* 

user-defined output 

------------------- 

input no to ignore 

------------------ 

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0 

 

Optimal control solution 
 

The following is the optimal control solution for this example.  The output includes the time and orbital 

characteristics at the beginning and end of the propulsive maneuver.  This example optimizes the finite-

burn maneuver required to transfer from a circular low Earth orbit (LEO) to an entry interface defined 

by a relative flight path angle, geodetic altitude and latitude, and a geographic east longitude.  Appendix 

B contains a brief summary of this information. 

 
 program deorbit_ocs 

 =================== 

   

 input data file ==> cleo2ei.in 

   

 oblate earth gravity model 

   

   

 initial epoch 

 ------------- 

 

 calendar date            March 18, 2010 

 

 UTC time                 12:30:45.875 

   

   

 ------------------------ 

 beginning of finite burn 

 ------------------------ 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.687814000000D+04    0.256247074642D-15    0.285000000000D+02    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220000000000D+03    0.199001209386D+03    0.199001209386D+03    0.946163624135D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.371682044841D+04    0.568790088946D+04    -.106856870886D+04    0.687814000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.596468785281D+01    0.325246126525D+01    -.343449740362D+01    0.761260651018D+01 

   

   

 ------------------ 
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 end of finite burn 

 ------------------ 

 

 mission elapsed time     00:09:39.318 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.662834854917D+04    0.373976098013D-01    0.286374887088D+02    0.314330866858D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220229462304D+03    0.203823970508D+03    0.235257057194D+03    0.895092125778D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.210335480056D+03    0.629617719700D+04    -.269907170370D+04    0.685354480337D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.711928147802D+01    -.122317403027D+01    -.200086582577D+01    0.749558453521D+01 

 

The following program output is the final spacecraft mass, the propellant mass consumed, the actual 

thrust duration for the maneuver, and the accumulated delta-v. 

 
 final mass             7636.46768849416      kilograms 

   

 propellant mass        363.532311505839      kilograms 

   

 thrust duration        579.318048180925      seconds 

                        9.65530080301541      minutes 

   

 delta-v                148.223366147974      meters/second 

 

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at 

each collocation node or user-defined step size. 

 

This section of the numeric results summarizes the time and orbital conditions at the beginning and end 

of the final coast. 

 
 --------------------------- 

 beginning of coast maneuver 

 --------------------------- 

 

 mission elapsed time     00:09:39.318 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.662834854917D+04    0.373976098013D-01    0.286374887088D+02    0.314330866858D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220229462304D+03    0.203823970508D+03    0.235257057194D+03    0.895092125778D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.210335480056D+03    0.629617719700D+04    -.269907170370D+04    0.685354480337D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.711928147802D+01    -.122317403027D+01    -.200086582577D+01    0.749558453521D+01 

   

   

 --------------------- 

 end of coast maneuver 

 --------------------- 

 

 mission elapsed time     00:33:37.138 
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      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.663096280332D+04    0.386110555799D-01    0.286533250810D+02    0.307476929735D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220038827173D+03    0.299159749780D+03    0.329907442753D+03    0.895621721271D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.614443018434D+04    -.142801717018D+04    -.156247691255D+04    0.649881446349D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.107390419948D+01    -.708739128858D+01    0.334249561358D+01    0.790927698554D+01 

   

   

 coast duration         1437.81997871958      seconds 

                        23.9636663119930      minutes 

                       0.399394438533216      hours 

 

This final section of the numeric results summarizes both the relative and inertial flight conditions at the 

entry interface. 
 

 relative flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 geodetic altitude    121.919999999994      kilometers 

   

 geodetic latitude   -13.9999999999992      degrees 

   

 east longitude       180.999999897136      degrees 

   

 flight path angle   -2.00000000000018      degrees 

   

 azimuth              63.1924684582462      degrees 

   

 velocity             7496.23024105710      meters/second 

   

   

 inertial flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 right ascension      193.083753391143      degrees 

   

 flight path angle   -1.89551468207218      degrees 

   

 azimuth              64.6963141835643      degrees 

   

 velocity             7909.27698553550      meters/second 

 

Verification of the optimal control solution 
 

The optimal control solution determined by the Sparse Optimization Suite can be verified by 

numerically integrating the orbital equations of motion with the OC-computed initial park orbit 

conditions and the optimal control solution.  This is equivalent to solving an initial value problem (IVP) 

that uses the optimal unit thrust vector solution.  This part of the deorbit_ocs computer program uses 

a Runge-Kutta-Fehlberg 7(8) variable step size method to integrate the orbital equations of motion. 

 

The following is a display of the final solution computed using this explicit numerical integration 

method. 

 
 ======================================== 

 verification of optimal control solution 

 ======================================== 
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 beginning of coast maneuver 

 --------------------------- 

 

 mission elapsed time     00:09:39.318 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.662834854907D+04    0.373976097701D-01    0.286374887086D+02    0.314330866910D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220229462304D+03    0.203823970504D+03    0.235257057195D+03    0.895092125757D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.210335480218D+03    0.629617719672D+04    -.269907170359D+04    0.685354480309D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.711928147827D+01    -.122317403037D+01    -.200086582582D+01    0.749558453547D+01 

   

   

 end of coast maneuver 

 --------------------- 

 

 mission elapsed time     00:33:37.138 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.663096280315D+04    0.386110556971D-01    0.286533250796D+02    0.307476930541D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220038827181D+03    0.299159749691D+03    0.329907442745D+03    0.895621721237D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.614443018404D+04    -.142801717004D+04    -.156247691279D+04    0.649881446323D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.107390420036D+01    -.708739128871D+01    0.334249561350D+01    0.790927698574D+01 

   

   

 relative flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 geodetic altitude    121.919999748011      kilometers 

   

 geodetic latitude   -14.0000000027976      degrees 

   

 east longitude       180.999999896537      degrees 

   

 flight path angle   -2.00000000777524      degrees 

   

 azimuth              63.1924684615364      degrees 

   

 velocity             7496.23024127568      meters/second 

   

   

 inertial flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 right ascension      193.083753390544      degrees 

   

 flight path angle   -1.89551468944646      degrees 

   

 azimuth              64.6963141865741      degrees 

   

 velocity             7909.27698574230      meters/second 

   

   

 mass and propulsive properties 
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 ------------------------------ 

   

 final mass           7636.46768849181      kilograms 

   

 propellant mass      363.532311508195      kilograms 

   

 thrust duration      579.318048180925      seconds 

                      9.65530080301541      minutes 

   

 delta-v              148.223363619416      meters/second 

 

In additional to the user-defined solution output file, the deorbit_ocs computer program will create a 

comma-separated-variable data file named maneuver.csv.  This data file contains the information 

described in Appendix B starting at ignition and ending at burnout of the propulsive maneuver. 

 

The following are graphic displays of several important flight conditions for this example.  The first two 

images illustrate the behavior of the orbit-relative pitch and yaw angles, and the inertial right ascension 

and declination angles of the unit thrust vector during the de-orbit maneuver. 

 

          
 

These two plots summarize the relative and inertial flight path angles and velocities. 
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The next two plots illustrate the behavior of the semimajor axis, orbital eccentricity, orbital inclination 

and right ascension of the ascending node (RAAN) during the simulation. 

 

         
 

 

Creating an initial guess 
 

The software allows the user to input either a delta-v or thrust duration initial guess.  For a delta-v initial 

guess, the software estimates the thrust duration using the rocket equation.  For either type of initial 

guess, the user should also provide lower and upper bounds for the total thrust duration. 

 

An estimate of the thrust duration can be determined from the following expression: 

 

 
sp p p ex

d

I m g m V
t

F F
   

 

The propellant mass required for a given V  is a function of the initial (or final) mass of the spacecraft 

and the exhaust velocity as follows: 
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 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

 

 

In these equations 

 

 initial mass

 final mass

 propellant mass

 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i

f

p

ex sp

sp

m

m

m

V g I

I

V

F

g







 



 





 

 

The software uses a tangential thrusting steering method to generate an initial guess for the optimal 

trajectory.  For tangential thrusting opposite to the flight path, the unit thrust vector in the modified 

equinoctial frame at all times is simply  0 1 0
T

T  u .  Please note that this type of steering method 

creates a coplanar initial guess. 

 

The dynamic variables at each grid point of the initial guess are determined by setting the initial guess 

option INIT(1) = 6 with INIT(2) = 2 within the odeinp subroutine for this aerospace trajectory 

optimization problem.  These program options create an initial guess from the numerical integration of 

the equations of motion coded in the oderhs subroutine.  The INIT(1) = 6 program option tells the 

Sparse Optimization Suite software to construct an initial guess by solving an initial value problem 

(IVP) with a linear control approximation.  The INIT(2) = 2 program option tells the program to use 

the Dormand-Prince variable step size numerical method to solve the initial value problem. 

 

An initial guess for the modified equinoctial orbital elements at the beginning of the final coast phase 

are determined by numerically integrating the equations of motion using the initial orbital elements, 

spacecraft mass, and propulsive characteristics provided by the user. 

 

An algorithm for estimating the impulse de-orbit delta-v from initial circular orbits is explained in 

Appendix C.  A numerical method for calculating the impulsive maneuver required for de-orbiting from 

an initial elliptical Earth orbit can be found in Appendix D. 

 

Problem setup 
 

This part of the user’s manual provides details about the software implementation within 

deorbit_ocs.  It defines such things as point and path constraints (boundary conditions), bounds on 

the dynamic variables, and the performance index or objective function. 

 

(1) Point functions – initial orbit constraints 

 

The software allows the user to select one of the following initial orbit constraint options: 
 

1) constrain semimajor axis, eccentricity and inclination 
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2) constrain all initial orbital elements 

3) option 2 with unconstrained true longitude 

 

For option 1, the initial orbit inclination is constrained by enforcing 
 

 2 2 tan
2

i
h k

 
   

 
 

 

where i is the initial orbit inclination. 

 

If the initial orbit is circular, the software enforces the following two equality constraints: 
 

 0  and  0f g   

 

Otherwise, for an elliptical initial orbit, the single equality constraint 
 

 2 2f g e   

 

is enforced, where e is the initial orbit eccentricity. 

 

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal 

to the initial modified equinoctial orbital elements as follows: 

 

 

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

 

 

Option 3 is identical to option 2 with the initial true longitude unbounded.  In optimal control 

terminology, these derived constraints or boundary conditions are called point functions. 

 

(2) Performance index – maximize final spacecraft mass 

 

The objective function or performance index J for this simulation is the mass of the spacecraft at 

burnout or termination of the propulsive maneuver.  This is simply 

 

 fJ m  

 

The value of the maxmin indicator in the Sparse Optimization Suite algorithm tells the software whether 

the user is minimizing or maximizing the performance index.  The spacecraft mass at the initial time is 

fixed to the user-defined initial value. 
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(3) Path constraint – unit thrust vector scalar magnitude 

 

For a variable steering trajectory, the scalar magnitude of the components of the unit thrust vector at any 

time during the simulation is constrained as follows: 

 

 2 2 2 1
r t nT T T Tu u u   u  

 

(4) Point functions – entry interface mission constraints 

 

The entry interface mission constraints are relative flight path coordinates defined with respect to a 

rotating Earth.  They are calculated from the inertial spacecraft coordinates at the entry interface using 

the algorithm described in Appendix E. 

 

This set of possible constraints consists of the following elements; 

 

 

0 geodetic altitude

0 relative flight path angle

0 geodetic latitude

0 east longitude

0 relative azimuth

0 relative velocity

p u

p u

p u

p u

p u

p u

h h

v v

 

 

 

 

  

  

  

  

  

  

 

 

where the p subscript refers to values predicted by the software and the u subscript are the values 

defined by the user. 

 

Bounds on the dynamic variables 

 

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial 

dynamic variables during the orbital transfer. 
 

 

0.05 1.05

100 0.8

1 1

1 1

1 1

1 1

i isc sc sc

f i

m m m

p p p

f

g

h

k

 

 

   

   

   

   

 

 

where 
iscm  is the initial spacecraft mass. 

 

Finally, the three components of the unit thrust vector are constrained as follows 
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1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

 

 

Technical Discussion 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These equations 

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.  However, 

two components of the orbital element set are singular for an orbital inclination of 180 degrees. 

 

The relationship between direct modified equinoctial and classical orbital elements is defined by the 

following definitions 

 

 
     

   

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

     

     
 

 

 where 

 

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





 

 

The relationship between classical and modified equinoctial orbital elements is summarized as follows: 

 

semimajor axis    
2 21

p
a

f g


 
 

 

orbital eccentricity    
2 2e f g   

 

orbital inclination     1 2 22 tani h k   

 

argument of periapsis     1 1tan tang f k h     

 

right ascension of the ascending node  1tan k h   
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true anomaly        1tanL L g f        

 

The mathematical relationships between an inertial state vector and the corresponding modified 

equinoctial elements are summarized as follows: 

 

position vector 
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velocity vector 
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v  

 

where 

 

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     

   
 

 

The system of first-order modified equinoctial equations of orbital motion are given by 

 

 
2

t

dp p p
p

dt w 
    

 

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
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    cos 1 sin sin cost n
r
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dt w w

  
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2

sin
2

ndk p s
k L

dt w


   

 

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 
 

 

where , ,r t n    are non-two-body perturbations in the radial, tangential and normal directions, 

respectively.  The radial direction is along the radius vector of the spacecraft measured positive in a 

direction away from the gravitational center, the tangential direction is perpendicular to this radius 

vector measured positive in the direction of orbital motion, and the normal direction is positive along the 

angular momentum vector of the spacecraft’s orbit. 

 

 

The equations of orbital motion can also be expressed in vector form as follows: 

 

  
d

dt
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y
y A y P b  

 

where 
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and 

 

2

0 0 0 0 0

T

w
p

p


  
   

   

b  

 

The total non-two-body acceleration vector is given by 

 

 ˆ ˆ ˆ
r r t t n n     P i i i  

 



page 19 

where ˆ ˆ ˆ,  and r t ni i i  are unit vectors in the radial, tangential and normal directions. 

 

These unit vectors can be computed from the inertial position vector r and velocity vector v according to 

 

 
 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
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 

r v rr r v
i i i i i

r r v r v r
 

 

For unperturbed two-body motion, 0P  and the first five equations of motion are simply 

0p f g h k     .  Therefore, for two-body motion these modified equinoctial orbital elements are 

constant. 

 

The true longitude is often called the fast variable of this orbital element set. 

 

Non-spherical Earth Gravity 

 

The non-spherical gravitational acceleration vector can be expressed as 
 

 ˆ ˆ
N N r rg g g i i  

 

 where 
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N
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and 

  ˆ 0 0 1
T

N e  

 

In these equations the north direction component is indicated by subscript N and the radial direction 

component is subscript r. 

 

The contributions due to the zonal gravity effects of 2 3 4, ,J J J  are as follows: 
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 where 
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th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth
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 zonal gravity coefficient
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For a zonal only Earth gravity model, the east component is identically zero. 

 

Finally, the zonal gravity perturbation contribution is T

g a Q g  where ˆ ˆ ˆ      r t n
 
 

Q i i i . 

 

For 
2J  effects only, the three components are as follows: 
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Propulsive Thrust 

 

The acceleration due to propulsive thrust can be expressed as 

 

 
 

ˆ
T T

T

m t
a u  

where T is the thrust magnitude, m is the spacecraft mass and ˆ       
r t n

T

T T T Tu u u   u  is the unit pointing 

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system.  The 

components of this unit vector are the control variables. 

 

The propellant mass flow rate is determined from 
 

 
sp

dm T
m

dt g I
   

 

where g is the acceleration of gravity and spI  is the specific impulse of the propulsive system.  The 

product spg I  is also called the exhaust velocity. 
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The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt   where 

iscm  is the initial 

mass of the spacecraft and m  is the propellant flow rate. 

 

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle   and 

the out-of-plane yaw angle   as follows: 

 

 sin cos cos cos sin
r t nT T Tu u u        

 

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector 

according to 
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Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located 

at the spacecraft.  The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane 

yaw angle is positive in the direction of the angular momentum vector.  The inverse tangent calculation 

in the second equation is a four quadrant operation. 

The deorbit_ocs software provides the steering angles and the components of the unit thrust vector in 

both the inertial and modified equinoctial coordinate systems.  The following section summarizes the 

inertial-to/from-modified equinoctial coordinate transformations and the calculation of the inertial unit 

thrust vector in terms of right ascension and declination angles. 

 

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu  and the corresponding 

unit thrust vector in the modified equinoctial system ˆ
MEETu  is given by 
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where 
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This relationship can also be expressed as 
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In these equations, r  is the inertial position vector and v  is the inertial velocity vector of the spacecraft. 

 

In the deorbit_ocs computer program, the components of the inertial unit thrust vector are defined in 

terms of the right ascension   and the declination angle   as follows: 
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 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u        

 

Finally, the right ascension and declination angles can be determined from the components of the ECI 

unit thrust vector according to 

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u     

 

where the calculation for right ascension is a four quadrant inverse tangent operation. 

 

Flight path coordinates 

 

The mathematical relationship between flight path and inertial coordinates is explained in Appendix E. 

 

Geodetic coordinates 

 

An algorithm for converting from geocentric declination and radius to geodetic altitude and latitude is 

described in Appendix F.  It uses a series solution involving the flattening factor of the Earth. 
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APPENDIX A 
 

Example De-orbit from an Elliptical Earth Orbit 
 

This appendix illustrates the characteristics for a typical de-orbit from a highly elliptical Earth orbit 

(HEO).  For this example, the entry interface constraints consist of the geodetic altitude and relative 

flight path angle.  An estimate for the delta-v required for this example and the coast time were 

determined using the algorithm described in Appendix D. 

 

The main portion of the simulation definition file for this example is as follows: 

 
************************************************ 

** de-orbit trajectory optimization 

** single finite-burn maneuver with final coast 

** program deorbit_ocs 

** heo2ei.in - May 10, 2012 

************************************************ 

 

maneuver calendar date (month, day, year) 

----------------------------------------- 

3, 18, 2010 

 

maneuver UTC (hour, minute, second) 

----------------------------------- 

12, 30, 45.875 

 

initial spacecraft mass (kilograms) 

8000.0 

 

thrust magnitude (newtons) 

1000.0 

 

specific impulse (seconds) 

325.0 

 

************************************ 

* type of propulsive initial guess * 

************************************ 

1 = thrust duration 

2 = delta-v 

----------- 

2 

 

initial guess for delta-v (meters/second) 

35.0d0 

 

initial guess for thrust duration (seconds) 

700.0 

 

lower bound for thrust duration (seconds) 

1.0 

 

upper bound for thrust duration (seconds) 

1000.0 

 

****************** 

* coast maneuver * 

****************** 

 

initial guess for coast duration (minutes) 

300.0 
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lower bound for coast duration (minutes; > 0) 

200.0 

 

upper bound for coast duration (minutes) 

500.0 

 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

24414.0d0 

 

orbital eccentricity (non-dimensional) 

0.727044 

 

orbital inclination (degrees) 

28.5d0 

 

argument of perigee (degrees) 

270.0 

 

right ascension of the ascending node (degrees) 

220.0d0 

 

true anomaly (degrees) 

180.0d0 

 

************************************ 

* initial orbit constraint options * 

************************************ 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all initial orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

********************************************************* 

* entry interface constraints (set to 1.0d99 to ignore) * 

********************************************************* 

 

geodetic altitude (kilometers) 

121.92d0 

 

relative flight path angle (degrees) 

-2.0d0 

 

geodetic latitude (degrees) 

1.0d99 

 

east longitude (degrees) 

1.0d99 

 

relative azimuth (degrees) 

1.0d99 

 

relative velocity (meters/second) 

1.0d99 

 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 
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The program output for this example is 

 
 program deorbit_ocs 

 =================== 

   

 input data file ==> heo2ei.in 

   

 oblate earth gravity model 

   

   

 initial epoch 

 ------------- 

 

 calendar date            March 18, 2010 

 

 UTC time                 12:30:45.875 

   

   

 ------------------------ 

 beginning of finite burn 

 ------------------------ 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.244140000000D+05    0.727044000000D+00    0.285000000000D+02    0.270000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220000000000D+03    0.179838597519D+03    0.898385975188D+02    0.632729583647D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.237268343662D+05    -.284613210725D+05    0.201186544321D+05    0.421636066104D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.123989347177D+01    0.102137536270D+01    0.791045192336D-02    0.160642647766D+01 

   

   

 ------------------ 

 end of finite burn 

 ------------------ 

 

 mission elapsed time     00:02:25.905 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243269419485D+05    0.733224470367D+00    0.284999999981D+02    0.269999908966D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220000048521D+03    0.180155324772D+03    0.901552337382D+02    0.629348220341D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.239053722555D+05    -.283115456389D+05    0.201186693081D+05    0.421636252457D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.120740294448D+01    0.103164365370D+01    -.769905249676D-02    0.158813405416D+01 

   

   

 final mass             7954.22115070684      kilograms 

   

 propellant mass        45.7788492931622      kilograms 

   

 thrust duration        145.904574520815      seconds 

                        2.43174290868026      minutes 

   

 delta-v                18.2904541073263      meters/second 
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 --------------------------- 

 beginning of coast maneuver 

 --------------------------- 

 

 mission elapsed time     00:02:25.905 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243269419485D+05    0.733224470367D+00    0.284999999981D+02    0.269999908966D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220000048521D+03    0.180155324772D+03    0.901552337382D+02    0.629348220341D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.239053722555D+05    -.283115456389D+05    0.201186693081D+05    0.421636252457D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.120740294448D+01    0.103164365370D+01    -.769905249677D-02    0.158813405416D+01 

   

   

 --------------------- 

 end of coast maneuver 

 --------------------- 

 

 mission elapsed time     05:15:04.421 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243574533818D+05    0.733691641752D+00    0.284878735015D+02    0.270125093234D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.219924531651D+03    0.355464345323D+03    0.265589438557D+03    0.630532606936D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.326983940138D+04    0.468558859467D+04    -.308885964145D+04    0.649520161919D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.815487392014D+01    -.631067229242D+01    -.213830021530D+00    0.103136936504D+02 

   

   

 coast duration         18758.5159416022      seconds 

                        312.641932360037      minutes 

                        5.21069887266728      hours 

   

   

 relative flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 geodetic altitude    121.919999999998      kilometers 

   

 geodetic latitude   -28.5540897239011      degrees 

   

 east longitude       42.2691975996772      degrees 

   

 flight path angle   -2.00000000000468      degrees 

   

 azimuth              92.4904131009538      degrees 

   

 velocity             9897.66361056145      meters/second 

   

   

 inertial flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 right ascension      124.909273063683      degrees 



page 28 

   

 flight path angle   -1.91929389968213      degrees 

   

 azimuth              92.3897809434936      degrees 

   

 velocity             10313.6936503760      meters/second 

   

Here are the verification results for this example. 

 
 ======================================== 

 verification of optimal control solution 

 ======================================== 

   

 beginning of coast maneuver 

 --------------------------- 

 

 mission elapsed time     00:02:25.905 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243269419484D+05    0.733224470367D+00    0.284999999981D+02    0.269999908963D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.220000048522D+03    0.180155324775D+03    0.901552337371D+02    0.629348220339D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.239053722554D+05    -.283115456388D+05    0.201186693081D+05    0.421636252456D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.120740294437D+01    0.103164365384D+01    -.769905257556D-02    0.158813405416D+01 

   

   

 end of coast maneuver 

 --------------------- 

 

 mission elapsed time     05:15:04.421 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243574533952D+05    0.733691641944D+00    0.284878734954D+02    0.270125093237D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.219924531681D+03    0.355464335541D+03    0.265589428778D+03    0.630532607457D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.326983852645D+04    0.468558927113D+04    -.308885961732D+04    0.649520165524D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.815487442942D+01    -.631067156466D+01    -.213830504622D+00    0.103136936178D+02 

   

   

 relative flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 geodetic altitude    121.920035928964      kilometers 

   

 geodetic latitude   -28.5540893076028      degrees 

   

 east longitude       42.2691865228324      degrees 

   

 flight path angle   -2.00000431339059      degrees 

   

 azimuth              92.4904186061209      degrees 

   

 velocity             9897.66357674878      meters/second 
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 inertial flight path coordinates at entry interface 

 --------------------------------------------------- 

   

 right ascension      124.909261986838      degrees 

   

 flight path angle   -1.91929803838563      degrees 

   

 azimuth              92.3897862248354      degrees 

   

 velocity             10313.6936177802      meters/second 

   

   

 mass and propulsive properties 

 ------------------------------ 

   

 final mass           7954.22115071184      kilograms 

   

 propellant mass      45.7788492881609      kilograms 

   

 thrust duration      145.904574520815      seconds 

                      2.43174290868026      minutes 

   

 delta-v              18.2904541154479      meters/second 
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APPENDIX B 
 

Contents of the Simulation Summary and CSV Files 
 

This appendix is a brief summary of the information contained in the simulation summary screen 

displays and the CSV data files produced by the deorbit_ocs software. 

 

The simulation summary screen display contains the following information: 

 
mission elapsed time = simulation time (hh:mm:ss.sss) 

 

sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers 

 

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second 

 

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per 

second 

 

geodetic altitude = geodetic altitude in kilometers 

 

geodetic latitude = geodetic latitude in degrees) 

 

east longitude = east longitude in degrees 

 

flight path angle = relative or inertial flight path angle in degrees 

 

azimuth  = relative or inertial azimuth angle in degrees 

 

velocity  = relative or inertial velocity in meters per second 

 

final mass = final spacecraft mass in kilograms 

 

propellant mass = expended propellant mass in kilograms 

 

thrust duration = maneuver duration in seconds 

 

delta-v = scalar magnitude of the maneuver in meters/seconds 
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The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at 

each collocation node or user-defined step size. 

 

The user-defined comma-separated-variable (csv) disk files is created by the odeprt subroutine and 

contains the following information: 

 
time (sec) = mission elapsed time in seconds 

 

time (min) = mission elapsed time in minutes 

 

semimajor axis (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

arg of perigee (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

period (min) = orbital period in minutes 

 

mass (kg) = spacecraft mass in kilograms 

 

thracc (mps/s) = thrust acceleration in meters/second**2 

 

perigee altitude = perigee altitude in kilometers 

 

apogee altitude = apogee altitude in kilometers 

 

geodetic altitude (km) = geodetic altitude in kilometers 

 

ut-radial = radial component of unit thrust vector 

 

ut-tangential = tangential component of unit thrust vector 

 

ut-normal = normal component of unit thrust vector 

 

ut-eci-x = x-component of eci unit thrust vector 

 

ut-eci-y = y-component of eci unit thrust vector 

 

ut-eci-z = z-component of eci unit thrust vector 

 

semi-parameter = orbital semiparameter in kilometers 

 

f equinoctial element = modified equinoctial orbital element 

 

g equinoctial element = modified equinoctial orbital element 

 

h equinoctial element = modified equinoctial orbital element 

 

k equinoctial element = modified equinoctial orbital element 

 

true longitude = true longitude in degrees 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 
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rmag (km) = magnitude of spacecraft’s position vector in kilometers 

 

vx (km) = x-component of the spacecraft’s velocity vector in kilometers/second 

 

vy (km) = y-component of the spacecraft’s velocity vector in kilometers/second 

 

vz (km) = z-component of the spacecraft’s velocity vector in kilometers/second 

 

vmag (km) = magnitude of spacecraft’s velocity vector in kilometers/second 

 

rasc (deg) = inertial right ascension of the unit thrust vector in degrees 

 

decl (deg) = inertial declination of the unit thrust vector in degrees 

 

yaw (deg) = out-of-plane yaw angle of the unit thrust vector in degrees 

 

pitch (deg) = in-plane pitch angle of the unit thrust vector in degrees 

 

declination (deg) = geocentric declination in degrees 

 

geodetic lat (deg) = geodetic latitude in degrees 

 

longitude (deg) = east longitude in degrees 

 

azimuth (deg) = relative azimuth in degrees 

 

vmagr (mps) = relative velocity in meters per second 

 

fpar (deg) = relative flight path angle in degrees 

 

fpai (deg) = inertial flight path angle in degrees 

 

deltav (mps) = accumulative delta-v in meters per second 
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APPENDIX C 
 

De-orbit from a Circular Earth Orbit 
 

This appendix summarizes an algorithm can be used to compute the impulsive delta-v required to de-

orbit a spacecraft initially in a circular Earth orbit.  The “targets” at the entry interface consist of the 

altitude and flight path angle. 

 

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial 

circular orbit can be determined from the following expression 

 

 
   

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

    
       

      
       

      

 

 

where 

 

 

 

radius ratio

 local circular velocity at entry interface

 local circular velocity of initial circular orbit

 flight path angle at entry interface

e

i

i eq i

e eq e

c

ee eq

c

ii eq

e

i

h r r
r

h r r

V
rh r

V
rh r

h

 

 




  



  


  




 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radius

 Earth gravitational constant

e

i

e

eq

h

r

r

r















 

 

This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, The 

Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966.  Additional 

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh, 

Busemann and Culp, The University of Michigan Press. 
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The true anomaly on the de-orbit trajectory at the entry interface 
e  can be determined from the 

following two equations 
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and the following four quadrant inverse tangent operation 
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The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e  is 

given by 
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In this equation   is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  . 

 

Therefore, the flight time between the de-orbit impulse and entry interface is given by 
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Finally, the orbital speed at the entry interface eV  can be determined from 
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APPENDIX D 
 

De-orbit from an Elliptical Earth Orbit 
 

This appendix summarizes an algorithm can be used to compute the impulsive delta-v required to de-

orbit a spacecraft initially in an elliptical Earth orbit. 

 

The scalar magnitude of the impulsive delta-v for de-orbit from an initial elliptical orbit is given by 
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The true anomaly at entry can be determined from the following series of equations. 
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The time-of-flight between perigee and the entry interface true anomaly e  is given by 
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In this equation,   is the orbital period of the de-orbit trajectory. 

 

Therefore, the flight time between the de-orbit impulse time and the entry interface is given by 
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Finally, the speed at the entry interface eV  can be determined from 
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APPENDIX E 
 

Flight Path Coordinates 
 

Relative flight path coordinates are defined with respect to a rotating spherical Earth.  This set of 

coordinates consists of the following elements; 
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Please note the sign and direction convention. 

 

The following are several useful equations that summarize the relationships between inertial and relative 

flight path coordinates. 
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where the r subscript denotes relative coordinates and the i subscript inertial coordinates. 

 

The inertial speed can also be computed from the following expression 
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The inertial flight path angle can be computed from 

 

 
2 2 2 2 2

2 2 2 2

cos 2 cos cos cos cos
cos

2 cos cos cos cos
i

v vr r

v vr r

      


     

 


 
 

 

The inertial azimuth can be computed from 
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where all coordinates on the right-hand-side of these equations are relative to a rotating Earth. 

 

The transformation of an Earth-centered inertial (ECI) position vector ECIr  to an Earth-centered fixed 

(ECF) position vector ECFr  is given by the following vector-matrix operation 
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  ECF ECIr T r  

 

where the elements of the transformation matrix  T  are given by 
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and   is the Greenwich apparent sidereal time at the moment of interest.  Greenwich sidereal time is 

given by the following expression 

 0g et     

 

where 0g  is the Greenwich sidereal time at 0 hours UTC, e  is the inertial rotation rate of the Earth, 

and t is the elapsed time since 0 hours UTC. 

 

Finally, the flight path coordinates are determined from the following set of equations 
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Please note that the two argument inverse tangent calculation is a four quadrant operation. 

 

A set of inertial flight path coordinates can be determined from these equations by setting the value of 

Earth rotation to zero. 
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APPENDIX F 
 

Geodetic Coordinates 
 

The following diagram illustrates the geometric relationship between geocentric (radius and declination) 

and geodetic (altitude and latitude) coordinates. 

 

 
 

In this diagram,  is the geocentric declination,   is the geodetic latitude, r is the geocentric distance, 

and h is the geodetic altitude. 

 

The exact mathematical relationship between geocentric and geodetic coordinates is given by the 

following system of two nonlinear equations 
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where the geodetic constants c and s are given by 
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In these equations, eqr  is the Earth equatorial radius (6378.14 kilometers) and f  is the flattening factor 

for the Earth (1/298.257). 
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In this computer program, the geodetic latitude is determined using the following expression: 
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The geodetic altitude is calculated from 
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In these equations,   is the geocentric distance of the satellite, ˆ / eqh h r  and ˆ / eqr r . 

 

This algorithm is based on “Derivation of Transformation Formulas Between Geocentric and Geodetic 

Coordinates for Nonzero Altitudes” by Sheila Ann T. Long, NASA TN D-7522, 1974. 
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A MATLAB Script for Optimal Single Impulse De-orbit from Earth Orbits 
 

This document describes a MATLAB script named deorbit_snopt that can be used to compute the 

optimal impulsive maneuver required to de-orbit a spacecraft in a circular or elliptical Earth orbit.  The 

user provides the classical orbital elements of the initial orbit along with geodetic altitude and relative 

flight path angle targets at the entry interface (EI). 

 

This script solves this maneuver optimization problem using a simple shooting method.  During the 

solution process, the script numerically integrates the spacecraft equations of motion subject to the 

Earth’s 2J  gravity coefficient.  The numerical integration is performed using MATLAB’s ode45 

function.  The entry interface targets are computed with respect to an oblate, rotating Earth. 

 

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the 

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control 

variables.  The scalar magnitude of the de-orbit V  is the objective function or performance index, 

and the geodetic altitude and relative flight path angle at the entry interface are treated as nonlinear 

equality constraints.  The algorithm uses an initial guess determined from the analytic de-orbit solution 

relative to a spherical, non-rotating Earth. 

 

The deorbit_snopt script uses the SNOPT nonlinear programming algorithm to solve this orbital 

mechanics problem.  MATLAB versions of SNOPT for several computer platforms can be requested 

or purchased at Professor Philip Gill’s web site which is located at http://scicomp.ucsd.edu/~peg/.  

Professor Gill’s web site also includes a PDF version of the software user’s guide. 

 

Interacting with the script 
 

This MATLAB script is “data driven” by a text file created by the user.  When the deorbit_snopt 

script is started, the software will display the following screen which allows the user to select a data 

file for processing. 

 

 
 

The file type defaults to names with a *.in filename extension.  However, you can select any 

deorbit_snopt compatible ASCII data file.  The next section describes the format and typical 

contents of compatible input files. 

http://scicomp.ucsd.edu/~peg/
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Input data file 
 

This section describes a typical input data file for the software.  In the following discussion the actual 

input file contents are in courier font and all explanations are in times italic font.  Typical user-

provided values are in bold font. 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input. 

 

The first five lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with five and only five initial text lines. 

 
***************************************************** 

** impulsive de-orbit delta-v trajectory optimization 

** de-orbit from initial circular orbit 

** file ==> deorbit3.in   April 18, 2020 

***************************************************** 

 

The first input is the calendar date of the impulsive maneuver.  Be sure to include all four digits of the 

calendar year. 

 
calendar date at time of impulsive maneuver (month, day, year) 

3, 18, 2010 

 

The next input is the UTC time of the de-orbit maneuver. 

 
UTC at time of impulsive maneuver (hours, minutes, seconds) 

12, 30, 45.875 

 

The next series of inputs define the classical orbital elements of the initial Earth orbit.  Notice that the 

true anomaly is an initial guess for the location of the maneuver.  The true anomaly initial guess for 

elliptical Earth orbits should be 180 degrees. 

 
********************************************** 

orbital elements at time of impulsive maneuver 

********************************************** 

 

semimajor axis (kilometers)7378.14  

6878.14 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5 

 

argument of perigee (degrees) 

100.0 

 

right ascension of the ascending node (degrees) 

220.0 

 

initial guess for true anomaly (degrees) 

180.0 
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The software allows the user to specify lower and upper bounds for the optimal true anomaly of the 

maneuver.  The algorithm enforces an inequality constraint on the true anomaly according to 

 

 L U     

 

where  and L U   are the user-defined lower and upper bounds, respectively. 

 

The numerical values of these bounds are defined in the next two data items. 

 
lower bound for true anomaly (degrees) 

170.0 

 

upper bound for true anomaly (degrees) 

190.0 

 

The final two items in the simulation file define the geodetic altitude and relative flight path angle 

targets at the entry interface. 

 
*********************************** 

entry interface mission constraints 

*********************************** 

 

geodetic altitude (kilometers) 

121.92 

 

relative flight path angle (degrees) 

-2.0 

 

Script examples 
 

The following is the deorbit_snopt numerical solution for this example. 

 
**************************************** 

single impulse deorbit from Earth orbits 

**************************************** 

 

time and conditions prior to deorbit maneuver 

--------------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.87814000000000e+03  +0.00000000000000e+00  +2.85000000000000e+01  +1.00000000000000e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20000000000000e+02  +1.90000000000000e+02  +2.90000000000000e+02  +9.46163624134673e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.45318321844679e+03  +2.83906883966968e+03  -3.08403806222734e+03  +6.87814000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -4.00911535387506e+00  -6.35100857948859e+00  +1.24236145363939e+00  +7.61260651018449e+00   

 

deorbit delta-v vector and magnitude 

------------------------------------ 

 

x-component of delta-v         80.301516  meters/second 

y-component of delta-v        117.688815  meters/second 

z-component of delta-v        -21.001409  meters/second 

total delta-v                 144.014061  meters/second 
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deorbit delta-v pointing angles 

------------------------------- 

 

pitch angle                    -2.256618  degrees 

 

yaw angle                    -179.973071  degrees 

 

time and conditions after deorbit maneuver 

------------------------------------------ 

 

calendar date      18-Mar-2010 

 

UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.62986196765162e+03  +3.74561317348360e-02  +2.84998225494152e+01  +1.08881122818562e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20001021787282e+02  +1.81117979216534e+02  +2.89999102035096e+02  +8.95398701301721e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.45318321844679e+03  +2.83906883966968e+03  -3.08403806222734e+03  +6.87814000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -3.92881383778096e+00  -6.23331976439964e+00  +1.22136004444855e+00  +7.46870630131950e+00   

 

time and conditions at entry interface 

-------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           13:00:49.638 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.63194303419306e+03  +3.87915541331080e-02  +2.85109989908368e+01  +1.07810489094078e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.19909866252810e+02  +2.99617139359573e+02  +4.74276284536510e+01  +8.95820323314157e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -5.45318321844679e+03  +2.83906883966968e+03  -3.08403806222734e+03  +6.87814000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +7.50958358577267e+00  +3.73745768234497e-01  +2.46143688225353e+00  +7.91152343460458e+00   

 

relative flight path coordinates at entry interface 

--------------------------------------------------- 

 

east longitude              252.44489639  degrees  

 

geocentric declination       20.58001385  degrees  

 

flight path angle            -2.00000000  degrees  

 

relative azimuth             68.65207490  degrees  

 

position magnitude         6497.40258326  kilometers  

 

velocity magnitude            7.49698673  kilometers/second  

 

geodetic coordinates at entry interface 

--------------------------------------- 

 

geodetic latitude            20.70458617  degrees  

 

geodetic altitude           121.92000000  kilometers  

 

 

flight time from maneuver to EI     30.06271094  minutes 

 

The following is a brief description of the information provided in the script output. 
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sma (km) = semimajor axis in kilometers 
 

eccentricity = orbital eccentricity (non-dimensional) 
 

inclination (deg) = orbital inclination in degrees 
 

argper (deg) = argument of perigee in degrees 
 

raan (deg) = right ascension of the ascending node in degrees 
 

true anomaly (deg) = true anomaly in degrees 
 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum 

of true anomaly and argument of perigee. 

 

period (mins) = orbital period in minutes 
 

rx (km) = x-component of the position vector in kilometers 

ry (km) = y-component of the position vector in kilometers 
 

rz (km) = z-component of the position vector in kilometers 
 

rmag (km) = scalar magnitude of the position vector in kilometers 
 

vx (kps) = x-component of the velocity vector in kilometers per second 
 

vy (kps) = y-component of the velocity vector in kilometers per second 
 

vz (ksp) = z-component of the velocity vector in kilometers per second 
 

vmag (kps) = scalar magnitude of the velocity vector in kilometers per second 

 

The components of the de-orbit delta-v vector are displayed in the ECI coordinate system.  The relative 

flight path coordinates are with respect to a rotating Earth.  The UTC time is given in hours, minutes 

and seconds. 

 

The deorbit_snopt script will also create a three-dimensional graphics display of the initial orbit 

and re-entry trajectory.  The following is the graphic image for this example.  The initial orbit trace is 

red and the re-entry trajectory is blue.  The dimensions are Earth radii (ER) and the plot is labeled with 

an Earth-centered-inertial (ECI) coordinate system where green is the x-axis, red is the y-axis and blue 

is the z-axis.  The impulse location is marked with a blue asterisk and entry interface is marked with a 

small blue circle. 

 

Trajectory image files are saved to disk in both tif format and MATLAB fig format with a file name 

indicating the solution number.  The disk file names are deorbit_snopt.tif and 

deorbit_snopt.fig.  The interactive features of MATLAB graphics allow the user to manipulate 

the fig version of the trajectory display.  These capabilities allow the user to interactively find the best 

viewpoint as well as verify basic three-dimensional geometry of the orbital maneuver and entry. 
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The following is the output created by this MATLAB script for the optimal de-orbit from a typical 

highly elliptical orbit (HEO). 

 
**************************************** 

single impulse deorbit from Earth orbits 

**************************************** 

 

time and conditions prior to deorbit maneuver 

--------------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.44140000000000e+04  +7.27044000000000e-01  +2.85000000000000e+01  +2.70000000000000e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20000000000000e+02  +1.80010875055299e+02  +9.00108750552986e+01  +6.32729583646570e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +2.38242965164960e+04  -2.83802405542600e+04  +2.01189455552070e+04  +4.21640501929899e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.22991535564376e+00  +1.03330298046443e+00  -5.32994999257885e-04  +1.60636456496297e+00   

 

deorbit delta-v vector and magnitude 

------------------------------------ 

 

x-component of delta-v        -16.099990  meters/second 

y-component of delta-v        -13.510509  meters/second 

z-component of delta-v          0.004894  meters/second 

 

total delta-v                  21.017696  meters/second 

 

deorbit delta-v pointing angles 

------------------------------- 

pitch angle                    -0.002649  degrees 

 

yaw angle                     179.989285  degrees 

 

time and conditions after deorbit maneuver 

------------------------------------------ 

 

calendar date      18-Mar-2010 
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UTC time           12:30:45.875 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43140994191278e+04  +7.34139993195612e-01  +2.84999999733610e+01  +2.69999971672997e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.20000297715537e+02  +1.80010641744793e+02  +9.00106134177898e+01  +6.28849923664669e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +2.38242965164960e+04  -2.83802405542600e+04  +2.01189455552070e+04  +4.21640501929899e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.21381536549559e+00  +1.01979247133070e+00  -5.28100846447572e-04  +1.58534687213445e+00   

 

time and conditions at entry interface 

-------------------------------------- 

 

calendar date      18-Mar-2010 

 

UTC time           17:43:27.044 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43457651117266e+04  +7.34618508714193e-01  +2.84881736895298e+01  +2.70116511603440e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.19931376435734e+02  +3.50932531329709e+02  +2.61049042933149e+02  +6.30078806344008e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +2.38242965164960e+04  -2.83802405542600e+04  +2.01189455552070e+04  +4.21640501929899e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -8.39531350465642e+00  -5.97405295708906e+00  -4.38335404240751e-01  +1.03132310893426e+01   

 

relative flight path coordinates at entry interface 

--------------------------------------------------- 

 

east longitude               37.72990551  degrees  

 

geocentric declination      -28.11018407  degrees  

 

flight path angle            -4.00000004  degrees  

 

relative azimuth             95.03036771  degrees  

 

position magnitude         6495.29077143  kilometers  

 

velocity magnitude            9.89797352  kilometers/second  

 

geodetic coordinates at entry interface 

--------------------------------------- 

 

geodetic latitude           -28.26740378  degrees  

 

geodetic altitude           121.92000146  kilometers  

 

 

flight time from maneuver to EI    312.68615417  minutes 

 

Here’s the trajectory graphics display for this example. 
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Technical discussion 
 

This section is a brief explanantion of the algorithms implemented in this MATLAB script. 

 

Nonlinear programming problem 

 

A trajectory optimization problem can be described by a system of dynamic variables 
 

 
( )

( )

t

t

 
=  
 

y
z

u
 

 

consisting of the state variables y  and the control variables u  for any time t.  In this discussion 

vectors are denoted in bold. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows 
 

 ( ) ( ), , ,
d

t t t
dt

= =   
y

y f y u p  

 

where p is a vector of problem parameters that is not time dependent. 

 

The initial dynamic variables at time 0t  are defined by ( ) ( )0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by ( ) ( ), ,f f f ft t t   ψ ψ y u .  These conditions are called 

the boundary values of the trajectory problem.  The problem may also be subject to path constraints of 

the form ( ) ( ), , 0t t t =  g y u . 
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The basic nonlinear programming problem (NLP) is to determine the control vector history and 

problem parameters that minimize the scalar performance index or objective function given by 

 

 ( ) ( )0 0, , , ,f fJ t t t t  =  y y p  

 

while satisfying all the user-defined mission constraints. 

 

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the 

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control 

variables.  The scalar magnitude of the de-orbit V  is the objective function, and the geodetic altitude 

and relative flight path angle at the entry interface are the nonlinear equality constraints. 

 

Initial guess 

 

An initial guess for the scalar magnitude of the de-orbit delta-v and time-of-flight from the maneuver 

location to the entry interface is determined using analytic solutions for these values relative to a non-

rotating, spherical Earth model and two-body or Keplerian motion.  The analytic solution for circular 

orbits in discussed in Appendix B and Appendix C contains the equations for elliptical orbits.  Please 

note the elliptical orbit analytic solution assumes the de-orbit maneuver occurs at apogee (true anomaly 

= 180 ).  This is the typical true anomaly initial guess for de-orbit from elliptical orbits. 

 

The initial guess for the de-orbit delta-v vector is aligned opposite (retrograde) to the unit velocity 

vector on the initial Earth orbit at the maneuver location.  This creates an impulsive velocity increment 

in the Earth-centered-inertial (ECI) Cartesian coordinate system. 

 

Spacecraft equations of motion 

 

During the solution process, the deorbit_snopt script numerically propagates the spacecraft 

trajectory from the maneuver time to the current estimate of the time at the entry interface.  The system 

of six first-order differential equations subject to Earth gravity, defined in the ECI coordinate system 
( , , )x y z , is given by the following expressions 
 

 1 4 2 5 2 6x y zy v y y v y y v y= = = = = =  

 

 
2 2 22 2 2

2 2 2

4 5 63 2 2 3 2 2 3 2 2

5 5 53 3 3
1 1 1 1 1 3

2 2 2

eq y eq eqx z z z z
J r r J r J rr r r r r

y y y
r r r r r r r r r

  
               

= − + − = − + − = − + −          
               

 

where 2 2 2 2 2 2

1 2 3x y zr r r r y y y= + + = + + .  In these equations   and eqr  are the gravitational constant 

and equatorial radius of the Earth, and 2J  is the first order oblateness gravity coefficient. 

 

At the entry interface, the algorithm computes the errors in the target constraints according to 
 

 
h p t

p t

h h





  

= −

= −
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where h is the geodetic altitude and   is the flight path angle relative to a rotating Earth.  In these 

equations, the p subscript indicates the value predicted by the software, and the t subscript is the target 

value provided by the user.  During the solution process, the SNOPT algorithm attempts to drive these 

two errors to zero. 

 

The equations for calculating the relative flight path coordinates from an ECI position and velocity 

vectors is summarized in Appendix D.  The algorithm used to calculate geodetic coordinates can be 

found in Appendix E and Appendix F discusses the coordinate system used to define the pitch and yaw 

orientation angles of the maneuver. 

 

SNOPT algorithm implementation 
 

This section provides details about the MATLAB source code that solve this nonlinear programming 

(NLP) problem using the SNOPT algorithm.  MATLAB versions of SNOPT for several computer 

platforms can be found at Professor Philip Gill’s University of California, San Diego web site which is 

located at http://scicomp.ucsd.edu/~peg/.  Professor Gill’s web site also includes a PDF version of the 

SNOPT software user’s guide. 

 

The SNOPT algorithm requires an initial guess for the control variables.  For this problem they are 

given by 
 

xg(1) = oevpo(6); 

 

xg(2) = dvg(1); 

 

xg(3) = dvg(2); 

 

xg(4) = dvg(3); 

 

xg(5) = dtof; 

 

where xg(1) is the user’s initial guess for the true anomaly on the initial orbit at the time of the 

impulsive maneuver. xg(2), xg(2) and xg(3) are the initial guesses for the ECI components of the 

de-orbit impulse, and dtof is the initial guess for the transfer time from the de-orbit maneuver to the 

entry interface. 

 

The algorithm also requires lower and upper bounds for the control variables.  These are determined 

from the initial guesses and user-defined true anomaly boundaries as follows: 

 
% lower and upper bounds for deorbit true anomaly (radians) 

 

xlwr(1) = ta_lower; 

 

xupr(1) = ta_upper; 

 

% lower and upper bounds for components of 

% deorbit delta-v vector (kilometers/second) 

 

dvm = norm(dvg); 

 

xlwr(2:4) = -(dvm + 0.1 * dvm); 

 

xupr(2:4) = +(dvm + 0.1 * dvm); 

 

% lower and upper bounds for flight time 

% from maneuver to entry interface (seconds) 

http://scicomp.ucsd.edu/~peg/
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xlwr(5) = dtof - 30.0; 

 

xupr(5) = dtof + 30.0; 

 

The algorithm also requires lower and upper bounds on the objective function.  For this problem these 

bounds are given by 

 
% bounds on objective function 

 

flow(1) = 0.0; 

 

fupp(1) = +Inf; 

 

The following MATLAB code sets the lower and upper bounds for the two equality constraints 

(geodetic altitude and relative flight path angle) at the entry interface. 

 
% geodetic altitude at entry interface equality constraint 

 

flow(2) = 0.0; 

fupp(2) = 0.0; 

 

% relative flight path angle at entry interface equality constraint 

 

flow(3) = 0.0; 

fupp(3) = 0.0; 

 

The actual call to the SNOPT MATLAB interface function is as follows 

 
[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, xmul, xstate, ... 

flow, fupp, fmul, fstate, 'deorbit_shoot'); 

 

where deorbit_shoot is the name of the MATLAB function that integrates the spacecraft equations 

of motion and computes the current value of the objective function and the equality constraints at the 

entry interface.  The solution for the control variables is returned in the x vector and f is the converged 

value of the objective function.  Please consult the SNOPT documentation for additional information 

about the syntax of this function. 
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Algorithm Resources 
 

“User’s Guide for SNOPT Version 7, A Fortran Package for Large-Scale Nonlinear Programming”, 

Philip E. Gill, Walter Murray and Michael A. Saunders, March 20, 2006. 

 

“Optimum Deboost Altitude for Specified Atmospheric Entry Angle”, Jerome M. Baker, Bruce E. 

Baxter, and Paul D. Arthur, AIAA Journal, Vol. 1, No. 7, July 1963. 

 

“Deboost from Circular Orbits”, A. H. Milstead, The Journal of the Astronautical Sciences, Vol. XIII, 

No. 4, pp. 170-171, Jul-Aug., 1966. 

 

Hypersonic and Planetary Entry Flight Mechanics, Vinh, Busemann and Culp, The University of 

Michigan Press, 1980. 

 

“On Autonomous Optimal Deorbit Guidance”, Morgan C. Baldwin, Binfeng Pan and Ping Lu, AIAA 

2009-5667, AIAA Guidance, Navigation, and Control Conference, August 10-13, 2009. 

 

“Autonomous Optimal Deorbit Targeting”, Donald J. Jezewski, AAS 91-136, AAS/AIAA Spaceflight 

Mechanics Meeting, February 11-13, 1991. 

 

“Analysis of the Accuracy of Ballistic Descent from a Circular Circumterrestrial Orbit”, Yu. G. 

Sikharulidze and A. N. Korchagin, Cosmic Research, Vol. 40, No. 1, 2002, pp.75-87. 

 

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA 

Education Series, 1987. 

 

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002. 
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APPENDIX A 
 

Optimization Toolbox Implementation 
 

There is a version of this MATLAB script named deorbit_otb that uses the Mathworks 

Optimization Toolbox to solve this orbital mechanics problem.  This appendix describes the source 

code implementation using the fmincon/interior-point algorithm.  Unlike SNOPT, this version 

requires the mission constraints and objective algorithms reside in two different MATLAB functions. 

 

The following MATLAB source code solves the deorbit trajectory optimization problem. 

 
% load initial guesses for control variables 

  

xg(1) = oevpo(6); 

  

xg(2) = dvg(1); 

  

xg(3) = dvg(2); 

  

xg(4) = dvg(3); 

  

xg(5) = dtof; 

  

% lower and upper bounds for deorbit true anomaly (radians) 

  

xlwr(1) = ta_lower; 

  

xupr(1) = ta_upper; 

  

% lower and upper bounds for components of 

% deorbit delta-v vector (kilometers/second) 

  

dvm = norm(dvg); 

  

xlwr(2:4) = -(dvm + 0.1 * dvm); 

  

xupr(2:4) = +(dvm + 0.1 * dvm); 

  

% lower and upper bounds for flight time 

% from maneuver to entry interface (seconds) 

  

xlwr(5) = dtof - 30.0; 

  

xupr(5) = dtof + 30.0; 

  

% solve trajectory optimization problem 

  

options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point', ... 

    'MaxFunctionEvaluations', 5000, 'FiniteDifferenceType', 'forward'); 

  

% optimize with user-defined mission constraints 

  

[x, fval] = fmincon('deorbit_objective', xg, [], [], [], [], xlwr, xupr, 

'deorbit_constraints', options); 

 

The MATLAB function that evaluates the objective function is named deorbit_objective and 

deorbit_constraints calculates the current mission constraints. 

 

Feel free to experiment with other fmincon non-linear programming algorithms such as sqp, etc. 
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APPENDIX B 
 

De-orbit from a Circular Earth Orbit 
 

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial 

circular orbit can be determined from the following expression 
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This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, 

The Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966.  Additional 

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh, 

Busemann and Culp, The University of Michigan Press. 

 

The true anomaly on the de-orbit trajectory at the entry interface e  can be determined from the 

following two equations 
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and the following four quadrant inverse tangent operation 
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The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e  is 

given by 
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In this equation   is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  . 

 

Therefore, the flight time between the de-orbit impulse and entry interface is given by 
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Finally, the orbital speed at the entry interface eV  can be determined from 
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APPENDIX C 
 

De-orbit from an Elliptical Earth Orbit 
 

The scalar magnitude of the impulsive delta-v for de-orbit from an initial elliptical orbit is given by 
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The true anomaly at entry can be determined from the following series of equations. 
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The time-of-flight between perigee and the entry true anomaly e  is given by 
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In this equation,   is the orbital period of the de-orbit trajectory. 

 

Therefore, the flight time between the de-orbit impulse time and entry is given by 
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Finally, the speed at reentry eV  can be determined from 
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APPENDIX D 
 

Flight Path Coordinates 
 

Relative flight path coordinates are defined with respect to a rotating Earth.  This set of coordinates 

consists of the following trajectory elements 
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Please note the sign and direction convention. 

 

The following are several useful equations that summarize the relationships between inertial and 

relative flight path coordinates. 
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where the r subscript denotes relative coordinates and the i subscript inertial coordinates. 

 

The inertial speed can also be computed from the following expression 
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The inertial flight path angle can be computed from 
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The inertial azimuth can be computed from 
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where all coordinates on the right-hand-side of these equations are relative to a rotating Earth. 

 

The transformation of an Earth-centered inertial (ECI) position vector ECIr  to an Earth-centered fixed 

(ECF) position vector ECFr  is given by the following vector-matrix operation 

 

  ECF ECI=r T r  
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where the elements of the transformation matrix  T  are given by 
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and   is the Greenwich apparent sidereal time at the moment of interest.  Greenwich sidereal time is 

given by the following expression: 

 0g et  = +  

 

where 0g  is the Greenwich sidereal time at 0 hours UTC, e  is the inertial rotation rate of the Earth, 

and t is the elapsed time since 0 hours UTC. 

 

Finally, the flight path coordinates are determined from the following set of equations 
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Please note the two-argument inverse tangent calculation for   and   is a four-quadrant operation. 
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APPENDIX E 
 

Geodetic Coordinates 
 

The following diagram illustrates the geometric relationship between geocentric and geodetic 

coordinates. 

 
 

In this diagram,  is the geocentric declination,   is the geodetic latitude, r is the geocentric distance, 

and h is the geodetic altitude.  The exact mathematical relationship between geocentric and geodetic 

coordinates is given by the following system of two nonlinear equations 
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where the geodetic constants c and s are given by 
 

 

( )
( )

2

2 2
1

1 2 sin

eqr
c s c f

f f 
= = −

− −
 

 

and eqr  is the Earth equatorial radius (6378.14 kilometers) and f  is the flattening factor for the Earth 

(1/298.257). 

 

In this MATLAB script, the geodetic latitude is determined using the following expression 
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which is a series expansion in flattening factor (NASA TN D-7522). 
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The geodetic altitude is calculated from 
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In these equations,   is the geocentric distance of the satellite, ˆ / eqh h r=  and ˆ / eqr r= . 
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APPENDIX F 
 

Pitch and Yaw Angles 
 

The pitch and yaw angles for the de-orbit impulsive maneuver are computed and displayed in the local-

vertical-local horizontal (LVLH; also called the radial-tangential-normal RTN) coordinate system.  

The following diagram illustrates the geometry of the pitch and yaw angles in this system.  In this 

figure, the radial direction is along the geocentric radius vector directed away from the Earth, the 

tangential direction is tangent to the orbit in the direction of the orbital motion, and the normal 

direction is along the angular momentum vector of the orbit. 

 

The pitch angle is positive above the local horizontal plane formed by the tangential and normal 

directions, and the yaw angle is positive in the direction of the angular momentum vector which is 

perpendicular to the orbit plane.  The pitch angle varies between 90  degrees and the yaw angle can 

have a value between 180  degrees. 

 
 

The following is the MATLAB source code for the function that computes the orientation angles using 

the Earth-centered-inertial (ECI) position and velocity vectors (reci, veci) at the impulse location 

and the unit pointing vector of the impulsive delta-v (ueci). 

 
function [pitch, yaw] = ueci2angles(reci, veci, ueci) 

  

% convect eci unit vector to rtn angles 

  

% input 

  

%  reci = eci position vector (kilometers) 

%  veci = eci velocity vector (kilometers/second) 

%  ueci = eci unit vector 

  

% output 

  

Tu

Ru

Nu





 pitch

= yaw





=
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%  pitch = pitch angle (radians) 

%          positive above the local horizon 

%  yaw   = yaw angle (radians) 

%          positive in the direction of the angular momentum vector 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% compute radial frame unit vectors 

  

rmag = norm(reci); 

  

xrdl = reci / rmag; 

  

zrdl = cross(reci, veci); 

  

hmag = norm(zrdl); 

  

zrdl = zrdl / hmag; 

  

yrdl = cross(zrdl, xrdl); 

  

% unit vector in radial-tangential-normal frame 

  

umee(1) = dot(ueci, xrdl); 

  

umee(2) = dot(ueci, yrdl); 

  

umee(3) = dot(ueci, zrdl); 

  

% pitch angle (radians) 

  

pitch = asin(umee(1)); 

  

% yaw angle (radians) 

  

yaw = atan2(umee(3), umee(2)); 
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The Hohmann Orbit Transfer 
 

The coplanar circular orbit-to-circular orbit transfer was discovered by the German engineer Walter 

Hohmann in 1925 and described in his classic report, The Attainability of Celestial Bodies.  The transfer 

consists of a velocity impulse on an initial circular orbit, in the direction of motion and collinear with the 

velocity vector, which propels the space vehicle into an elliptical transfer orbit.  At a transfer angle of 

180 degrees from the first impulse, a second velocity impulse or V , also collinear and in the direction 

of motion, places the vehicle into a final circular orbit at the desired final altitude.  The impulsive V  

assumption means that the velocity, but not the position, of the vehicle is changed instantaneously.  This 

is equivalent to a rocket engine with infinite thrust magnitude.  The Hohmann formulation is the ideal 

and minimum energy solution to this type of time-free orbit transfer problem. 

 

Coplanar Equations 

 

For the coplanar Hohmann transfer both velocity impulses are confined to the orbital planes of the initial 

and final orbits.  For a Hohmann transfer from a lower altitude orbit to a higher altitude circular orbit, 

the first impulse creates an elliptical transfer orbit with a perigee altitude equal to the altitude of the 

initial circular orbit and an apogee altitude equal to the altitude of the final orbit.  The second impulse 

circularizes the transfer orbit at apogee.  Both impulses are posigrade which means that they are in the 

direction of orbital motion. 

 

We begin by defining three normalized radii as follows: 

 

 1 2 32 2
f i i

i f f i f

r r r
R R R

r r r r r
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 
 

 

where ri  is the geocentric radius of the initial circular park orbit and rf  is the radius of the final circular 

mission orbit.  The relationship between radius and initial orbit altitude hi  and the final orbit altitude h f  

is as follows: 

 
i e i

f e f

r r h

r r h

 

 
 

where re  is the radius of the Earth. 

 

The magnitude of the first impulse is 

 

 2

1 1 11 2lcV V R R     

 

and is simply the difference between the speed on the initial orbit and the perigee speed of the transfer 

orbit.  The scalar magnitude of the second impulse is 

 

 2 2 2 2

2 2 2 3 2 32lcV V R R R R R     

 

which is the difference between the speed on the final orbit and the apogee speed of the transfer ellipse. 
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In each of these V  equations Vlc  is called the local circular velocity.  It can be determined from 

 

 
lc

i

V
r


  

 

and represents the scalar speed in the initial orbit.  In these equations   is the gravitational constant of 

the central body.  The transfer time from the first impulse to the second is equal to one half the orbital 

period of the transfer ellipse 

 

 
3a

 


  

 

where a is the semimajor axis of the transfer orbit and is equal to   / 2i fr r .  The orbital eccentricity of 

the transfer ellipse is 
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The following diagram illustrates the geometry of the coplanar Hohmann transfer. 

 

 

initial orbit

transfer orbit

final orbit

V1

V2

ri

r
f

 
 

 

Non-coplanar Equations 

 

The non-coplanar Hohmann transfer involves orbital transfer between two circular orbits which have 

different orbital inclinations.  For this problem the propulsive energy is minimized if we optimally 

partition the total orbital inclination change between the first and second impulses. 
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The scalar magnitude of the first impulse is 

 

 2

1 1 1 11 2 coslcV V R R      

 

where 1 is the plane change associated with the first impulse.  The magnitude of the second impulse is 

 

 2 2 2 2

2 2 2 3 2 3 22 coslcV V R R R R R      

 

where  2  is the plane change associated with the second impulse.  These two equations are different 

forms of the law of cosines. 

 

The total V  required for the maneuver is the sum of the two impulses as follows 

 

 1 2V V V     

 

The relationship between the plane change angles is 

 

 1 2t     

 

where  t  is the total plane change angle between the initial and final orbits. 

 

Optimizing the non-coplanar Hohmann transfer involves allocating the total plane change angle between 

the two maneuvers such that the total V  required for the mission is minimized.  We can determine this 

answer by solving for the root of a derivative. 

 

The partial derivative of the total V  with respect to the first plane change angle is given by: 
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If we determine the value of 1 which makes this derivative zero, we have found the optimum plane 

change required at the first impulse.  Once 1 is calculated we can determine  2  from the total plane 

change angle relationship and the velocity impulses from the previous equations. 

 

Numerical Solution 

 

This numerical algorithm has been implemented in an interactive MATLAB script called hohmann.m.  

This script prompts the user for the initial and final altitudes in kilometers and the initial and final orbital 

inclinations in degrees.  The software then calls the Brent root-finding algorithm to solve the partial 

derivative equation described above. 

 

The call to the Brent root-finding algorithm is as follows: 

 
[xroot, froot] = brent('hohmfunc', 0, dinc, rtol); 
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where hohmfunc is the objective function for this problem.  Since we know that the optimum first plane 

change angle is somewhere between 0 and the total plane change angle dinc, we pass these as the 

bounds of the root.  In the parameter list rtol is the user-defined root-finding convergence tolerance. 

 

The following is a typical orbit transfer from a low altitude Earth orbit (LEO) at an altitude of 185.2 

kilometers and an orbital inclination of 28.5 degrees to a geosynchronous Earth orbit (GSO) at an 

altitude of 35786.36 kilometers and 0 degrees inclination. 

 

The following is a V  diagram for the first maneuver of this orbit transfer example.  In this view we are 

looking along the line of nodes which is the mutual intersection of the park and transfer orbit planes with 

the equatorial plane. 

equator

V

Vi Vp

26.3o

28.5o

 
 

In this diagram Vi  is the speed on the initial park orbit, Vp  is the perigee speed of the elliptic transfer 

orbit, and V  is the impulse required for the first maneuver.  The inclinations of the park and transfer 

orbit are also labeled.  From this geometry and the law of cosines, the required V  is given by 

 

 2 2 2 cosi p i pV V V V V i      

 

where i  is the inclination difference or plane change between the park and transfer orbits. 

 

User interaction with the script 
 

The following is a typical user interaction with this MATLAB script.  User inputs are in bold font. 

 
Hohmann Orbit Transfer Analysis 

 

 

please input the initial altitude kilometers 

? 300 

 

please input the final altitude kilometers 

? 35786.2 

 

please input the initial orbital inclination degrees 

(0 <= inclination <= 180) 

? 28.5 

 

please input the final orbital inclination degrees 

(0 <= inclination <= 180) 

? 0 
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The following is the script solution for this example. 
 
Hohmann Orbit Transfer Analysis 

------------------------------- 

 

initial orbit altitude              300.0000 kilometers  

 

initial orbit radius               6678.1363 kilometers  

 

initial orbit inclination            28.5000 degrees  

 

initial orbit velocity             7725.7606 meters/second  

 

 

final orbit altitude              35786.2000 kilometers  

 

final orbit radius                42164.3363 kilometers  

 

final orbit inclination               0.0000 degrees  

 

final orbit velocity               3074.6540 meters/second  

 

 

first inclination change              2.2002 degrees 

 

second inclination change            26.2998 degrees 

 

total inclination change             28.5000 degrees 

 

 

first delta-v                      2449.4551 meters/second  

 

second delta-v                     1781.8532 meters/second  

 

total delta-v                      4231.3083 meters/second  

 

 

transfer orbit semimajor axis     24421.2363 kilometers  

 

transfer orbit eccentricity       0.72654389  

 

transfer orbit inclination           26.2998 degrees  

 

transfer orbit perigee velocity   10151.4962 meters/second  

 

transfer orbit apogee velocity     1607.8298 meters/second  

 

transfer orbit coast time         18990.3276 seconds  

                                    316.5055 minutes  

                                      5.2751 hours 

 

This MATLAB script is valid for Hohmann transfers from a high initial circular orbit to a lower final 

orbit.  It also handles the case of transfer to a mission orbit with higher orbital inclination. 
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The hohmann script will also create a graphics display of the initial, transfer and final orbits.  The 

following is the graphics display for this example.  The initial orbit trace is red, the transfer orbit is blue 

and the final mission orbit is green.  The dimensions are Earth radii (ER) and the plot is labeled with an 

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.  The location of 

each impulse is marked with a small blue circle. 

 
The interactive graphic features of MATLAB allow the user to rotate and zoom the display.  These 

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer. 

 

The hohmann MATLAB script will also create color a Postscript disk file of this graphic image.  This 

image includes a TIFF preview and is created with MATLAB code similar to 

 
print -depsc -tiff -r300 hohmann1.eps 

 

Primer Vector Analysis 
 

This section summarizes the primer vector analysis included with this MATLAB script.  The term 

primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity.  A 

technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for 

Space Navigation, Butterworths, London, 1963.  Another excellent resource is “Primer Vector Theory 

and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-

burn, Space Trajectories”, also by Jezewski. 

 

As shown by Lawden, the following four necessary conditions must be satisfied in order for an 

impulsive orbital transfer to be locally optimal: 

 

(1) the primer vector and its first derivative are everywhere continuous 
 

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and 

has unit magnitude  ˆ ˆ  and 1T  p p u p  
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(3) the magnitude of the primer vector may not exceed unity on a coasting arc  1p p  

 

(4) at all interior impulses (not at the initial or final times) 0p p ; therefore, 0d dt p  at the 

intermediate impulses 

 

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses 

provide information about how to improve the nominal transfer trajectory by changing the endpoint 

times and/or moving the impulse times.  These four cases for non-zero slopes are summarized as 

follows; 

 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and add a final coast 

after the second impulse 
 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and move the second 

impulse to a later time 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and add a final coast after the 

second impulse 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and move the second 

impulse to a later time 

 

The primer vector analysis of a two impulse orbital transfer involves the following steps. 

 

First partition the two-body state transition matrix as follows: 

 

   0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
                
   

r r

r v

v v

r v

 

 

where 

 

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
               

       

r

r
 

and so forth. 

 

The value of the primer vector at any time t along a two body trajectory is given by 

 

      11 0 0 12 0 0, ,t t t t t p p p  

 

and the value of the primer vector derivative is 

 

      21 0 0 22 0 0, ,t t t t t p p p  
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which can also be expressed as 

   0

0

0

,t t
  

    
   

pp

pp
 

 

The primer vector boundary conditions at the initial and final impulses are as follows: 

 

    0
0 0

0

f

f f

f

t t


   
 

VV
p p p p

V V
 

 

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit 

vector in the direction of the corresponding impulse. 

 

The value of the primer vector derivative at the initial time is 

 

       1

0 0 12 0 11 0 0, ,f f ft t t t t  p p p p  

 

provided the 12  sub-matrix is non-singular. 

 

The scalar magnitude of the derivative of the primer vector can be determined from 

 

  
2d d

dt dt
 

p p p
p p

p
 

 

The following two graphic images illustrate the behavior of the magnitudes of the primer vector and its 

derivative for the example given earlier.  The location of each impulse is marked with a small red circle. 
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From the properties of the primer vector and its derivative, we can see that this orbit transfer is optimal. 

 

The hohmann MATLAB script will also create color a Postscript disk file of these graphic images.  This 

image includes a TIFF preview and is created with MATLAB source code similar to 

 
print -depsc -tiff -r300 primer.eps 

 

 

Algorithm resources 
 

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925.  Also, The 

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960. 

 

(2) Jean-Pierre Marec, Optimal Space Trajectories, Elsevier, 1979. 

 

(3) R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, 1972. 

 

(4) R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, 1987. 

 

(5) D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963. 

 

(6) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal 

of Guidance, Control and Dynamics, Vol. 15, No. 4. 

 

(7) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of 

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004. 
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The Gravity Perturbed Hohmann Transfer 
 

This document is the user’s manual for a MATLAB script named phohmann which can be used to solve 

the gravity perturbed Hohmann transfer between coplanar and non-coplanar circular Earth orbits.  The 

algorithm starts with a two-body Hohmann transfer initial guess and then uses the SNOPT nonlinear 

programming (NLP) method to determine the optimum two impulse orbit transfer subject to non-

spherical Earth gravity perturbations.  Appendix A summarizes the governing equations for the two-

body Hohmann transfer.  It also includes information about the MATLAB implementation used to solve 

this classic astrodynamics problem.  This script is valid for “exterior” Hohmann transfers from a lower 

altitude circular orbit to a higher altitude circular orbit. 

 

The phohmann script uses modified equinoctial orbital elements to solve the gravity perturbed orbit 

transfer “targeting” problem.  Additional information about these orbital elements can be found in 

Appendix B.  That appendix also explains how to use components and combinations of these non-

singular elements to calculate a variety of final orbital element targets or boundary conditions. 

 

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s 

web site which is located at http://scicomp.ucsd.edu/~peg/.  Professor Gill’s web site also includes a 

PDF version of the SNOPT software user’s guide.  A brief introduction to nonlinear programming can 

be found in Appendix C. 

 

User interaction with the script 
 

The phohmann MATLAB script will interactively prompt the user for the name of the simulation 

definition input data file.  This prompt is similar to the following; 

 

 
 

The file type defaults to names with a *.in filename extension.  However, you can select any 

phohmann compatible ASCII data file by selecting the Files of type: field or by typing the name of the 

file directly in the File name: field. 

 

http://scicomp.ucsd.edu/~peg/
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Input file format and contents 
 

The phohmann software is “data-driven” by a user-created text file.  This text file should be simple 

ASCII format with no special characters. 

 

The following is a typical input file used by this MATLAB script.  In the following discussion the actual 

input file contents are in courier font and all explanations are in times italic font.  This example is a 

Hohmann transfer from a low Earth orbit (LEO) to a geosynchronous orbit (GSO).  In this data file, user 

provided inputs are in bold font. 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 

 

The first five lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with five and only five initial text lines. 

 
******************************************** 

* input data file for phohmann MATLAB script 

* impulsive LEO-to-GSO orbital transfer 

* filename ==> leo2gso.in 

******************************************** 

 

The first inputs to the program define the initial UTC calendar date and time for the simulation.  The 

data for the calendar year should include all four digits.  The calendar date and time are required in 

order to correctly calculate the tesseral or longitude-dependent components of the Earth’s gravity. 

 
initial calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

------------------------------------------------------ 

2, 25, 2013 

 

initial UTC 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

---------------------------------------------------------- 

20, 18, 33.0 

 

The next three inputs are the altitude, orbital inclination and right ascension of the ascending node 

(RAAN) of the initial circular orbit. 
 

************* 

initial orbit 

************* 

 

altitude (kilometers; altitude > 0) 

----------------------------------- 

185.32 

 

orbital inclination (degrees; 0 <= inclination <= 180) 

------------------------------------------------------ 

28.5 

 

right ascension of the ascending node (degrees; 0 <= raan <= 360) 

----------------------------------------------------------------- 

100.0 
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The next two inputs are the altitude and orbital inclination of the final circular orbit. 
 

*********** 

final orbit 

*********** 

 

altitude (kilometers; altitude > 0) 

----------------------------------- 

35788.0955 

 

orbital inclination (degrees; 0 <= inclination <= 180) 

------------------------------------------------------ 

0.0 

 

The Earth gravitational constant and radius are user-defined by the next two inputs. 
 

**************************************** 

astrodynamic constants and gravity model 

**************************************** 

 

central body gravitational constant (km^3/sec^2) 

------------------------------------------------ 

398600.4415 

 

central body radius (kilometers) 

-------------------------------- 

6378.14 

 

Finally, the name of the Earth gravity model to use in the simulation and the order and degree of this 

model are set by the following three inputs. 
 

name of Earth gravity model data file 

------------------------------------- 

egm96.dat 

 

order of the gravity model (zonals) 

----------------------------------- 

4 

 

degree of the gravity model (tesserals) 

--------------------------------------- 

4 

 

The following is the phohmann solution for this example.  The first part of the display is the two-body 

Hohmann transfer solution.  The second section summarizes the SNOPT iterations and summary.  The 

final section is the perturbed Hohmann transfer solution found during the optimization. 

 
two-body Hohmann transfer solution 

 

initial orbit altitude              185.3200 kilometers  

 

initial orbit inclination            28.5000 degrees  

 

initial orbit velocity             7792.9603 meters/second  

 

 

final orbit altitude              35788.0955 kilometers  

 

final orbit inclination               0.0000 degrees  

 

final orbit velocity               3074.5848 meters/second  

 

 

first inclination change              2.1645 degrees 
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second inclination change            26.3355 degrees 

 

total inclination change             28.5000 degrees 

 

 

first delta-v                      2481.9821 meters/second  

 

second delta-v                     1790.3423 meters/second  

 

total delta-v                      4272.3244 meters/second  

 

 

transfer orbit semimajor axis     24364.8478 kilometers  

 

transfer orbit eccentricity       0.73061765  

 

transfer orbit perigee velocity   10251.8686 meters/second  

 

transfer orbit apogee velocity     1595.7727 meters/second  

 

transfer orbit coast time         18924.5926 seconds  

                                    315.4099 minutes  

                                      5.2568 hours  

 

 

orbital elements and state vector of the initial orbit 

------------------------------------------------------ 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.56346000000000e+03  +0.00000000000000e+00  +2.85000000000000e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +0.00000000000000e+00  +0.00000000000000e+00  +8.81980522880484e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.13973286818979e+03  +6.46374629458551e+03  +0.00000000000000e+00  +6.56346000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -6.74454148515196e+00  -1.18924463633983e+00  +3.71847929670569e+00  +7.79296034444086e+00   

 

 

orbital elements and state vector of the transfer orbit after the first impulse 

------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43648477500000e+04  +7.30617647713395e-01  +2.63354979218110e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +0.00000000000000e+00  +0.00000000000000e+00  +6.30819751739617e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.13973286818979e+03  +6.46374629458550e+03  +0.00000000000000e+00  +6.56346000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -9.04826108087521e+00  -1.59545255705264e+00  +4.54800087376082e+00  +1.02518685807620e+01   

 

 

orbital elements and state vector of the transfer orbit prior to second impulse 

------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43648477500000e+04  +7.30617647713395e-01  +2.63354979218110e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +1.80000000000000e+02  +1.80000000000000e+02  +6.30819751739617e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +7.32208995364962e+03  -4.15256356357386e+04  +2.29083173533909e-12  +4.21662355000000e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.40842308946174e+00  +2.48342990924876e-01  -7.07927123702901e-01  +1.59577274464277e+00   
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orbital elements and state vector of the final orbit 

---------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +4.21662355000000e+04  +0.00000000000000e+00  +0.00000000000000e+00  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +1.80000000000000e+02  +1.80000000000000e+02  +1.43617371924092e+03  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +7.32208995364962e+03  -4.15256356357386e+04  +0.00000000000000e+00  +4.21662355000000e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +3.02787492676107e+00  +5.33896043798643e-01  -0.00000000000000e+00  +3.07458477809479e+00   

 

 

initial delta-v vector, magnitude and steering angles 

----------------------------------------------------- 

 

x-component of delta-v      -2303.719596  meters/second 

y-component of delta-v       -406.207921  meters/second 

z-component of delta-v        829.521577  meters/second 

 

delta-v magnitude            2481.982050  meters/second 

 

pitch angle                    -0.000000  degrees 

yaw angle                      -8.975045  degrees 

 

final delta-v vector, magnitude and steering angles 

--------------------------------------------------- 

 

x-component of delta-v       1619.451837  meters/second 

y-component of delta-v        285.553053  meters/second 

z-component of delta-v        707.927124  meters/second 

 

delta-v magnitude            1790.342317  meters/second 

 

pitch angle                    -0.000000  degrees 

yaw angle                      49.627319  degrees 

  

  

 Nonlinear constraints       5     Linear constraints       1 

 Nonlinear variables         6     Linear variables         0 

 Jacobian  variables         6     Objective variables      6 

 Total constraints           6     Total variables          6 

  

  

 The user has defined       0   out of      36   first  derivatives 

  

 Major Minors     Step   nCon Feasible  Optimal  MeritFunction    nS Penalty 

     0      5               1  5.7E+01  8.9E-06  4.2723244E+00     2           r   c 

 Major Minors     Step   nCon Feasible  Optimal  MeritFunction    nS Penalty 

     0      6               1  5.7E+01  8.9E-06  4.2723244E+00     2           r   c 

     1      2  1.0E+00      2  2.9E-01  1.3E-06  4.2749551E+00       1.3E-07 n r   c 

     2      2  1.1E-01      3  2.6E-01  1.0E-06  4.2749548E+00     2 1.3E-07 s     c 

     3      1  1.0E+00      4  6.7E-04 (2.4E-07) 4.2749546E+00     2 1.3E-07       c 

     4      1  1.0E+00      5  2.6E-05 (1.9E-10) 4.2749546E+00     2 1.3E-07       c 

     5      1  1.0E+00      6 (2.5E-11)(9.7E-13) 4.2749546E+00     2 1.3E-07       c 

  

 SNOPTA EXIT   0 -- finished successfully 

 SNOPTA INFO   1 -- optimality conditions satisfied 

 Problem name 

 No. of iterations                  13   Objective value      4.2749546090E+00 

 No. of major iterations             5   Linear objective     0.0000000000E+00 

 Penalty parameter           1.316E-07   Nonlinear objective  4.2749546090E+00 

 No. of calls to funobj             98   No. of calls to funcon             98 

 Calls with modes 1,2 (known g)      6   Calls with modes 1,2 (known g)      6 

 Calls for forward differencing      6   Calls for forward differencing      6 

 Calls for central differencing     72   Calls for central differencing     72 

 No. of superbasics                  2   No. of basic nonlinears             4 

 No. of degenerate steps             0   Percentage                        .00 
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 Max x                       1 2.3E+00   Max pi                      5 2.5E+00 

 Max Primal infeas           0 0.0E+00   Max Dual infeas             5 2.9E-10 

 Nonlinear constraint violn    8.7E-11 

  

 

gravity-perturbed Hohmann transfer solution 

 

orbital elements and state vector of the initial orbit 

------------------------------------------------------ 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.56346000000000e+03  +0.00000000000000e+00  +2.85000000000000e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +0.00000000000000e+00  +0.00000000000000e+00  +8.81980522880484e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.13973286818979e+03  +6.46374629458551e+03  +0.00000000000000e+00  +6.56346000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -6.74454148515196e+00  -1.18924463633983e+00  +3.71847929670569e+00  +7.79296034444086e+00   

 

 

orbital elements and state vector of the transfer orbit after the initial delta-v 

--------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.44593744898382e+04  +7.31658863355877e-01  +2.63335418348091e+01  +3.59907068451479e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +9.29315485206550e-02  +0.00000000000000e+00  +6.34494336505482e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.13973286818979e+03  +6.46374629458551e+03  +0.00000000000000e+00  +6.56346000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -9.05235339099006e+00  -1.58903790996246e+00  +4.54905377104437e+00  +1.02549516628076e+01   

 

 

orbital elements and state vector of the transfer orbit prior to the final delta-v 

---------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.43663822497766e+04  +7.30510103763810e-01  +2.63224626979287e+01  +4.49503355132814e-02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +9.99180887891227e+01  +1.79955049664487e+02  +1.80000000000000e+02  +6.30879346284528e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +7.26271659870086e+03  -4.15360610054494e+04  -4.54747350886464e-13  +4.21662355000000e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.40980173813377e+00  +2.43062653381369e-01  -7.07743262330976e-01  +1.59609552335964e+00   

 

 

orbital elements and state vector of the final orbit 

---------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +4.21662354999999e+04  +2.56314888882674e-15  +1.01379591428343e-13  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +0.00000000000000e+00  +2.79918088789123e+02  +2.79918088789123e+02  +1.43617371924091e+03  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +7.26271659870086e+03  -4.15360610054494e+04  -4.54747350886465e-13  +4.21662355000000e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +3.02863510092978e+00  +5.29566788146922e-01  +5.44009282066327e-15  +3.07458477809479e+00   
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initial delta-v vector, magnitude and steering angles 

----------------------------------------------------- 

 

x-component of delta-v      -2307.811906  meters/second 

y-component of delta-v       -399.793274  meters/second 

z-component of delta-v        830.574474  meters/second 

 

delta-v magnitude            2485.092435  meters/second 

 

pitch angle                     0.162032  degrees 

yaw angle                      -8.974637  degrees 

 

final delta-v vector, magnitude and steering angles 

--------------------------------------------------- 

 

x-component of delta-v       1618.833363  meters/second 

y-component of delta-v        286.504135  meters/second 

z-component of delta-v        707.743262  meters/second 

 

delta-v magnitude            1789.862174  meters/second 

 

pitch angle                    -0.108656  degrees 

yaw angle                      49.614537  degrees 

 

total delta-v                4274.954609  meters/second 

 

transfer time               18904.205381  seconds 

                              315.070090  minutes 

                                5.251168  hours 

 

degree of gravity model      4 

order of gravity model       4 

 

The following is a brief summary of the information provided by this MATLAB script. 

 
sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

 

rx (km) = x-component of the position vector in kilometers 

 

ry (km) = y-component of the position vector in kilometers 

 

rz (km) = z-component of the position vector in kilometers 

 

rmag (km) = scalar magnitude of the position vector in kilometers 

 

vx (km/sec) = x-component of the velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the velocity vector in kilometers per second 
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vmag (km/sec) = scalar magnitude of the velocity vector in kilometers per second 

 

 

x-component of delta-v = ECI x-component of the impulsive delta-v maneuver in meters per second 

 

y-component of delta-v = ECI y-component of the impulsive delta-v maneuver in meters per second 

 

z-component of delta-v = ECI z-component of the impulsive delta-v maneuver in meters per second 

 

delta-v magnitude = scalar magnitude of the impulsive delta-v maneuver in meters per second 

 

 

transfer time = time interval between the two impulsive maneuvers in seconds, minutes and hours 

 

Note that ECI implies an Earth-centered-inertial coordinate system. 

 

Additional information about the data displayed by the optimization algorithm can be found in the 

SNOPT user’s manual which is available at Professor Gill’s website which is located at 

http://scicomp.ucsd.edu/~peg/. 

 

The pitch and yaw angles for each impulsive maneuver are computed and displayed in a local-vertical-

local horizontal coordinate system.  The following diagram illustrates the geometry of the pitch and yaw 

angles in this system.  In this figure, the radial direction is along the geocentric radius vector directed 

away from the Earth, the tangential direction is tangent to the orbit in the direction of the orbital motion, 

and the normal direction is along the angular momentum vector of the orbit.  The pitch angle is positive 

above the local horizontal plane formed by the tangential and normal directions, and the yaw angle is 

positive in the direction of the angular momentum vector which is perpendicular to the orbit plane. 

 

Tu

Ru

Nu





 pitch

= yaw







 
 

The phohmann script will also create a graphics display of the initial, transfer and final orbits.  The 

following is the graphics display for this example.  The initial orbit trace is red, the transfer orbit is blue 

and the final mission orbit is green.  The dimensions are Earth radii (ER) and the plot is labeled with an 

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.  The location of 

each impulse is marked with a small blue circle. 

 

http://scicomp.ucsd.edu/~peg/
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Trajectory image files are saved to disk in both encapsulated, color Postscript format and MATLAB fig 

format.  The disk file names are phohmann1.eps and phohmann1.fig.  The interactive features of 

MATLAB graphics allow the user to re-load and manipulate the fig version of the trajectory display.  

These capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital maneuver. 

 

 
 

Technical discussion 
 

In this MATLAB script, the orbital motion is modeled with respect to a true-of-date Earth-centered-

inertial (ECI) coordinate system.  The origin of this system is the center of the Earth and the 

fundamental plane is the Earth’s equator.  The x-axis is aligned with the true-of-date Vernal Equinox, 

the z-axis is aligned with the Earth’s spin axis, and the y-axis completes this orthogonal, right-handed 

coordinate system. 

 

Acceleration due to Earth gravity 

 

This MATLAB script uses a spherical harmonic representation of the Earth’s geopotential function 

given by 

      0 0

1 1 1

, , sin cos

n nn
m m m

n n n n n

n n m

R R
r C P u P u S m C m

r r r r r

  
   

 

  

   
          

   
   

 

where   is the geocentric latitude,   is the geocentric east longitude and 2 2 2r x y z   r  is the 

geocentric distance.  In this expression the S’s and C’s are unnormalized harmonic coefficients of the 

geopotential, and the P’s are associated Legendre polynomials of degree n and order m with argument 

u  sin . 

 

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived 

from the gradient of the potential function expressed as 
 

    , ,g t t a r r  
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This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the 

gravitational acceleration due to higher order non-spherical terms in the Earth’s geopotential.  In terms 

of the Earth’s geopotential  , the inertial rectangular cartesian components of the spacecraft’s 

acceleration vector are as follows 

 

 
2 22 2 2

1 1z
x x y
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  

  

     
          
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     
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 
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   
         

 

 

The three partial derivatives of the geopotential with respect to r, ,   are given by 

 

      
2 0

1
1 cos sin sin

nN n
m m m
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n m

R
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  
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cos sin sin tan sin
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    
2 0

cos sin sin

nN n
m m m

n n n

n m

R
m S m C m P

r r

 
  

  
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  where 

  

 

1

1

 radius of the Earth

 geocentric distance
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 geocentric latitude sin

 longitude

 right ascension tan

 right ascension of Greenwich

m m

n n

g

y x

g

R

r

S C

z r

r r



  
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


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 
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 



 

 

Right ascension is measured positive east of the vernal equinox, longitude is measured positive east of 

Greenwich, and latitude is positive above the Earth’s equator and negative below. 

 

For m  0, the coefficients are called zonal terms, when m n  the coefficients are sectorial terms, and 

for n m  0 the coefficients are called tesseral terms. 

 

The Legendre polynomials with argument sin  are computed using recursion relationships given by: 
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where the first few associated Legendre functions are given by 

 

      0 0 1

0 1 1sin 1,    sin sin ,    sin cosP P P        

 

and P j ii

j  0 for . 

 

The trigonometric arguments are determined from expansions given by 
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The following are the first 14 lines of the 18 by 18 egm96.dat gravity model file included with this 

script.  Column 1 is the degree l, column 2 is the order m, column 3 is the C coefficients and the last 

column contains the S gravity model coefficients. 

 
 2     0    -1.08262668355E-003    0.00000000000E+000 

 3     0     2.53265648533E-006    0.00000000000E+000 

 4     0     1.61962159137E-006    0.00000000000E+000 

 5     0     2.27296082869E-007    0.00000000000E+000 

 6     0    -5.40681239107E-007    0.00000000000E+000 

 7     0     3.52359908418E-007    0.00000000000E+000 

 8     0     2.04799466985E-007    0.00000000000E+000 

 9     0     1.20616967365E-007    0.00000000000E+000 

10     0     2.41145438626E-007    0.00000000000E+000 

11     0    -2.44402148325E-007    0.00000000000E+000 

12     0     1.88626318279E-007    0.00000000000E+000 

13     0     2.19788001661E-007    0.00000000000E+000 

14     0    -1.30744533118E-007    0.00000000000E+000 

 

Gravity model coefficients are often published in normalized form.  The relationship between 

normalized , ,,l m l mC S  and un-normalized gravity coefficients , ,,l m l mC S  is given by the following 

expression: 
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where 0m  is equal to 1 if m is zero and equal to zero if m is greater than zero. 
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The following is the MATLAB source code for the function that opens and reads a gravity model file 

(fname) and creates matrices of the un-normalized coefficients. 

 
function [ccoef, scoef] = readgm(fname) 

  

% read gravity model data file 

  

% input 

  

%  fname = name of gravity data file 

  

% output 

  

%  ccoef, scoef = gravity model coefficients 

  

% data file format (space delimited ascii) 

  

% column 1 is the degree, column 2 is the order, column 3 are the C coefficients 

% and the last column contains the S gravity model coefficients. For example, 

  

% 2     0    -1.08262668355E-003    0.00000000000E+000 

% 3     0     2.53265648533E-006    0.00000000000E+000 

% 4     0     1.61962159137E-006    0.00000000000E+000 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% read the data file 

  

gdata = dlmread(fname); 

  

nrows = size(gdata, 1); 

  

% initialize coefficients 

  

idim = gdata(nrows, 1) + 1; 

  

ccoef = zeros(idim, idim); 

  

scoef = zeros(idim, idim); 

  

% create gravity model coefficients 

  

for n = 1:nrows 

     

    i = gdata(n, 1); 

     

    j = gdata(n, 2); 

     

    ccoef(i + 1, j + 1) = gdata(n, 3); 

     

    scoef(i + 1, j + 1) = gdata(n, 4); 

     

end 

 

Solving the trajectory optimization problem 

 

As mentioned earlier, the trajectory optimization uses the two-body Hohmann transfer solution for the 

initial guess.  For this problem, the components of the initial and final impulsive delta-v vector are 

control variables.  The transfer time from the initial to the final impulse is also an “indirect” or implicit 

control variable as will be explained later.  The objective or cost function for this problem is the sum of 

the scalar magnitude of the two impulses given by 
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 i ff    v v   

 

This is the scalar value we want to minimize. 

 

The SNOPT algorithm requires initial guesses (xg) for the six components of the delta-v vectors as well 

as lower (xlwr) and upper (xupr) bounds on each component.  It also requires lower (flow) and upper 

(fupp) bounds on the objective function and any linear or nonlinear constraints. 

 

The following is the MATLAB source code that sets up this information. 

 
% initial guess for components of initial delta-v 

  

xg(1) = vti(1) - vi(1); 

xg(2) = vti(2) - vi(2); 

xg(3) = vti(3) - vi(3); 

  

% initial guess for components of final delta-v 

  

 

xg(4) = vf(1) - vtf(1); 

xg(5) = vf(2) - vtf(2); 

xg(6) = vf(3) - vtf(3); 

  

xg = xg'; 

 

 

% define lower and upper bounds for components of delta-v vectors (kilometers/second) 

  

dvm = norm(xg(1:3)); 

  

for i = 1:1:3 

     

    xlwr(i) = xg(i) - 0.01; 

     

    xupr(i) = xg(i) + 0.01; 

     

end 

  

dvm = norm(xg(4:6)); 

  

for i = 4:1:6 

     

    xlwr(i) = xg(i) - 0.01; 

     

    xupr(i) = xg(i) + 0.01; 

     

end 

  

xlwr = xlwr'; 

  

xupr = xupr'; 

  

% bounds on objective function 

  

flow(1) = 0.0d0; 

  

fupp(1) = +Inf; 

  

% enforce final modified equinoctial equality constraints 

  

flow(2) = 0.0d0; 

fupp(2) = 0.0d0; 
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flow(3) = 0.0d0; 

fupp(3) = 0.0d0; 

  

flow(4) = 0.0d0; 

fupp(4) = 0.0d0; 

  

flow(5) = 0.0d0; 

fupp(5) = 0.0d0; 

  

if (itarget <= 1.0d-8) 

     

    % equatorial orbit constraint 

     

    flow(6) = 0.0d0; 

    fupp(6) = 0.0d0; 

     

end 

  

flow = flow'; 

  

fupp = fupp'; 

  

% read SNOPT specs file 

  

snspec('snopt_specs.txt'); 

  

 

% solve the orbital TPBVP using SNOPT 

  

 

snscreen on; 

  

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'tpbvp'); 

 

The tpbvp MATLAB function defines the current value of the objective function and the mission 

constraints.  The function that evaluates the Earth gravity model and the first order equations of motion 

is called ceqm1.  Here’s the source code for this function. 

 
function ydot = ceqm1 (t, y) 

  

% first order form of Cowell's equations of orbital motion 

  

% version for ode45 

  

% input 

  

%  t = current simulation time 

%  y = current eci state vector 

  

% output 

  

%  ydot = eci acceleration vector 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% compute non-spherical gravity perturbations 

  

agrav = gravity(t, y); 

  

% total acceleration vector 

  

ydot = [ y(4) 

         y(5) 
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         y(6) 

         agrav(1) 

         agrav(2) 

         agrav(3)]; 

 

Notice that the main script will read a SNOPT “specs” file named snopt_specs.txt which has the 

following contents. 

 
Begin SNOPT options 

    major iterations limit       50 

    minor iterations limit       100 

    derivative option            0 

    major optimality tolerance   1.0d-6 

    solution                     Yes 

End SNOPT options 

 

Additional information about this special file can be found in the SNOPT documentation. 

 

The tpbvp objective function starts with the two-body solution for the position and velocity vectors of 

the maneuver on the initial orbit and the current value for the delta-v vector and numerically integrates 

the first-order form of the orbital equations to the descending node.  At the descending node the software 

adds the current value of the second delta-v vector to the velocity vector of the transfer orbit to 

determine the velocity vector on the final mission orbit. 

 

The position vector at the descending node and the resultant velocity vector are used to compute the 

current modified equinoctial orbital elements of the final mission orbit. 

 

The following is the MATLAB source code within the tpbvp function that uses the “event finding” 

feature of the built-in ode45 algorithm to predict the descending node conditions.  The bound for the 

search time (tend) is 102% of the two-body Hohmann transfer time. 

 
% set up options for ode45 

  

options = odeset('RelTol', 1.0e-12, 'AbsTol', 1.0e-12, 'Events', @nc_event); 

  

% solve for nodal crossing condition 

  

rwrk = xi(1:3); 

  

vwrk = xi(4:6); 

  

% maximum search duration = 102% of two-body transfer time (seconds) 

  

tend = 1.02 * tof; 

  

[t, ysol, tevent, yevent, ie] = ode45(@ceqm1, [0 tend], [rwrk vwrk], options); 

 

The following is the MATLAB source code for descending node objective function nc_event.  The 

computed value is simply the current z-component of the unit position vector. 

 
function [value, isterminal, direction] = nc_event(t, y) 

  

% nodal crossing event function 

  

% required by phohmann.m 

  

 

% Orbital Mechanics with MATLAB 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% z-component of the unit position vector 

  

value = y(3) / norm(y(1:3)); 

  

isterminal = 1; 

  

direction =  -1; 

 

Note that setting direction = -1 ensures a descending node crossing since we want to search for 

values of the z-component of position that are decreasing.  This implementation essentially treats the 

coast time between the maneuvers as an “indirect” or implicit control variable. 

 

Targeting to the final mission orbit 

 

This section summarizes the technique used to compute and enforce the nonlinear constraints that define 

the final mission orbit.  Since the final orbit of the Hohmann transfer is circular, we enforce the 

following three modified equinoctial element nonlinear constraints 

 

 0 0 0t p t p t pp p f f g g        

 

In these three equations, the t subscript implies “target” or desired values and the p subscript implies 

values “predicted” by the optimization process.  The targeted values are computed using the position and 

velocity vectors of the mission orbit determined during the two-body Hohmann transfer solution. 

 

Here’s the MATLAB source code that evaluates these constraints. 

 
% enforce semiparameter and circular orbit constraints (p, f = g = 0) 

  

f(2) = mee_final(1) - mee_target(1); 

  

f(3) = mee_final(2) - mee_target(2); 

  

f(4) = mee_final(3) - mee_target(3); 

 

If the final mission orbit is equatorial (inclination = 0), we want to enforce the following two constraints. 

 

 0 0t p t ph h k k     

 

If the orbital inclination of the final mission orbit is non-zero, we enforce the following single nonlinear 

mission constraint. 

    2 2 2 2 0t t p ph k h k     

 

Here’s the MATLAB source code that evaluates this constraint. 

 
% enforce mission orbit inclination constraint(s) 

  

if (itarget <= 1.0d-8) 

     

    % equatorial orbit (h = k = 0) 

     

    f(5) = mee_final(4); 
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    f(6) = mee_final(5); 

     

else 

     

    % non-equatorial mission orbit (h^2 + k^2 = 0) 

     

    f(5) = (mee_final(4)^2 + mee_final(5)^2) - (mee_target(4)^2 + ... 

        mee_target(5)^2); 

     

end 

 

Note that we are not enforcing the right ascension of the ascending node (RAAN) or the true anomaly of 

the final mission orbit. 

 

Additional information about targeting with the modified equinoctial orbital elements can be found in 

Appendix B. 
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Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004. 
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Appendix A 
 

Two-body Hohmann Transfer 
 

The coplanar circular orbit-to-circular orbit transfer was discovered by the German engineer Walter 

Hohmann in 1925 and described in his classic report, The Attainability of Celestial Bodies.  The transfer 

consists of a velocity impulse on an initial circular orbit, in the direction of motion and collinear with the 

velocity vector, which propels the space vehicle into an elliptical transfer orbit.  At a transfer angle of 

180 degrees from the first impulse, a second velocity impulse or V , also collinear and in the direction 

of motion, places the vehicle into a final circular orbit at the desired final altitude.  The impulsive V  

assumption means that the velocity, but not the position, of the vehicle is changed instantaneously.  This 

is equivalent to a rocket engine with infinite thrust magnitude.  Therefore, the Hohmann formulation is 

the ideal and minimum energy solution to this type of orbit transfer problem. 

 

Coplanar Equations 

 

For the coplanar Hohmann transfer both velocity impulses are confined to the orbital planes of the initial 

and final orbits.  For a Hohmann transfer from a lower altitude orbit to a higher altitude circular orbit, 

the first impulse creates an elliptical transfer orbit with a perigee altitude equal to the altitude of the 

initial circular orbit and an apogee altitude equal to the altitude of the final orbit.  The second impulse 

circularizes the transfer orbit at apogee.  Both impulses are posigrade which means that they are in the 

direction of orbital motion. 

 

We begin by defining three normalized radii as follows: 

 

 1 2 32 2
f i i

i f f i f

r r r
R R R

r r r r r
  

 
 

 

where ri  is the geocentric radius of the initial circular park orbit and rf  is the radius of the final circular 

mission orbit.  The relationship between radius and initial orbit altitude hi  and the final orbit altitude h f  

is as follows: 

 
i e i

f e f

r r h

r r h

 

 
 

where re  is the radius of the Earth. 

 

The magnitude of the first impulse is 

 2

1 1 11 2lcV V R R     

 

and is simply the difference between the speed on the initial orbit and the perigee speed of the transfer 

orbit.  The scalar magnitude of the second impulse is 

 

 2 2 2 2

2 2 2 3 2 32lcV V R R R R R     

 

which is the difference between the speed on the final orbit and the apogee speed of the transfer ellipse. 
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In each of these V  equations Vlc  is called the local circular velocity.  It can be determined from 

lc iV r . 

 

and represents the scalar speed in the initial orbit.  In these equations   is the gravitational constant of 

the central body.  The transfer time from the first impulse to the second is equal to one half the orbital 

period of the transfer ellipse 

 
3a

 


  

 

where a is the semimajor axis of the transfer orbit and is equal to   / 2i fr r .  The orbital eccentricity of 

the transfer ellipse is 

 
   max , min ,i f i f

f i

r r r r
e

r r





 

 

The following diagram illustrates the geometry of the coplanar Hohmann transfer. 

 

initial orbit

transfer orbit

final orbit

V1

V2

ri

r
f

 
 

Non-coplanar Equations 

 

The non-coplanar Hohmann transfer involves orbital transfer between two circular orbits which have 

different orbital inclinations.  For this problem the propulsive energy is minimized if we optimally 

partition the total orbital inclination change between the first and second impulses. 

 

The scalar magnitude of the first impulse is 

 

 2

1 1 1 11 2 coslcV V R R      

 

where 1 is the plane change associated with the first impulse.  The magnitude of the second impulse is 
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 2 2 2 2

2 2 2 3 2 3 22 coslcV V R R R R R      

 

where  2  is the plane change associated with the second impulse.  These two equations are different 

forms of the law of cosines. 

 

The total V  required for the maneuver is the sum of the two impulses as follows 

 

 
1 2V V V     

 

The relationship between the plane change angles is 

 

 1 2t     

 

where  t  is the total plane change angle between the initial and final orbits. 

 

Optimizing the non-coplanar Hohmann transfer involves allocating the total plane change angle between 

the two maneuvers such that the total V  required for the mission is minimized.  We can determine this 

answer by solving for the root of a derivative. 

 

The partial derivative of the total V  with respect to the first plane change angle is given by: 

 

 
 

 

2

2 3 1 11 1

2 2 2 2 2
1 1 1 1 2 2 3 2 3 1

sin cos cos sinsin

1 2 cos 2 cos

t t

t

R RV R

R R R R R R R

   

   


 

     
 

 

If we determine the value of 1 which makes this derivative zero, we have found the optimum plane 

change required at the first impulse.  Once 1 is calculated we can determine  2  from the total plane 

change angle relationship and the velocity impulses from the previous equations. 

 

Numerical Solution 

 

This numerical algorithm has been implemented in an interactive MATLAB script called hohmann.m.  

This script prompts the user for the initial and final altitudes in kilometers and the initial and final orbital 

inclinations in degrees.  The software then calls the Brent root-finding algorithm to solve the partial 

derivative equation described above. 

 

The call to the Brent root-finding algorithm is as follows: 

 
[xroot, froot] = brent('hohmfunc', 0, dinc, rtol); 

 

where hohmfunc is the objective function for this problem.  Since we know that the optimum first plane 

change angle is somewhere between 0 and the total plane change angle dinc, we pass these as the 

bounds of the root.  In the parameter list rtol is the user-defined root-finding convergence tolerance. 

 

The following discussion pertains to a typical orbit transfer from a low altitude Earth orbit (LEO) at an 

altitude of 185.2 kilometers and an orbital inclination of 28.5 degrees to a geosynchronous Earth orbit 

(GSO) at an altitude of 35786.36 kilometers and 0 degrees inclination. 
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The following is a V  diagram for the first maneuver of this orbit transfer example.  In this view we are 

looking along the line of nodes which is the mutual intersection of the park and transfer orbit planes with 

the equatorial plane. 

equator

V

Vi Vp

26.3o

28.5o

 
 

In this diagram Vi  is the speed on the initial park orbit, Vp  is the perigee speed of the elliptic transfer 

orbit, and V  is the impulse required for the first maneuver.  The inclinations of the park and transfer 

orbit are also labeled.  From this geometry and the law of cosines, the required V  is given by 

 

 2 2 2 cosi p i pV V V V V i      

 

where i  is the inclination difference or plane change between the park and transfer orbits. 

 

 

Algorithm resources 
 

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925.  Also, The 

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960. 

 

(2) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal 

of Guidance, Control and Dynamics, Vol. 15, No. 4. 

 

(3) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of 

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004. 
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Appendix B 
 

Targeting with Modified Equinoctial Orbital Elements 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These direct 

modified equinoctial equations exhibit no singularity for zero eccentricity and orbital inclinations equal 

to 0 and 90 degrees.  However, please note that two of the components are singular for an orbital 

inclination of 180 degrees. 

 

The classic reference for these elements is “A Set of Modified Equinoctial Orbital Elements”, M. J. H. 

Walker, B. Ireland and J. Owens, Celestial Mechanics, Vol. 36, pp. 409-419, 1985. 

 

The modified equinoctial elements are defined in terms of the classical orbital elements as follows: 
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where 

 

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of perigee

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e
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
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The classical orbital elements can be recovered from the modified equinoctial orbital elements with 

 

semimajor axis 

 
2 21

p
a

f g


 
 

 

orbital eccentricity 

 
2 2e f g   
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orbital inclination 

  1 2 22 tani h k   

 

argument of periapsis 

 

    1 1tan , tan ,g f k h     

 

 
 

sin
tan 2

g h f k

e i



  

 

 
 

cos
tan 2

f h g k

e i



  

 

right ascension of the ascending node 

 

  1tan ,k h   

 

 
 

sin
tan 2

k

i
   

 

 
 

cos
tan 2

h

i
   

 

true anomaly 

    1tan ,L L g f        
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In these expressions, an inverse tangent expression of the form  1tan ,a b   denotes a four quadrant 

evaluation where sina   and cosb  . 

 

Constraint formulations that enforce both the sine and cosine of a desired orbital element should be used 

whenever possible.  This approach involves a combination of equality and inequality constraints and 

ensures that the “targeted” orbital element is in the correct quadrant. 

 

To illustrate this technique, here are several examples for different values of argument of perigee and the 

corresponding mission constraints: 
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 

sin 0 0
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The following is a sign table of the sine and cosine for each quadrant. 

 

quadrant sine cosine 

1     

2     

3     

4     
 

orbital eccentricity constraint 

 

 2 2e f g   

 

For a circular orbit, 0f g  . 

 

orbital inclination constraint 

 

 2 2tan
2

i
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 
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 
 

 

For an equatorial orbit, 0h k  . 

 

argument of perigee constraints 
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right ascension of the ascending node constraints 
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 

tan 2 sin sin
tan 2

k
k i

i
     
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  
 

tan 2 cos cos
tan 2

h
h i

i
     

 

true anomaly constraints 

 

    1tan ,L L g f        

 

 In general, 
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For a circular orbit, 
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For a circular, equatorial orbit, 

 

 L  , sin sin L   and cos cos L  . 

 

 Also, note that 
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90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, August 20-22, 1990. 
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Appendix C 
 

Nonlinear Programming Problem 
 

A trajectory optimization problem can be described by a system of dynamic variables 

 

 
 

 

t

t

 
  
 

y
z

u
 

 

consisting of the state variables y  and the control variables u  for any time t.  In this discussion vectors 

are denoted in bold font. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows 

 

    , , ,
d

t t t
dt

    
y

y f y u p  

 

where p is a vector of problem parameters that is not time dependent. 

 

The initial dynamic variables at time 0t  are defined by    0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by    , ,f f f ft t t   ψ ψ y u .  These conditions are called the 

boundary values of the trajectory problem. 

 

The problem may also be subject to path constraints of the form    , , 0t t t   g y u . 

 

For any mission time t there are also simple bounds on the state variables 

 

  l ut y y y  

the control variables 

 

  l ut u u u  

 

and the problem parameters 

 

  l ut p p p  

 

The basic nonlinear programming problem (NLP) involves the determination of the control vector 

history and problem parameters that minimize the scalar performance index or objective function given 

by 

    0 0, , , ,f fJ t t t t    y y p  

 

while satisfying all the user-defined mission constraints. 
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Optimal Impulsive Orbital Transfer 
 

This document describes a MATLAB script called oota_matlab that can be used to determine 

optimum one and two impulse orbital transfers between non-coplanar circular and elliptical orbits.  The 

initial and final orbits need not be co-apsidal.  The numerical algorithm is based on the orbit transfer and 

rendezvous work of Gary McCue, Gentry Lee and David Bender, described in “Numerical Investigation 

of Minimum Impulse Orbital Transfer”, AIAA Journal, 3, 2328-2334 (1965), and “An Analysis of Two-

Impulse Orbital Transfer”, AIAA Journal, 2, 1767-1773, October 1964. 

 

The numerical solution of this classic astrodynamic problem involves a combination of one-dimensional 

root-finding using Brent’s derivative-free method and multi-dimensional unconstrained minimization 

using the built-in fminsearch algorithm provided with MATLAB.  The oota_matlab MATLAB 

script uses primer vector theory to determine the optimality of the solution(s) computed by this 

numerical method. 

 

Interacting with the script 
 

To execute the oota_matlab script, log into the directory containing the source code and type 

oota_matlab in the MATLAB command window.  This MATLAB script is “data driven” by a simple 

text file created by the user.  The script will prompt the user for the name of the data file with a screen 

similar to 

 

 
 

The file type defaults to names with a *.in filename extension.  However, you can select any 

oota_matlab.m compatible ASCII data file by selecting the Files of type: field or by typing the name 

of the file directly in the File name: field. 

 

Data file format and contents 
 

The oota_matlab script reads a simple ASCII data file that defines the initial and final orbits along 

with the algorithm search characteristics.  The following is a typical data file named leo2gso.in for 

this application.  This example solves the problem of two impulse, non-coplanar orbital transfer from a 

typical low altitude circular Earth orbit (LEO) to a circular geosynchronous Earth orbit (GSO). 
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The annotation text in this file can be modified but should not be deleted because the MATLAB 

function that reads this data (read_oota.m) expects to find exactly 81 lines of text and numeric 

information.  The first two data items define the gravitational constant and radius of the central body.  

Please note the units and valid range for each input.  User inputs are shown in bold font. 

 
************************************************* 

* input data file for oota_matlab.m MATLAB script 

* impulsive LEO-to-GSO orbital transfer 

* filename ==> leo2gso.dat 

************************************************* 

 

central body gravitational constant (km^3/sec^2) 

398600.4415 

 

central body radius (kilometers) 

6378.1363 

 

************* 

initial orbit 

************* 

 

semimajor axis (kilometers) 

(semimajor axis > 0) 

6653.14 

 

orbital eccentricity (non-dimensional)  

(0 <= eccentricity < 1) 

0.0 

 

orbital inclination (degrees)  

(0 <= inclination <= 180) 

28.5 

 

argument of perigee (degrees)  

(0 <= argument of perigee <= 360) 

0 

 

right ascension of the ascending node (degrees)  

(0 <= raan <= 360) 

30 

 

*********** 

final orbit 

*********** 

 

semimajor axis (kilometers) 

(semimajor axis > 0) 

42166.2355 

 

orbital eccentricity (non-dimensional)  

(0 <= eccentricity < 1) 

0 

 

orbital inclination (degrees)  

(0 <= inclination <= 180) 

0 

 

argument of perigee (degrees)  

(0 <= argument of perigee <= 360) 

0 

 

right ascension of the ascending node (degrees)  

(0 <= raan <= 360) 

0 
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*************************** 

algorithm search parameters 

*************************** 

 

initial orbit true anomaly at which to begin the search (degrees) 

0 

 

final orbit true anomaly at which to begin the search (degrees) 

0 

 

initial orbit true anomaly search increment (degrees) 

30 

 

final orbit true anomaly search increment (degrees) 

30 

 

number of initial orbit true anomaly search intervals 

12 

 

number of final orbit true anomaly search intervals 

12 

 

The last section of this data file defines the algorithm grid search parameters to use during the 

optimization.  These numbers define the initial true anomaly for the initial and final orbits, the true 

anomaly search increment for each orbit, and the total number of intervals to analyze.  Notice the 

combination of true anomaly search increments and number of search intervals in this example will 

encompass the entire true anomaly range for both the initial and final orbits. 

 

Solution information 
 

The oota_matlab MATLAB script provides the following types of information about the solution(s). 

 

1. text file summarizing all solutions 

2. text file of detailed information about all solutions 

3. graphics file of three-dimensional trajectories 

4. graphics file of the primer vector characteristics 

 

The following is the summary text file for the leo2gso example described in the previous section.  The 

argument of latitude is the sum of the argument of perigee and true anomaly at the impulse location.  It 

describes the location of a maneuver relative to the ascending node of the initial and transfer orbit.  For 

equatorial orbits, the argument of perigee is measured relative to the x-axis of the Earth-centered-inertial 

(ECI) coordinate system. 

 
input data file ==> leo2gso.in 

 

   oota      dv1 true      dv2 true      dv1 arg      dv2 arg      delta-v1      delta-v2        total 

 solution     anomaly       anomaly      latitude     latitude     magnitude     magnitude      delta-v 

  number     (degrees)     (degrees)     (degrees)    (degrees)      (m/s)         (m/s)         (m/s) 

 --------    ---------     ---------     ---------    ---------    ---------     ---------     --------- 

 

    1          0.0060      179.9979        0.0060     180.0000     2456.4991     1783.6790     4240.1782 

    2          0.0064      179.9977        0.0064     180.0000     2456.5011     1783.6771     4240.1782 

    3          0.0065      179.9977        0.0065     180.0000     2456.4997     1783.6784     4240.1782 

    4          0.0054      179.9981        0.0054     180.0000     2456.5004     1783.6777     4240.1782 

    5        180.0050      179.9982      180.0050       0.0000     2456.4992     1783.6790     4240.1781 

    6        180.0064      179.9977      180.0064       0.0000     2456.5011     1783.6771     4240.1782 

    7          0.0078      179.9973        0.0078     180.0000     2456.5015     1783.6767     4240.1782 

    8          0.0074      179.9974        0.0074     180.0000     2456.4990     1783.6793     4240.1782 

    9        180.0080      179.9972      180.0080       0.0000     2456.4999     1783.6783     4240.1782 

   10        180.0058      179.9980      180.0058       0.0000     2456.5011     1783.6771     4240.1782 
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Summary text files are saved to disk with a file name consisting of the name of the input data file (minus 

the filename extension) concatenated with _summary.txt.  For example, the name of the summary text 

file for this case is leo2gso_summary.txt. 

 

The following is the first solution contained in the detailed solutions text file.  The initial part of this file 

contains the name of the simulation definition input data file, the solution number and information about 

the minimization algorithm performance. 

 
input data file ==> leo2gso.in 

 

solution number    1  

 

number of function evaluations  286  

 

number of iterations            136  

 

Optimization terminated: 

 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-08  

 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-08  

 

 

initial orbit - prior to the first impulse 

------------------------------------------ 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.65314000000000e+03  +5.53905824337510e-16  +2.85000000000000e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +3.00000000000000e+01  +6.02978812312732e-03  +6.02978812312732e-03  +9.00118574397072e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.76148056050912e+03  +3.32710286869169e+03  +3.34094235711526e-01  +6.65313999999999e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -3.40184196051086e+00  +5.89053395030101e+00  +3.69333290837307e+00  +7.74026013232195e+00   

 

 

transfer orbit - after the first impulse 

---------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.44096861143452e+04  +7.27438527447300e-01  +2.63076547250235e+01  +2.12842711764707e-03  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.99994795350325e+01  +4.36350638641582e-03  +6.49193350406289e-03  +6.32561888727922e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.76148056050912e+03  +3.32710286869169e+03  +3.34094235712489e-01  +6.65314000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -4.56040306954073e+00  +7.89736266175169e+00  +4.50866270516224e+00  +1.01731830100921e+01   

 

 

transfer orbit - prior to the second impulse 

-------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.44096877431762e+04  +7.27438549042367e-01  +2.63076547250235e+01  +2.12842723128193e-03  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.99994795350325e+01  +1.79997871572769e+02  +1.80000000000000e+02  +6.32561952043141e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -3.65172226388517e+04  -2.10827860347250e+04  +2.28858249950193e-12  +4.21662355000000e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +7.19306020021783e-01  -1.24621899990843e+00  -7.11392988206719e-01  +1.60516134075115e+00   
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final orbit - after the second impulse 

-------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +4.21662355000000e+04  +1.57009245868378e-16  +0.00000000000000e+00  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +0.00000000000000e+00  +2.09999479535032e+02  +2.09999479535032e+02  +1.43617371924092e+03  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -3.65172226388517e+04  -2.10827860347250e+04  -0.00000000000000e+00  +4.21662355000000e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +1.53726820176287e+00  -2.66268248830778e+00  -0.00000000000000e+00  +3.07458477809479e+00   

 

 

ECI delta-v vectors, magnitudes and LVLH angles 

----------------------------------------------- 

 

delta-v1x           -1158.5611 meters/second 

delta-v1y            2006.8287 meters/second 

delta-v1z             815.3298 meters/second 

 

delta-v1             2456.4991 meters/second 

 

LVLH pitch angle        0.0076 degrees 

LVLH yaw angle          9.1154 degrees 

 

delta-v2x             817.9622 meters/second 

delta-v2y           -1416.4635 meters/second 

delta-v2z             711.3930 meters/second 

 

delta-v2             1783.6790 meters/second 

 

LVLH pitch angle       -0.0051 degrees 

LVLH yaw angle        310.1870 degrees 

 

total delta-v        4240.1782 meters/second 

 

transfer time       18975.8310 seconds 

                      316.2639 minutes 

                        5.2711 hours 

 

Detailed text files are saved to disk with a file name consisting of the name of the input data file (minus 

the filename extension) concatenated with _solutions.txt.  For example, the name of the summary 

text file for this test case is leo2gso_solutions.txt. 

 

The following is a brief description of the information provided in the detailed text file. 

 
sma (km) = semimajor axis in kilometers 
 

eccentricity = orbital eccentricity (non-dimensional) 
 

inclination (deg) = orbital inclination in degrees 
 

argper (deg) = argument of perigee in degrees 
 

raan (deg) = right ascension of the ascending node in degrees 
 

true anomaly (deg) = true anomaly in degrees 
 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum 

of true anomaly and argument of perigee. 

 

period (mins) = orbital period in minutes 
 

rx (km) = x-component of the position vector in kilometers 
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ry (km) = y-component of the position vector in kilometers 
 

rz (km) = z-component of the position vector in kilometers 
 

rmag (km) = scalar magnitude of the position vector in kilometers 
 

vx (kps) = x-component of the velocity vector in kilometers per second 
 

vy (kps) = y-component of the velocity vector in kilometers per second 
 

vz (ksp) = z-component of the velocity vector in kilometers per second 
 

vmag (kps) = scalar magnitude of the velocity vector in kilometers per second 
 

transfer time = flight time between the two impulses in seconds, minutes and hours 

 

The pitch and yaw angles for each impulsive maneuver are computed and displayed in the local-vertical-

local horizontal (LVLH; also called the radial-tangential-normal) coordinate system.  The following 

diagram illustrates the geometry of the pitch and yaw angles in this system.  In this figure, the radial 

direction is along the geocentric radius vector directed away from the Earth, the tangential direction is 

tangent to the orbit, and the normal direction is along the angular momentum vector of the orbit. 
 

 
 

The oota_matlab script will also create a graphics display of the initial, transfer and final orbits for 

each solution.  The following is one of the graphic images for this example.  The initial orbit trace is red, 

the transfer orbit is blue and the final mission orbit is green.  The dimensions are Earth radii (ER) and 

the plot is labeled with an ECI coordinate system where green is the x-axis, red is the y-axis and blue is 

the z-axis.  The initial impulse location is marked with a small blue asterisk. 

 

Trajectory image files are saved to disk in both TIF format and MATLAB fig format with a file name 

consisting of the name of the input data file (minus the filename extension) concatenated with _traj, 

the solution number and either .tif or .fig.  For example, the names of the graphics disk files for the 

first solution are leo2gso_traj1.tif and leo2gso_traj1.fig.  The interactive features of 

MATLAB graphics allow the user to manipulate the fig version of the trajectory display.  This allows 

the user to interactively find the best viewpoint as well as verify the basic three-dimensional geometry of 

the orbital transfer. 

Tu

Ru

Nu





 pitch

= yaw





=
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The oota_matlab script will also create a graphics disk file of the primer vector and its derivative for 

each solution.  The image for one of the solutions for this example is shown below.  These plots 

illustrate the behavior of the scalar magnitudes of the primer vector and its derivative as a function of 

elapsed time since the first impulse.  

 

 
 

Primer image files are saved to disk with a file name consisting of the name of the input data file (minus 

the filename extension) concatenated with _primer, the solution number and .tif.  For example, the 

name of the graphics file for the first solution is leo2gso_primer1.tif.  Please note these files are 

also saved in TIF format. 
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The type of minimization algorithm and grid search implemented in this MATLAB script will often 

produce duplicate solutions to a particular orbit transfer problem.  The summary and detailed text files 

allow the user to eliminate these duplicate solutions and retain one or more unique solutions. 

 

Technical Discussion 
 

The solution to this important astrodynamics problem is formulated in a reference coordinate system.  

The fundamental reference plane of this coordinate system is the final orbit plane and the x-axis is 

aligned with the intersection of the planes of the initial and final orbits.  The z-axis of this system is 

aligned with the angular momentum vector of the final orbit and the y-axis completes this orthogonal 

coordinate system.  In the equations which follow, elements of the initial orbit have a subscript of 1 and 

elements of the final orbit a subscript of 2.  Elements of the transfer orbit will have a subscript of t. 

 

The following diagram illustrates the geometry of a two impulse orbital transfer.  The relative 

inclination between the initial and final orbit planes is ir  and   is the transfer angle which is the angle 

from the first and second impulse measured in the plane of the transfer orbit. N corresponds to the x-

axis, W1 is in the direction of the initial orbit angular momentum vector, and W2  is in the direction of 

the angular momentum vector of the final orbit. 

 

 
 

The independent variables for this problem are 1,  2  and pt , where 1 is the angle from the N axis to 

the first impulse as measured in the initial orbit plane,  2  is the angle from the N axis to the second 

impulse as measured in the final orbit plane, and pt  is the semi-parameter of the transfer orbit.  The 

expression for N is as follows 

 2 1

2 1


=



W W
N

W W
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where  1 0 sin cos
T

r ri i= −W  and  2 0 0 1
T

=W . 

 

The relative inclination between the initial and final orbit planes is determined from 

 

 ( )1

1 2cosri
−= •w w  

 

where w1  is the ECI unit angular momentum vector of the initial orbit given by 

 

 

1 1

1 1 1

1

sin sin

cos sin

cos

i

i

i

 
 = − 
 
  

w  

 

and w2  is the ECI unit angular momentum vector of the final orbit given by 

 

 

2 2

2 2 2

2

sin sin

cos sin

cos

i

i

i

 
 = − 
 
  

w  

 

The unit position vector at the first impulse in the reference coordinate system is 

 

 

1

1 1

1

cos

sin cos

sin sin

r

r

i

i







 
 =
 
  

U  

 

and the unit position vector of the second impulse, also in the reference coordinate system, is determined 

from 

 

2

2 2

cos

sin

0





 
 =
 
  

U  

 

The transfer angle can be computed from the following dot product 

 

 ( )1

1 2cos − = •U U  

 

The minimum and maximum bounds on the semi-parameter of the transfer orbit can be determined from 

the following two expressions 

 

 
( ) ( )

1 2 1 2 1 2 1 2
min max

1 2 1 2 1 2 1 2 1 2 1 22 2

r r r r
p p

r r r r r r r r

− • − •
= =

+ + + • + − + •

r r r r

r r r r
 

 

The partial derivative of the total required V  with respect to the semi-parameter of the transfer orbit is 

as follows 
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( ) ( )1 1 2 2

1 2

1

2

t

t t

z zV

p p

  • −  • +
= − 

   

V V U V V U

V V
 

 

Part of the optimal orbital transfer solution involves finding the value of pt  which lies between pmin  and 

pmax  which makes this partial derivative expression equal to zero. 

 

The V vectors in the reference coordinate system are given by the following two expressions 

 

 ( )1 1 1z =  + −V V U V  

 

 ( )2 2 2z = −V V V U  

 

where the upper sign in these two equations corresponds to the short transfer and 

 

 tan
2

z
p

 
=  

 

with 

 
( )2 1

1 2

tp
−

=


r r
V

r r
 

 

The velocity vector of the satellite prior to the first impulse with respect to the reference coordinate 

system is calculated from 

 ( )1 1 1 1

1p


=  +V W e U  

 

and prior to the second impulse it is given by 

 

 ( )2 2 2 2

2p


=  +V W e U  

 

In these expressions, e1 is the reference coordinate system eccentricity vector of the initial orbit which is 

given by 

  1 1 1 1 1cos sin cos sin sin
T

r re i i  =e  

 

and e2  is the eccentricity of the final orbit defined by 

 

  2 2 2 2cos sin 0
T

e  =e  

 

where e1 and e2  are the scalar eccentricity of the initial and final orbits, respectively. 

 

The total scalar delta-v required for the orbit transfer is given by 1 2V =  + V V . 
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In terms of the Earth-centered-inertial (ECI) components of the two V  vectors, the total scalar V  

required for the orbital transfer is 
 

 2 2 2 2 2 2

1 1 1 2 2 2x y x x y xV V V V V V V =  +  +  +  +  +   

 

This is the scalar quantity we want to minimize. 

 

Eventually, we want to convert the reference coordinate system solution to ECI vectors and then to 

classical orbital elements.  The transformation of an ECI position or velocity vector Xeci  to its 

corresponding reference coordinate system companion Xrcs  is given by the following matrix-vector 

multiplication 

  eci rcs=X T X  

 

The conversion of a vector in the reference coordinate system to its corresponding ECI vector involves 

the transpose of this matrix as follows 

  rcs eci=X T X  

 

The elements of the reference coordinate system-to-ECI transformation matrix T  are given by the 

following nine expressions 

 

11 2 2 2

12 2 2 2

13 2 2

21 2 2 2

22 2 2 2

23 2 2

31 2

32 2

33 2

cos cos sin cos sin

cos sin sin cos cos

sin cos

sin cos cos cos sin

sin sin cos cos cos

cos sin

sin sin

sin cos

cos

T i

T i

T i

T i

T i

T i

T i

T i

T i

 

 

 

 





=  − 

= −  − 

= 

=  + 

= −  + 

= − 

=

=

=

 

where 

 ( ) ( )1cos sign zN −= − •N U  

and 

  2 2cos sin 0
T

=  U  

 

The position vector of the initial and transfer orbits at the first impulse in the reference coordinate 

system is 

 
( )
1

1 1

1 1 11 cos

p

e  

 
=  

+ − 
r U  

 

and the position vector of the transfer and final orbit at the second impulse is 
 

 
( )
2

2 2

2 2 21 cos

p

e  

 
=  

+ − 
r U  
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In these equations the arguments of perigee  1 and  2 are with respect to the reference coordinate 

system.  They can be determined with the following three equations 

 

   ( ) ( )1 1

1 2cos tan ,
T

rcs eci x y z      − −= = =T  

 

where the inverse tangent calculation here is a four-quadrant operation. 

 

The ECI argument of perigee vectors at each impulse are given by 

 

 
1

1 1 1 1 1

1 1 1 1 1

1 1

cos cos sin sin cos

cos sin sin cos cos

sin sin

eci

i

i

i

 

  



 −  
 =  + 
 
  

 

 

and 

 
2

2 2 2 2 2

2 2 2 2 2

2 2

cos cos sin sin cos

cos sin sin cos cos

sin sin

eci

i

i

i

 

  



 −  
 =  + 
 
  

 

 

where all the orbital elements in these two equations are with respect to the ECI coordinate system. 

 

The semi-parameter of the initial orbit can be determined from 

 

 ( )2

1 1 11p a e= −  

 

and the semi-parameter of the final orbit is given by 

 

 ( )2

2 2 21p a e= −  

 

where a1 and a2 are the semimajor axes of the initial and final orbits, respectively. 

 

The transfer orbit velocity vectors prior to the first and second impulses in the reference coordinate 

system are calculated from the next two equations 

 

 
1 21 2T Tz z= + = −V V U V V U  

 

The transfer orbit position and velocity vectors can be transformed into the ECI coordinate system using 

the transpose of the T  matrix as described above, and then converted to classical orbital elements. 

 

Time-of-flight 

 

The time of flight between perigee and another true anomaly on an elliptic orbit is given by 
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 ( )
2

1 1 1 sin
2 tan tan

2 1 2 1 cos

e e e
tof

e e

  


 

−
  − − 

= −  
+ +    

 

 

where 

 orbital period

 orbital eccentricity

 true anomaly

e





=

=

=

 

 

Therefore, the flight time between any two true anomalies on the same elliptical orbit is given by 

 

 ( ) ( )1 2t tof tof  = −  

 

This equation is implemented in a MATLAB function named tof1.m which is used to compute the 

transfer time between the first and second impulses for the case of a two-impulse orbit transfer. 

 

Primer Vector Analysis 

 

This section summarizes the primer vector analysis used to determine the optimality of solutions 

computed by this MATLAB script.  The term primer vector was invented by Derek F. Lawden and 

represents the adjoint vector for velocity in the optimal control theory for space trajectories. 

 

A technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories 

for Space Navigation, Butterworths, London, 1963.  Another excellent resource is “Primer Vector 

Theory and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with 

“Optimal, Multi-burn, Space Trajectories”, also by Jezewski.  As noted by Jezewski, the primer vector is 

sometimes called the Lagrange multiplier, costate vector or perhaps an adjoint variable. 

 

As shown by D. F. Lawden, the following four necessary conditions must be satisfied in order for an 

impulsive orbital transfer to be locally optimal. 

 

(1) the primer vector and its first derivative are everywhere continuous 
 

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and 

has unit magnitude ( )ˆ ˆ  and 1T= = =p p u p  

 

(3) the magnitude of the primer vector may not exceed unity on a coasting arc ( )1p= p  

 

(4) at all interior impulses (not at the initial or final times) 0=p p ; therefore, 0d dt =p  at the 

intermediate impulses 

 

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses 

provide information about how to improve the nominal transfer trajectory by changing the endpoint 

times and/or moving the impulse times.  These four cases for non-zero slopes are summarized as 

 

• If 0 0p   and 0fp  →  perform an initial coast before the first impulse and add a final coast 

after the second impulse 
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• If 0 0p   and 0fp  →  perform an initial coast before the first impulse and move the second 

impulse to a later time 
 

• If 0 0p   and 0fp  →  perform the first impulse at an earlier time and add a final coast after the 

second impulse 
 

• If 0 0p   and 0fp  →  perform the first impulse at an earlier time and move the second 

impulse to a later time 

 

The primer vector analysis of a two impulse orbital transfer involves the following computational steps. 

 

First partition the two-body state transition matrix as follows 

 

 ( ) 0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
  = = =            
   

r r

r v

v v

r v

 

where 

 

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
    = =          

       

r

r
 

 

and so forth. 

 

The value of the primer vector at any time t along a two body trajectory is given by 

 

 ( ) ( ) ( )11 0 0 12 0 0, ,t t t t t=  +p p p  

 

and the value of the primer vector derivative is 

 

 ( ) ( ) ( )21 0 0 22 0 0, ,t t t t t=  +p p p  

 

which can also be expressed as 

 ( ) 0

0

0

,t t
  

=    
   

pp

pp
 

 

In these equations, 0t  represents the time of the first impulse and ft  is the time of the second impulse. 

 

The primer vector boundary conditions at the initial and final impulses are as follows 

 

 ( ) ( )0
0 0

0

f

f f

f

t t


= = = =
 

VV
p p p p

V V
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These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit 

vector in the direction of the corresponding impulse. 

 

The value of the primer vector derivative at the initial time is 
 

 ( ) ( ) ( ) 1

0 0 12 0 11 0 0, ,f f ft t t t t−= =  −p p p p  

 

provided the 12  state transition sub-matrix is non-singular. 

 

The scalar magnitude of the derivative of the primer vector at any mission elapsed time can be 

determined from 

 ( )
2d d

dt dt
= =

p p p
p p

p
 

 

Checking a solution for optimality 

 

An oota_matlab solution is deemed locally optimal if all the following primer vector and derivative 

magnitude conditions are true. 
 

 ( ) ( )0 1.001 1.001ft t p p  

 

 ( ) 01.001 for all ft t t t  p  

 

 ( ) ( )0 0.00001 0.00001ft t p p  

 

The first two equations enforce the primer optimality at the first and second impulses.  The second 

equation checks for primer optimality everywhere along the coast portion of the transfer trajectory. 

 

Finally, the last two equations ensure that the primer derivative conditions at the first and second 

impulse locations are also satisfied. 

 

The oota_matlab script creates 300 equally spaced time values along the transfer trajectory.  The 

scalar magnitude of the primer vector and its derivative are computed at these time points using the 

equations of the previous section.  The maximum value of the primer magnitude along the orbit transfer 

is determined using the MATLAB max statement operating on the vector of primer values. 

 

The following is the snippet of MATLAB source code that performs the optimality check. 
 

if (y1(1) <= tol_pv && y1(end) <= tol_pv && max(y1) <= tol_pv ... 

        && abs(y2(1)) <= tol_pvd && abs(y2(end)) <= tol_pvd) 

 

In this statement, y1 is the array of primer vector magnitudes, y2 is the array of primer derivative 

magnitudes, tol_pv is the tolerance on the primer vector magnitude (1.001) and tol_pvd is the 

primer derivative magnitude tolerance (0.0001).  This statement checks the absolute value of the 

primer derivative magnitudes since they may be positive or negative at maneuver locations. 

 

These primer and derivative array values are also used to create the graphics image for a two-impulse 

orbit transfer. 
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Appendix A 
 

LEO-to-Molniya Example 
 

This appendix describes the OOTA solution of an optimal two impulse orbital transfer from a low 

circular Earth orbit (LEO) to an elliptical Molniya repeating ground track orbit. 

 

Here is the data definition input (leo2moly.in) for this example. 

 
************************************************* 

* input data file for oota_matlab.m MATLAB script 

* impulsive LEO-to-Molniya orbital transfer 

* filename ==> leo2moly.in 

************************************************* 

 

central body gravitational constant (km^3/sec^2) 

398600.4415 

 

central body radius (kilometers) 

6378.14 

 

************* 

initial orbit 

************* 

 

semimajor axis (kilometers) 

(semimajor axis > 0) 

6653.14 

 

orbital eccentricity (non-dimensional)  

(0 <= eccentricity < 1) 

0.0 

 

orbital inclination (degrees)  

(0 <= inclination <= 180) 

51.6 

 

argument of perigee (degrees)  

(0 <= argument of perigee <= 360) 

0 

 

right ascension of the ascending node (degrees)  

(0 <= raan <= 360) 

0 

 

*********** 

final orbit 

*********** 

 

semimajor axis (kilometers) 

(semimajor axis > 0) 

26553.071184 

 

orbital eccentricity (non-dimensional)  

(0 <= eccentricity < 1) 

0.737 

 

orbital inclination (degrees)  

(0 <= inclination <= 180) 

63.4 
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argument of perigee (degrees)  

(0 <= argument of perigee <= 360) 

270.0 

 

 

right ascension of the ascending node (degrees)  

(0 <= raan <= 360) 

100.0 

 

*************************** 

algorithm search parameters 

*************************** 

 

initial orbit true anomaly at which to begin the search (degrees) 

0 

 

final orbit true anomaly at which to begin the search (degrees) 

0 

 

initial orbit true anomaly search increment (degrees) 

60 

 

final orbit true anomaly search increment (degrees) 

60 

 

number of initial orbit true anomaly search intervals 

6 

 

number of final orbit true anomaly search intervals 

6 

 

The following is one of the solution summaries for this example. 

 
input data file ==> leo2moly.in 

 

solution number    1  

 

number of function evaluations  271  

 

number of iterations            139  

 

Optimization terminated: 

 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-08  

 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-08  

 

 

initial orbit - prior to the first impulse 

------------------------------------------ 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.65314000000000e+03  +2.77456789218216e-16  +5.16000000000000e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +0.00000000000000e+00  +3.24412296369100e+02  +3.24412296369100e+02  +9.00118574397072e+01  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.41050425386182e+03  -2.40495037709735e+03  -3.03429221767488e+03  +6.65314000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +4.50443242893421e+00  +3.90986331092379e+00  +4.93301979512252e+00  +7.74026013232195e+00   

 

 

transfer orbit - after the first impulse 

---------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.11539982192466e+04  +6.85491165777775e-01  +5.13247641350847e+01  +3.24478972417759e+02  
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       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.52533693995149e-01  +3.59775987696247e+02  +3.24254960114006e+02  +5.10326858043352e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.41050425386183e+03  -2.40495037709736e+03  -3.03429221767489e+03  +6.65314000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +5.83483985081196e+00  +5.12828173456787e+00  +6.37462388606419e+00  +1.00489033890523e+01   

 

 

transfer orbit - prior to the second impulse 

-------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.11539982192467e+04  +6.85491165777776e-01  +5.13247641350847e+01  +3.24478972417759e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.52533693995149e-01  +1.52270145267547e+02  +1.16749117685306e+02  +5.10326858043354e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29049013453925e+04  +1.58564428966570e+04  +1.98804833674103e+04  +2.85166070736183e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -2.95123601438420e+00  +3.88768171330320e-01  +5.01937947519657e-01  +3.01875411499481e+00   

 

 

final orbit - after the second impulse 

-------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.65530711840000e+04  +7.37000000000000e-01  +6.34000000000000e+01  +2.70000000000000e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +1.41231327743477e+02  +5.12313277434767e+01  +7.17681695832038e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29049013453925e+04  +1.58564428966570e+04  +1.98804833674103e+04  +2.85166070736183e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.54031917839349e+00  -5.20034004351135e-01  +3.20954662441303e+00  +3.59780600801229e+00   

 

 

ECI delta-v vectors, magnitudes and LVLH angles 

----------------------------------------------- 

 

delta-v1x            1330.4074 meters/second 

delta-v1y            1218.4184 meters/second 

delta-v1z            1441.6041 meters/second 

 

delta-v1             2309.2747 meters/second 

 

LVLH pitch angle       -0.3965 degrees 

LVLH yaw angle          1.4744 degrees 

 

delta-v2x            1410.9168 meters/second 

delta-v2y            -908.8022 meters/second 

delta-v2z            2707.6087 meters/second 

 

delta-v2             3185.5537 meters/second 

 

LVLH pitch angle       13.5026 degrees 

LVLH yaw angle        230.9747 degrees 

 

total delta-v        5494.8284 meters/second 

 

transfer time        7374.8151 seconds 

                      122.9136 minutes 

                        2.0486 hours 

 



Orbital Mechanics with MATLAB 
 

page 19 

Here is the solution summary for this example. 

 
input data file ==> leo2moly.in 

 

   oota      dv1 true      dv2 true      dv1 arg      dv2 arg      delta-v1      delta-v2        total 

 solution     anomaly       anomaly      latitude     latitude     magnitude     magnitude      delta-v 

  number     (degrees)     (degrees)     (degrees)    (degrees)      (m/s)         (m/s)         (m/s) 

 --------    ---------     ---------     ---------    ---------    ---------     ---------     --------- 

 

    1        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    2        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    3        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    4        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    5        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    6        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    7        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    8        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

    9        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   10        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   11        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   12        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   13        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   14        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   15        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   16        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

   17        324.4123      152.2701      324.4123     116.7491     2309.2747     3185.5537     5494.8284 

 

The following illustrates the trajectory graphics for this example.  The initial LEO orbit is red, the 

elliptical transfer orbit is blue and the final Molniya orbit is green.  The asterisk is the orbital location of 

the first impulse and the small circle is the location of the second impulse. 
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Typical behavior of the primer vector and its derivative for this example is illustrated in the next plot. 
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Gravity Perturbed Optimal Orbital Transfer 
 

This document is the user’s manual for a MATLAB script named poota which can be used to solve the 

optimal two-impulse, non-spherical gravity perturbed orbital transfer between non-coplanar Earth orbits.  

The algorithm starts with an initial guess computed by the two-body oota MATLAB script and then 

uses the SNOPT nonlinear programming (NLP) method to determine the optimum two impulse orbit 

transfer subject to non-spherical Earth gravity perturbations.  Initial guess conditions can also be 

extracted from other compatible software simulations.  Additional orbit perturbations such as third-body 

point mass gravity or solar radiation pressure can easily be added to the equations of motion of this 

MATLAB script. 

 

The poota script uses modified equinoctial orbital elements to solve the gravity perturbed orbit transfer 

“targeting” problem.  Additional information about these orbital elements can be found in Appendix A.  

That appendix also explains how to use components and combinations of these non-singular elements to 

calculate a variety of final orbital element targets or boundary conditions. 

 

MATLAB versions of SNOPT for several computer platforms can be requested at Professor Philip Gill’s 

web site which is located at http://ccom.ucsd.edu/~optimizers/.  Professor Gill’s web site also includes a 

PDF version of the SNOPT software user’s guide.  A brief introduction to nonlinear programming can 

be found in Appendix B of this document. 

 

User interaction with the script 
 

The poota MATLAB script will interactively prompt the user for the name of the simulation definition 

input data file.  This prompt is similar to the following; 

 

 
 

The file type defaults to names with a *.in filename extension.  However, you can select any poota 

compatible ASCII data file by selecting the Files of type: field or by typing the name of the file directly 

in the File name: field. 

 

http://scicomp.ucsd.edu/~peg/
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Input file format and contents 
 

The poota software is “data-driven” by a user-created text file.  This text file should be simple ASCII 

format with no special characters. 

 

The following is a typical input file used by this MATLAB script.  In the following discussion the actual 

input file contents are in courier font and all explanations are in times italic font.  This example is a 

transfer from a low Earth orbit (LEO) to a Molniya (from the Russian word for “lightning”) elliptical 

Earth orbit (EEO).  This input file was created using the optimal output from an oota.m simulation.  In 

this data file, user provided inputs are in bold font. 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 

 

The first five lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with five and only five text lines. 

 
************************************************************** 

* input data file for poota.m MATLAB script 

* impulsive, gravity-perturbed LEO-to-Molniya orbital transfer 

* filename ==> leo2moly.in ==> December 14, 2017 

************************************************************** 

 

The first inputs to the program define the initial UTC calendar date and time for the simulation.  The 

data for the calendar year should include all four digits.  The calendar date and time are required to 

correctly calculate the tesseral or longitude-dependent components of the Earth’s gravity. 

 
initial calendar date 

(1 <= month <= 12, 1 <= day <= 31, year = all digits!) 

------------------------------------------------------ 

2, 11, 2013 

 

initial UTC 

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60) 

---------------------------------------------------------- 

20, 18, 19.36 

 

The next six inputs are the classical orbital elements of the initial low Earth Orbit (LEO) prior to the 

first impulsive maneuver.  These items can be extracted from an oota.m simulation or any other 

compatible computer program. 
 

****************************************** 

initial orbit - prior to the first impulse 

****************************************** 

 

semimajor axis (kilometers) 

(semimajor axis > 0) 

6653.14 

 

orbital eccentricity (non-dimensional)  

(0 <= eccentricity < 1) 

0.0 
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orbital inclination (degrees)  

(0 <= inclination <= 180) 

51.6 

 

argument of perigee (degrees)  

(0 <= argument of perigee <= 360) 

0.0 

 

right ascension of the ascending node (degrees)  

(0 <= raan <= 360) 

0.0 

 

true anomaly (degrees) 

(0 <= true anomaly <=360) 

324.412296733363 

 

The next three inputs define the Earth-centered-inertial (ECI) delta-v guess for the first impulsive 

maneuver in the units of meters/second. 
 

********************************************** 

initial guess for the first ECI delta-v vector 

********************************************** 

 

delta-vx (meters/second) 

1330.4075 

 

delta-vy (meters/second) 

1218.4185 

 

delta-vz (meters/second) 

1441.6042 

 

The next three inputs summarize the ECI delta-v guess for the second impulsive maneuver also in the 

units of meters/second. 
 

*********************************************** 

initial guess for the second ECI delta-v vector 

*********************************************** 

 

delta-vx (meters/second) 

1410.9169 

 

delta-vy (meters/second) 

-908.8023 

 

delta-vz (meters/second) 

2707.6089 

 

The next set of six classical orbital elements inputs correspond to the final orbit “targets”. 
 

********************* 

final orbit "targets" 

********************* 

 

semimajor axis (kilometers) 

(semimajor axis > 0) 

26553.071184 

 

orbital eccentricity (non-dimensional)  

(0 <= eccentricity < 1) 

0.737 

 

orbital inclination (degrees)  

(0 <= inclination <= 180) 

63.4 
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argument of perigee (degrees)  

(0 <= argument of perigee <= 360) 

270.0 

 

right ascension of the ascending node (degrees)  

(0 <= raan <= 360) 

100.0 

 

true anomaly (degrees) 

(0 <= true anomaly <=360) 

141.231327743477 

 

This next input is the two-body initial guess for the orbit transfer time in seconds. 
 

************************************** 

two-body orbit transfer time (seconds) 

************************************** 

7374.8151 

 

The Earth gravitational constant and radius are user-defined by the next two inputs. 
 

**************************************** 

astrodynamic constants and gravity model 

**************************************** 

 

central body gravitational constant (km^3/sec^2) 

------------------------------------------------ 

398600.4415 

 

central body radius (kilometers) 

-------------------------------- 

6378.14 

 

Finally, the name of the Earth gravity model to use in the simulation and the order and degree of this 

model are set by the following three inputs. 
 

name of Earth gravity model data file 

------------------------------------- 

egm96.dat 

 

order of the gravity model (zonals) 

----------------------------------- 

8 

 

degree of the gravity model (tesserals) 

--------------------------------------- 

8 

 

The following is the poota solution for this example.  The first part of the display summarizes useful 

information about the user-defined initial guess.  The second section summarizes the SNOPT iterations 

and summary.  The final section of the output is the gravity perturbed orbit transfer solution found 

during the optimization. 

 
Gravity-perturbed, Two-impulse Orbit Transfer Analysis 

====================================================== 

 

user-defined orbital elements and state vector of the park orbit 

---------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +6.65314000000000e+03  +0.00000000000000e+00  +5.16000000000000e+01  +0.00000000000000e+00  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +0.00000000000000e+00  +3.24412296733363e+02  +3.24412296733363e+02  +9.00118574397073e+01  
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        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.41050427847703e+03  -2.40495035573127e+03  -3.03429219071760e+03  +6.65314000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +4.50443238891588e+00  +3.90986332871179e+00  +4.93301981756539e+00  +7.74026013232195e+00   

 

 

initial guess for orbital elements and state vector of the transfer orbit after the first impulse 

------------------------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.11540016846597e+04  +6.85491217299906e-01  +5.13247641745961e+01  +3.24478972781318e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.52533654168549e-01  +3.59775987721832e+02  +3.24254960503150e+02  +5.10326983444715e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.41050427847703e+03  -2.40495035573127e+03  -3.03429219071760e+03  +6.65314000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +5.83483988891588e+00  +5.12828182871179e+00  +6.37462401756540e+00  +1.00489035426409e+01   

 

 

initial guess for orbital elements and state vector of the transfer orbit prior to second impulse 

------------------------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.11540016846598e+04  +6.85491217299906e-01  +5.13247641745960e+01  +3.24478972781318e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.52533654168549e-01  +1.52270140234892e+02  +1.16749113016209e+02  +5.10326983444715e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29049002337334e+04  +1.58564447485915e+04  +1.98804856918629e+04  +2.85166092208052e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -2.95123603224056e+00  +3.88768603587956e-01  +5.01938485784781e-01  +3.01875427761895e+00   

 

 

initial guess for orbital elements and state vector of the transfer orbit after the second impulse 

-------------------------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.65530827342780e+04  +7.37000036687095e-01  +6.34000067825626e+01  +2.70000015036282e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000001165420e+02  +1.41231311447734e+02  +5.12313264840160e+01  +7.17682164106908e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29049002337334e+04  +1.58564447485915e+04  +1.98804856918629e+04  +2.85166092208052e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.54031913224056e+00  -5.20033696412044e-01  +3.20954738578478e+00  +3.59780662295074e+00   

 

 

user-defined orbital elements and state vector of the mission orbit 

------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.65530711840000e+04  +7.37000000000000e-01  +6.34000000000000e+01  +2.70000000000000e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +1.00000000000000e+02  +1.41231327743477e+02  +5.12313277434770e+01  +7.17681695832038e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29049013453926e+04  +1.58564428966570e+04  +1.98804833674105e+04  +2.85166070736184e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.54031917839348e+00  -5.20034004351151e-01  +3.20954662441301e+00  +3.59780600801227e+00   
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initial guess for initial delta-v vector, magnitude and steering angles 

----------------------------------------------------------------------- 

 

x-component of delta-v       1330.407500  meters/second 

y-component of delta-v       1218.418500  meters/second 

z-component of delta-v       1441.604200  meters/second 

 

delta-v magnitude            2309.274870  meters/second 

 

pitch angle                    -0.396455  degrees 

yaw angle                      -1.474411  degrees 

 

initial guess for final delta-v vector, magnitude and steering angles 

--------------------------------------------------------------------- 

 

x-component of delta-v       1410.916900  meters/second 

y-component of delta-v       -908.802300  meters/second 

z-component of delta-v       2707.608900  meters/second 

 

delta-v magnitude            3185.553967  meters/second 

 

pitch angle                    13.502600  degrees 

yaw angle                     129.025342  degrees 

 

 Nonzero derivs  Jij        55 

 Non-constant    Jij's      55     Constant Jij's           0 

  

 SNJAC  EXIT 100 -- finished successfully 

 SNJAC  INFO 102 -- Jacobian structure estimated 

  

 Scale option  0 

  

 

 Nonlinear constraints       7     Linear constraints       1 

 Nonlinear variables         7     Linear variables         0 

 Jacobian  variables         7     Objective variables      6 

 Total constraints           8     Total variables          7 

  

 Itn      0: Feasible linear rows 

 Itn      0: PP1.  Minimizing  Norm(x-x0) 

 

 Itn      0: PP1.  Norm(x-x0) approximately minimized  (0.00E+00) 

 

  

 The user has defined       0   out of      55   first  derivatives 

  

 Itn      0: Hessian set to a scaled identity matrix 

 Itn      4: Infeasible subproblem. Elastic mode started with weight =  2.3E+05 

 

 Major Minors     Step   nCon Feasible  Optimal  MeritFunction     nS Penalty 

     0      4               1  2.9E-03  1.0E+00  5.4948288E+00                  r i 

 Search exit  5 -- step too small.     Major itn =      0 

 Itn      4 -- Central differences invoked. Small step length. 

 

 Major Minors     Step   nCon Feasible  Optimal  MeritFunction     nS Penalty 

     0      0  1.0E+00      1  2.9E-03  1.0E+00  6.2492568E+00        3.3E-03   r i c 

 Itn      4: Hessian set to a scaled identity matrix 

     1      0  1.0E+00      2  4.6E-06  3.4E-02  5.4964753E+00        3.3E-03   r i 

 Search exit  5 -- step too small.     Major itn =      1 

 Itn      4 -- Central differences invoked. Small step length. 

     1      0  1.0E+00      2  4.6E-06  3.4E-02  5.4976636E+00        2.0E+00   r i c 

 Itn      4: Elastic weight increased to   2.350E+06 

 Itn      4: Elastic weight increased to   2.350E+08 

 Itn      4: Elastic weight increased to   2.350E+10 

     2      0  1.0E+00      3 (3.8E-11)(3.9E-11) 5.4976627E+00        2.0E+00   r i c 

  

 SNOPTA EXIT   0 -- finished successfully 

 SNOPTA INFO   1 -- optimality conditions satisfied 

 

 Problem name                 matlabMx 

 No. of iterations                   4   Objective            5.4976631940E+00 
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 No. of major iterations             2   Linear    obj. term  0.0000000000E+00 

 Penalty parameter           2.026E+00   Nonlinear obj. term  5.4976631940E+00 

 User function calls (total)        45   Calls with modes 1,2 (known g)      3 

 Calls for forward differencing     21   Calls for central differencing     14 

 No. of degenerate steps             0   Percentage                       0.00 

 Max x                       7 7.4E+03   Max pi                      4 2.3E+10 

 Max Primal infeas          12 2.0E-12   Max Dual infeas             3 9.3E+01 

 Nonlinear constraint violn    2.8E-07 

  

  

 

 Solution printed on file   9 

  

 Time for MPS input                             0.00 seconds 

 Time for solving problem                       1.37 seconds 

 Time for solution output                       0.00 seconds 

 Time for constraint functions                  1.40 seconds 

 Time for objective function                    0.00 seconds 

 

 

Gravity-perturbed Two-impulse Orbit Transfer Analysis 

===================================================== 

 

predicted orbital elements and state vector of the transfer orbit after the initial delta-v 

------------------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.11671023071891e+04  +6.85685412823596e-01  +5.13366592810150e+01  +3.24424997756782e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.41569275048433e-01  +3.59836813556265e+02  +3.24261811313046e+02  +5.10801123250296e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 +5.41050427847703e+03  -2.40495035573127e+03  -3.03429219071760e+03  +6.65314000000000e+03   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 +5.83871587822862e+00  +5.12500634248986e+00  +6.37462401756540e+00  +1.00494837918453e+01   

 

 

predicted orbital elements and state vector of the transfer orbit prior to the final delta-v 

-------------------------------------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.11418028453867e+04  +6.85332159815510e-01  +5.13298884384500e+01  +3.24489090032656e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +2.02185017854783e-01  +1.52289343782529e+02  +1.16778433815185e+02  +5.09885613105625e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29007200838770e+04  +1.58578532716098e+04  +1.98717713621579e+04  +2.85094262681018e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -2.95089496123111e+00  +3.89427513695840e-01  +4.99613504467329e-01  +3.01812002983457e+00   

 

 

predicted orbital elements and state vector of the mission orbit 

---------------------------------------------------------------- 

 

        sma (km)              eccentricity          inclination (deg)         argper (deg) 

 +2.65530711858840e+04  +7.37000000029211e-01  +6.34000000005345e+01  +2.70000000000315e+02  

 

       raan (deg)          true anomaly (deg)         arglat (deg)            period (min) 

 +9.99999999989945e+01  +1.41218027730079e+02  +5.12180277303945e+01  +7.17681695908418e+02  

 

        rx (km)                 ry (km)                rz (km)                rmag (km) 

 -1.29007200838770e+04  +1.58578532716098e+04  +1.98717713621579e+04  +2.85094262681018e+04   

 

        vx (kps)                vy (kps)               vz (kps)               vmag (kps) 

 -1.54092132791403e+00  -5.19293981387735e-01  +3.21047420530623e+00  +3.59878443378630e+00   
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predicted initial delta-v vector, magnitude and steering angles 

--------------------------------------------------------------- 

 

x-component of delta-v       1334.283489  meters/second 

y-component of delta-v       1215.143014  meters/second 

z-component of delta-v       1441.604200  meters/second 

 

delta-v magnitude            2309.785194  meters/second 

 

pitch angle                    27.789418  degrees 

yaw angle                     100.512247  degrees 

 

predicted final delta-v vector, magnitude and steering angles 

------------------------------------------------------------- 

 

x-component of delta-v       1409.973633  meters/second 

y-component of delta-v       -908.721495  meters/second 

z-component of delta-v       2710.860701  meters/second 

 

delta-v magnitude            3187.878000  meters/second 

 

pitch angle                    13.534348  degrees 

yaw angle                     129.042135  degrees 

 

total delta-v                5497.663194  meters/second 

 

transfer time                7374.815100  seconds 

                              122.913585  minutes 

                                2.048560  hours 

 

degree of gravity model      8 

order of gravity model       8 

 

The following is a brief summary of the information provided by this MATLAB script. 

 
sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

 

rx (km) = x-component of the position vector in kilometers 

 

ry (km) = y-component of the position vector in kilometers 

 

rz (km) = z-component of the position vector in kilometers 

 

rmag (km) = scalar magnitude of the position vector in kilometers 

 

vx (km/sec) = x-component of the velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the velocity vector in kilometers per second 
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vmag (km/sec) = scalar magnitude of the velocity vector in kilometers per second 

 

 

x-component of delta-v = ECI x-component of the impulsive delta-v maneuver in meters per second 

 

y-component of delta-v = ECI y-component of the impulsive delta-v maneuver in meters per second 

 

z-component of delta-v = ECI z-component of the impulsive delta-v maneuver in meters per second 

 

delta-v magnitude = scalar magnitude of the impulsive delta-v maneuver in meters per second 

 

 

transfer time = time interval between the two impulsive maneuvers in seconds, minutes and hours 

 

Note that ECI implies an Earth-centered-inertial coordinate system. 

 

Additional information about the data displayed by the optimization algorithm can be found in the 

SNOPT user’s manual which is available at Professor Gill’s website which is located at 

http://scicomp.ucsd.edu/~peg/. 

 

The pitch and yaw angles for each impulsive maneuver are computed and displayed in a local-vertical-

local horizontal coordinate system.  The following diagram illustrates the geometry of the pitch and yaw 

angles in this system.  In this figure, the radial direction is along the geocentric radius vector directed 

away from the Earth, the tangential direction is tangent to the orbit in the direction of the orbital motion, 

and the normal direction is along the angular momentum vector of the orbit.  The pitch angle is positive 

above the local horizontal plane formed by the tangential and normal directions, and the yaw angle is 

positive in the direction of the angular momentum vector which is perpendicular to the orbit plane. 

 

Tu

Ru

Nu





 pitch

= yaw





=

 
 

The poota script will also create a graphics display of the initial, transfer and final orbits.  The 

following is the graphics display for this example.  The initial orbit trace is red, the transfer orbit is blue 

and the final mission orbit is green.  The dimensions are Earth radii (ER) and the plot is labeled with an 

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.  The location of 

each impulse is marked with a small blue circle. 

 

http://scicomp.ucsd.edu/~peg/
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Trajectory image files are saved to disk in both encapsulated, color Postscript format and MATLAB 

fig format.  The disk file names are poota1.eps and poota1.fig.  The interactive features of 

MATLAB graphics allow the user to re-load and manipulate the fig version of the trajectory display.  

These capabilities also allow the user to interactively find the best viewpoint as well as verify basic 

three-dimensional geometry of the orbital maneuver. 

 

 
 

Technical discussion 
 

In this MATLAB script, the orbital motion is modeled with respect to a true-of-date Earth-centered-

inertial (ECI) coordinate system.  The origin of this system is the center of the Earth and the 

fundamental plane is the Earth’s equator.  The x-axis is aligned with the true-of-date Vernal Equinox, 

the z-axis is aligned with the Earth’s spin axis, and the y-axis completes this orthogonal, right-handed 

coordinate system. 

 

Acceleration due to Earth gravity 

 

This MATLAB script uses a spherical harmonic representation of the Earth’s geopotential function 

given by 

 ( ) ( ) ( )0 0

1 1 1

, , sin cos

n nn
m m m

n n n n n

n n m

R R
r C P u P u S m C m

r r r r r

  
   

 

= = =

   
  = + + +     

   
   

 

where   is the geocentric latitude,   is the geocentric east longitude and 
2 2 2r x y z= = + +r  is the 

geocentric distance.  In this expression the S’s and C’s are unnormalized harmonic coefficients of the 
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geopotential, and the P’s are associated Legendre polynomials of degree n and order m with argument 

u = sin  . 

 

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived 

from the gradient of the potential function expressed as 
 

 ( ) ( ), ,g t t= a r r  

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the 

gravitational acceleration due to higher order non-spherical terms in the Earth’s geopotential.  In terms 

of the Earth’s geopotential  , the inertial rectangular cartesian components of the spacecraft’s 

acceleration vector are as follows 

 

 
2 22 2 2

1 1z
x x y

r r x yr x y

  

  

     
= − −     ++   
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     
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z z
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 

 

 +  
= +        

 

 

The three partial derivatives of the geopotential with respect to r, ,   are given by 
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 ( )

( )

1

1

 radius of the Earth

 geocentric distance

,  harmonic coefficients

 geocentric latitude sin

 longitude

 right ascension tan

 right ascension of Greenwich

m m

n n

g

y x

g

R

r

S C

z r

r r



  





−

−

=

=

=

= =

= = −

= =

=

 

 



Orbital Mechanics with MATLAB 
 

page 12 

Right ascension is measured positive east of the vernal equinox, longitude is measured positive east of 

Greenwich, and latitude is positive above the Earth’s equator and negative below. 

 

For m = 0, the coefficients are called zonal terms, when m n=  the coefficients are sectorial terms, and 

for n m  0 the coefficients are called tesseral terms. 

 

The Legendre polynomials with argument sin   are computed using recursion relationships given by: 
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   
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   

− −

−

−

−

− −

 = − − − 

= −  

= + −  =

 

 

where the first few associated Legendre functions are given by 

 

 ( ) ( ) ( )0 0 1

0 1 1sin 1,    sin sin ,    sin cosP P P    = = =  

 

and P j ii

j = 0 for . 

 

The trigonometric arguments are determined from expansions given by 

 

 

( ) ( )

( ) ( )
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m m

   
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The following are the first 14 lines of the 18 by 18 egm96.dat gravity model file included with this 

script.  Column 1 is the degree l, column 2 is the order m, column 3 is the C coefficients and the last 

column contains the S gravity model coefficients. 

 
 2     0    -1.08262668355E-003    0.00000000000E+000 

 3     0     2.53265648533E-006    0.00000000000E+000 

 4     0     1.61962159137E-006    0.00000000000E+000 

 5     0     2.27296082869E-007    0.00000000000E+000 

 6     0    -5.40681239107E-007    0.00000000000E+000 

 7     0     3.52359908418E-007    0.00000000000E+000 

 8     0     2.04799466985E-007    0.00000000000E+000 

 9     0     1.20616967365E-007    0.00000000000E+000 

10     0     2.41145438626E-007    0.00000000000E+000 

11     0    -2.44402148325E-007    0.00000000000E+000 

12     0     1.88626318279E-007    0.00000000000E+000 

13     0     2.19788001661E-007    0.00000000000E+000 

14     0    -1.30744533118E-007    0.00000000000E+000 

 

Gravity model coefficients are often published in normalized form.  The relationship between 

normalized , ,,l m l mC S  and un-normalized gravity coefficients , ,,l m l mC S  is given by the following 

expression: 
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( ) ( )

( )
( )
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where 
0m  is equal to 1 if m is zero and equal to zero if m is greater than zero. 

 

The following is the MATLAB source code for the function that opens and reads a gravity model file 

(fname) and creates matrices of the un-normalized coefficients. 

 
function [ccoef, scoef] = readgm(fname) 

  

% read gravity model data file 

  

% input 

  

%  fname = name of gravity data file 

  

% output 

  

%  ccoef, scoef = gravity model coefficients 

  

% data file format (space delimited ascii) 

  

% column 1 is the degree, column 2 is the order, column 3 are the C coefficients 

% and the last column contains the S gravity model coefficients. For example, 

  

% 2     0    -1.08262668355E-003    0.00000000000E+000 

% 3     0     2.53265648533E-006    0.00000000000E+000 

% 4     0     1.61962159137E-006    0.00000000000E+000 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% read the data file 

  

gdata = dlmread(fname); 

  

nrows = size(gdata, 1); 

  

% initialize coefficients 

  

idim = gdata(nrows, 1) + 1; 

  

ccoef = zeros(idim, idim); 

  

scoef = zeros(idim, idim); 

  

% create gravity model coefficients 

  

for n = 1:nrows 

     

    i = gdata(n, 1); 

     

    j = gdata(n, 2); 

     

    ccoef(i + 1, j + 1) = gdata(n, 3); 

     

    scoef(i + 1, j + 1) = gdata(n, 4); 

     

end 
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Solving the trajectory optimization problem 

 

As mentioned earlier, the trajectory optimization uses a two-body orbital transfer solution generated 

with the oota.m MATLAB script for the initial guess.  For this problem, the components of the initial 

and final impulsive delta-v vector and the orbit transfer time are control variables.  The objective or cost 

function for this problem is the sum of the scalar magnitude of the two impulses given by 

 

 
i ff =  + v v   

 

This is the scalar value we want to minimize. 

 

The SNOPT algorithm requires initial guesses (xg) for the six components of the delta-v vectors as well 

as lower (xlwr) and upper (xupr) bounds on each component.  It also requires lower (flow) and upper 

(fupp) bounds on the objective function and any linear or nonlinear constraints. 

 

The following is the MATLAB source code that sets up this information. 

 
% initial guess for components of initial delta-v 

  

xg(1) = dv1(1); 

xg(2) = dv1(2); 

xg(3) = dv1(3); 

  

% initial guess for components of final delta-v 

  

xg(4) = dv2(1); 

xg(5) = dv2(2); 

xg(6) = dv2(3); 

  

% initial guess for orbit transfer time 

  

xg(7) = ttransfer; 

  

xg = xg'; 

  

% define lower and upper bounds for components of delta-v vectors (kilometers/second) 

  

for i = 1:1:3 

     

    xlwr(i) = xg(i) - 0.01; 

     

    xupr(i) = xg(i) + 0.01; 

     

end 

  

for i = 4:1:6 

     

    xlwr(i) = xg(i) - 0.01; 

     

    xupr(i) = xg(i) + 0.01; 

     

end 

  

% lower and upper bounds on transfer time (seconds) 

  

xlwr(7) = 0.95 * ttransfer; 

  

xupr(7) = 1.05 * ttransfer; 
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% bounds on objective function 

  

flow(1) = 0.0e0; 

  

fupp(1) = +Inf; 

  

% semimajor axis ==> enforce final modified equinoctial "p" equality constraint 

  

flow(2) = 0.0; 

fupp(2) = 0.0; 

  

% orbital eccentricity ==> enforce final modified equinoctial "sqrt(f^ + g^2)" equality 

constraint 

  

flow(3) = 0.0; 

fupp(3) = 0.0; 

  

% orbital inclination ==> enforce final modified equinoctial "sqrt(h^2 + k^2)" equality 

constraint 

  

flow(4) = 0.0; 

fupp(4) = 0.0; 

  

% argument of perigee constraints 

  

flow(5) = sin(oev_mo(4)); 

  

fupp(5) = sin(oev_mo(4)); 

  

flow(6) = cos(oev_mo(4)); 

  

fupp(6) = cos(oev_mo(4)); 

  

% raan constraints 

  

flow(7) = sin(oev_mo(5)); 

  

fupp(7) = sin(oev_mo(5)); 

  

flow(8) = cos(oev_mo(5)); 

  

fupp(8) = cos(oev_mo(5)); 

  

flow = flow'; 

  

fupp = fupp'; 

  

% solve the orbital TPBVP using SNOPT 

  

snscreen on; 

  

xmul = zeros(7, 1); 

  

xstate = zeros(7, 1); 

  

fmul = zeros(8, 1); 

  

fstate = zeros(8, 1); 

 

% solve the orbital TPBVP using SNOPT 

 

snscreen on; 

  

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'tpbvp'); 
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The tpbvp MATLAB function defines the current value of the objective function and the mission 

constraints.  The function that evaluates the Earth gravity model and the first order equations of motion 

is called ceqm1.  Here’s the source code for this function. 

 
function ydot = ceqm1 (t, y) 

  

% first order form of Cowell's equations of orbital motion 

  

% version for ode45 

  

% input 

  

%  t = current simulation time 

%  y = current eci state vector 

  

% output 

  

%  ydot = eci acceleration vector 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% compute non-spherical gravity perturbations 

  

agrav = gravity(t, y); 

  

% total acceleration vector 

  

ydot = [ y(4) 

         y(5) 

         y(6) 

         agrav(1) 

         agrav(2) 

         agrav(3)]; 

 

The tpbvp objective function starts with the two-body solution for the position and velocity vectors of 

the maneuver on the initial orbit and the current value for the delta-v vector and numerically integrates 

the first-order form of the orbital equations for the predicted transfer time.  At the final time the software 

adds the current value of the second delta-v vector to the velocity vector of the transfer orbit to 

determine the velocity vector on the final mission orbit.  This predicted state vector is used to compute 

the current modified equinoctial orbital elements of the final mission orbit. 

 

The following is the MATLAB source code for the tpbvp function. 
 

function [f, g] = tpbvp(x) 

  

% two point boundary value objective function and 

% and modified equinoctial element constraints 

  

% input 

  

%  x(1:3) = current first delta-v vector (kilometers/second) 

%  x(4:6) = current second delta-v vector (kilometers/second) 

%  x(7)   = current transfer time (seconds) 

  

% output 

  

%  f(1) = objective function (total delta-v magnitude) 

%  f(2) = predicted semiparameter difference 

%  f(3) = predicted orbital eccentricity difference 

%  f(4) = predicted orbital inclination difference 
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%  f(5) = predicted mission orbit sine of argument of perigee  

%  f(6) = predicted mission orbit cosine of argument of perigee 

%  f(7) = predicted mission orbit sine of raan 

%  f(8) = predicted mission orbit cosine of raan 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global emu rpo vpo ritop vitop rftop vftop 

  

global mee_target mee_predict 

 

% load current state vector of transfer orbit after first impulse 

 

ritop(1) = rpo(1); 

ritop(2) = rpo(2); 

ritop(3) = rpo(3); 

  

vitop(1) = vpo(1) + x(1); 

vitop(2) = vpo(2) + x(2); 

vitop(3) = vpo(3) + x(3); 

  

% load current orbit transfer time (seconds) 

  

ttime = x(7); 

  

% set up options for ode45 

  

options = odeset('RelTol', 1.0e-8, 'AbsTol', 1.0e-8); 

  

% propagate to end of current transfer orbit time 

  

[~, ysol] = ode45(@ceqm1, [0.0 ttime], [ritop, vitop], options); 

  

% current "predicted" state vector prior to second impulse 

  

rftop(1:3) = ysol(end, 1:3); 

  

vftop(1:3) = ysol(end, 4:6); 

  

% current "predicted" mission orbit position vector  

  

rmop = rftop; 

  

% current "predicted" mission orbit velocity vector after second delta-v 

  

vmop(1) = vftop(1) + x(4); 

  

vmop(2) = vftop(2) + x(5); 

  

vmop(3) = vftop(3) + x(6); 

  

% compute current modified equinoctial and classical orbital elements 

% of "predicted" mission orbit 

  

mee_predict = eci2mee(emu, rmop, vmop); 

  

oev_predict = eci2orb1(emu, rmop, vmop); 

  

% objective function (total delta-v magnitude) 

  

f(1) = norm(x(1:3)) + norm(x(4:6)); 

  

% mission orbit semimajor axis difference (kilometers) 

  

f(2) = mee_predict(1) - mee_target(1); 
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% mission orbit orbital eccentricity difference 

  

f(3) = sqrt(mee_predict(2)^2 + mee_predict(3)^2) ... 

    - sqrt(mee_target(2)^2 + mee_target(3)^2); 

     

% mission orbit orbital inclination difference 

     

f(4) = sqrt(mee_predict(4)^2 + mee_predict(5)^2) ...  

        - sqrt(mee_target(4)^2 + mee_target(5)^2); 

  

% mission orbit sine and cosine of argument of perigee 

  

f(5) = (mee_predict(3) * mee_predict(4) - mee_predict(2) * mee_predict(5)) ... 

    / (oev_predict(2) * tan(0.5 * oev_predict(3))); 

  

f(6) = (mee_predict(2) * mee_predict(4) + mee_predict(3) * mee_predict(5)) ... 

    / (oev_predict(2) * tan(0.5 * oev_predict(3))); 

  

% mission orbit sine and cosine of raan 

  

f(7) = mee_predict(5) / (tan(0.5 * oev_predict(3))); 

  

f(8) = mee_predict(4) / (tan(0.5 * oev_predict(3))); 

  

% transpose objective function/constraints vector 

  

f = f'; 

  

% no derivatives 

  

g = []; 

 

Targeting to the final mission orbit 

 

This section summarizes the technique used to compute and enforce the nonlinear constraints that define 

the final mission or “targeted” orbit.  The semimajor axis constraint is simply 

 

0p tp p− =  

 

The orbital eccentricity constraint is formulated as follows 

 

 2 2 2 2

p p t tf g f g+ = +  

 

The orbital inclination constraint is coded according to 

 

 2 2 2 2

p p t th k h k+ = +  

 

The argument of perigee constraints are formulated as 

 

( )
sin

tan 2

p p p p

t

p p

g h f k

e i


−
=   and  

( )
cos

tan 2

p p p p

t

p p

f h g k

e i


+
=  

 

The right ascension of the ascending node constraints are implemented by 
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( )

sin
tan 2

p

t

p

k

i
 =   and  

( )
cos

tan 2

p

t

p

h

i
 =  

 

In these equations, the t subscript implies “target” or desired values and the p subscript implies values 

“predicted” by the optimization process.  The targeted values are computed using the position and 

velocity vectors of the mission orbit determined during the transfer orbit solution.  Note that true 

anomaly of the final or mission orbit is not enforced explicitly since it results from the numerical 

integration for the predicted orbital transfer time. 

 

Additional information about targeting with the modified equinoctial orbital elements can be found in 

Appendix B. 

 

 

Algorithm resources 
 

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925.  Also, The 

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960. 

 

(2) Jean-Pierre Marec, Optimal Space Trajectories, Elsevier, 1979. 

 

(3) R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, 1972. 

 

(4) R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, 1987. 

 

(5) D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963. 

 

(6) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal 

of Guidance, Control and Dynamics, Vol. 15, No. 4. 

 

(7) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of 

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004. 
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Appendix A 
 

Targeting with Modified Equinoctial Orbital Elements 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These direct 

modified equinoctial equations exhibit no singularity for zero eccentricity and orbital inclinations equal 

to 0 and 90 degrees.  However, please note that two of the components are singular for an orbital 

inclination of 180 degrees. 

 

The classic reference for these elements is “A Set of Modified Equinoctial Orbital Elements”, M. J. H. 

Walker, B. Ireland and J. Owens, Celestial Mechanics, Vol. 36, pp. 409-419, 1985. 

 

The modified equinoctial elements are defined in terms of the classical orbital elements as follows: 

 

 

( )

( )

( )

( )

( )

21

cos

sin

tan 2 cos

tan 2 sin

p a e

f e

g e

h i

k i

L





 

= −

= +

= +

= 

= 

= + +

 

 

where 

 

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of perigee

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L





=

=

=

=

=

 =

=

=

 

 

The classical orbital elements can be recovered from the modified equinoctial orbital elements with 

 

semimajor axis 

 
2 21

p
a

f g
=

− −
 

 

orbital eccentricity 

 2 2e f g= +  
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orbital inclination 

 ( )1 2 22 tani h k−= +  

 

argument of periapsis 

 

 ( ) ( )1 1tan , tan ,g f k h − −= −  

 

 
( )

sin
tan 2

g h f k

e i


−
=  

 

 
( )

cos
tan 2

f h g k

e i


+
=  

 

right ascension of the ascending node 

 

 ( )1tan ,k h− =  

 

 
( )

sin
tan 2

k

i
 =  

 

 
( )

cos
tan 2

h

i
 =  

 

true anomaly 

 ( ) ( )1tan ,L L g f  −= − + = −  

 

 

( )

( )

1
sin sin cos

1
cos cos sin

f L g L
e

f L g L
e





= −

= +

 

 

In these expressions, an inverse tangent expression of the form ( )1tan ,a b −=  denotes a four quadrant 

evaluation where sina =  and cosb = . 

 

Constraint formulations that enforce both the sine and cosine of a desired orbital element should be used 

whenever possible.  This approach involves a combination of equality and inequality constraints and 

ensures that the “targeted” orbital element is in the correct quadrant. 

 

To illustrate this technique, here are several examples for different values of argument of perigee and the 

corresponding mission constraints: 
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( )

sin 0 0
0 90

tan 2 cos

gh f k

f h g k e i






 → − 
  → 

+ =
 

 

 
sin 0 0

270
cos 0 0

gh f k

f h gk






 → − 
= → 

= → + =
 

 

 
( )tan 2 sin

178
cos 0 0

g h f k e i

f h gk






− =
= → 

 → + 
 

 

The following is a sign table of the sine and cosine for each quadrant. 

 

quadrant sine cosine 

1 +  +  

2 +  −  

3 −  −  

4 −  +  

 

orbital eccentricity constraint 

 

 2 2e f g= +  

 

For a circular orbit, 0f g= = . 

 

orbital inclination constraint 

 

 2 2tan
2

i
h k

 
= + 

 
 

 

For an equatorial orbit, 0h k= = . 

 

argument of perigee constraints 

 

 ( )
( )

sin tan 2 sin
tan 2

g h f k
g h f k e i

e i
 

−
− = → =  

 

 ( )
( )

cos tan 2 cos
tan 2

f h g k
f h g k e i

e i
 

+
+ = → =  

 

right ascension of the ascending node constraints 

 

 ( )
( )

tan 2 sin sin
tan 2

k
k i

i
= →  =  
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 ( )
( )

tan 2 cos cos
tan 2

h
h i

i
= →  =  

 

true anomaly constraints 

 

 ( ) ( )1tan ,L L g f  −= − + = −  

 

 In general, 

 

( )

( )

1
sin sin cos

1
cos cos sin

f L g L
e

f L g L
e





= −

= +

 

 

For a circular orbit, 

 

 
sin sin cos cos sin

cos cos cos sin sin

L L

L L





= − 

= + 
 

 

For a circular, equatorial orbit, 

 

 L = , sin sin L =  and cos cos L = . 

 

 Also, note that 

 

2 2

2 2

 periapsis radius
1

 apoapsis radius
1

p

a

p
r

f g

p
r

f g

= →
+ +

= →
− +

 

 

 

Algorithm resources 
 

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp. 

303-310, 1972. 

 

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial 

Mechanics, Vol. 36, pp. 409-419, 1985. 

 

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA 

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, August 20-22, 1990. 
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Appendix B 
 

Nonlinear Programming Problem 
 

A trajectory optimization problem can be described by a system of dynamic variables 

 

 
( )

( )

t

t

 
=  
 

y
z

u
 

 

consisting of the state variables y  and the control variables u  for any time t.  In this discussion vectors 

are denoted in bold font. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows 

 

 ( ) ( ), , ,
d

t t t
dt

= =   
y

y f y u p  

 

where p is a vector of problem parameters that is not time dependent. 

 

The initial dynamic variables at time 0t  are defined by ( ) ( )0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by ( ) ( ), ,f f f ft t t   ψ ψ y u .  These conditions are called the 

boundary values of the trajectory problem. 

 

The problem may also be subject to path constraints of the form ( ) ( ), , 0t t t =  g y u . 

 

For any mission time t there are also simple bounds on the state variables 

 

 ( )l ut y y y  

the control variables 

 

 ( )l ut u u u  

 

and the problem parameters 

 

 ( )l ut p p p  

 

The basic nonlinear programming problem (NLP) involves the determination of the control vector 

history and problem parameters that minimize the scalar performance index or objective function given 

by 

 ( ) ( )0 0, , , ,f fJ t t t t  =  y y p  

 

while satisfying all the user-defined mission constraints. 
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Program rendezvous_ocs 
 

Finite-Burn, Earth Orbit Rendezvous Trajectory Optimization 
 

This document is the user’s manual for a Fortran computer program called rendezvous_ocs that uses 

the Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the classic Earth 

orbit rendezvous trajectory optimization problem.  The software models the trajectory as a mission 

consisting of one or more maneuvers separated by coasting periods.  The propulsive phases are 

simulated as variable thrust, finite-burn propulsive maneuvers.  This computer program attempts to 

maximize the spacecraft mass at the end of the propulsive maneuvers. 

 

The important features of this scientific simulation are as follows: 
 

 finite-burn orbital maneuvers 
 

 variable attitude steering during all maneuvers 
 

 user-defined throttle bounds 
 

 modified equinoctial equations of motion with oblate Earth gravity model 
 

 user-specified flyby or rendezvous final orbit constraints 
 

 fixed or free final flyby or rendezvous time 
 

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of 

trajectory optimization problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 

 

Additional information about the mathematical techniques and numerical methods used in the Sparse 

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation 

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org). 

 

The rendezvous_ocs software consists of Fortran routines that perform the following tasks: 
 

 set algorithm control parameters and call the transcription/optimal control subroutine 
 

 define the problem structure and perform initialization related to scaling, lower and upper 

bounds, initial conditions, etc. 
 

 compute the right-hand-side differential equations 
 

 evaluate any point and path constraints 
 

 display the optimal solution results and create an output file 

 

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal 

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.  

The rendezvous_ocs software allows the user to select the type of initial guess, collocation method, 

and other important algorithm control parameters. 

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/
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Program execution 
 

An input file created by the user can be run from the command line or a simple batch file with a 

statement similar to the following: 

 
rendezvous_ocs leo2meo_10k.in 

 

If the software is executed without an input file on the command line, the computer program will display 

the following information screen and file name prompt: 

 
************************************ 

*      program rendezvous_ocs      * 

*                                  * 

*     finite burn earth orbit      * 

*     rendezvous optimization      * 

*                                  * 

*          April 10, 2012          * 

************************************ 

 

please input the name of the simulation definition file 

 

The user should respond to this prompt with the name of a compatible input data file including the 

filename extension. 

 

The screen output created by the rendezvous_ocs computer program can be re-directed to a text file 

with a command line similar to 

 
rendezvous_ocs leo2meo_10k.in >leo2meo_10k.txt 

 

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories 

and finally Command Prompt.  The size, font and other characteristics of the screen can be controlled 

by the user with the c:\ icon in the upper left corner of the window.  To log into the subdirectory created 

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory 

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is 

the name of the subdirectory created by the user. 

 

The DOS command line prompt looks similar to C:\rendezvous_ocs>_. 

 

Input file format and contents 
 

The rendezvous_ocs software is “data-driven” by a user-created text file.  The following is a typical 

input file used by this computer program.  In the following discussion the actual input file contents are 

in courier font and all explanations are in times italic font.  This example attempts to optimize the 

maneuvers required to perform a rendezvous between a spacecraft in a circular low Earth orbit (LEO) 

and a second spacecraft in a typical medium altitude Earth orbit (MEO). 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 
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The first six lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with six and only six initial text lines. 

 
************************************* 

** finite-burn earth-orbit rendezvous 

** trajectory optimization 

** program rendezvous_ocs 

** leo2meo_10k.in - April 10, 2012 

************************************* 

 

The first input is an integer that tells the simulation what type of trajectory to model. 
 

trajectory type (1 = flyby, 2 = rendezvous) 

2 

 

The next three inputs define an initial guess, lower bound and upper bound for the total simulation 

duration in minutes.  Identical values for the lower and upper bounds will create a fixed time mission. 
 

initial guess for total simulation duration (minutes) 

85.0 

 

lower bound for total simulation duration (minutes) 

88.0 

 

upper bound for total simulation duration (minutes) 

88.0 

 

The next input is the initial mass of the entire spacecraft in kilograms. 
 

initial spacecraft mass (kilograms) 

8000.0 

 

This next integer input defines the type of initial guess for the propulsive maneuver. 
 

******************************** 

type of propulsive initial guess 

******************************** 

1 = thrust duration 

2 = delta-v magnitude 

--------------------- 

2 

 

The next four inputs define the thrust magnitude and the specific impulse of the upper stage or 

spacecraft propulsion system, and the user’s initial guess for either the delta-v or thrust duration for the 

first maneuver. 
 

------------------------- 

first propulsive maneuver 

------------------------- 

thrust magnitude (newtons) 

10000.0 

 

specific impulse (seconds) 

350.0 

 

initial guess for delta-v (meters/second) 

2925.0 

 

initial guess for thrust duration (seconds) 

170.0 
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The next six inputs define the classical orbital elements of the initial park orbit.  These elements are 

defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

8000.0 

 

orbital eccentricity (non-dimensional) 

0.015 

 

orbital inclination (degrees) 

28.5 

 

argument of perigee (degrees) 

100.0 

 

right ascension of the ascending node (degrees) 

20.0 

 

true anomaly (degrees) 

30.0 

 

The next six inputs define the classical orbital elements of the final mission orbit.  These elements are 

defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

*************** 

* FINAL ORBIT * 

*************** 

 

semimajor axis (kilometers) 

10000.0 

 

orbital eccentricity (non-dimensional) 

0.05 

 

orbital inclination (degrees) 

40.0 

 

argument of perigee (degrees) 

200.0 

 

right ascension of the ascending node (degrees) 

55.0 

 

true anomaly (degrees) 

120.0 

 

This integer input specifies the type of gravity model to use during the simulation.  Option 2 will use a 

2J  gravity model in the spacecraft equations of motion. 
 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 

 

This next input defines the type of initial guess to use.  Please see the technical discussion section for 

information about how the first option is modeled.  Option 2 requires either a binary restart file created 
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from a previous run using either initial guess option 1 or an updated binary restart file.  This feature is 

described in the next two sections. 
 

************************* 

* initial guess options * 

************************* 

 1 = numerical integration 

 2 = binary data file 

--------------------- 

1 

 

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input 

specifies the name of the file to use. 
 

name of binary initial guess data file 

leo2meo_10k.rsbin 

 

The following input can be used to create or update an initial guess binary file.  The creation or update 

process uses the filename defined above.  For initial guess option 1, the software will create a binary 

restart file.  For initial guess option 2, an input of yes to this item will update the binary file used to 

initialize the simulation. 
 

****************************** 

* binary restart file option * 

****************************** 

 

create/update binary data file (yes or no) 

no 

 

This next input specifies the type of solution data file to create. 
 

********************************************** 

* type of comma-delimited solution data file * 

********************************************** 

 1 = OC-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

1 

 

For options 2 or 3, this input defines either the number of data points or the time step size of the data 

output in the solution file. 
 

number of user-defined nodes or print step size in solution data file 

25 

 

The name of the comma-separated-variable solution data file is defined in this next line. 
 

name of solution output file 

leo2heo_10k.csv 

 

The next series of program inputs are algorithm control options and parameters for the Sparse 

Optimization Suite.  The first input is an integer that specifies the type of collocation method to use 

during the solution process.  For most simulations, the trapezoidal method is recommended. 
 

******************************** 

* algorithm control parameters * 

******************************** 

 

discretization/collocation method 

--------------------------------- 
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 1 = trapezoidal 

 2 = separated Hermite-Simpson 

 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

The next input defines the relative error in the objective function. 
 

relative error in the objective function (performance index) 

1.0d-5 

 

The next input defines the relative error in the solution of the differential equations. 
 

relative error in the solution of the differential equations 

1.0d-7 

 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 

maximum number of mesh refinement iterations 

20 

 

The next input is an integer that defines the maximum number of function evaluations. 
 

maximum number of function evaluations 

10000 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 

maximum number of algorithm iterations 

10000 

 

The level of output from the NLP algorithm is controlled with the following integer input. 
 

*************************** 

sparse NLP iteration output 

--------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 

 

The level of output from the optimal control algorithm is controlled with the following integer input.  

Please note that option 4 will create lots of information. 
 

********************** 

optimal control output 

---------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 

 

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled 

with the following integer input.  Please note that option 5 will create lots of information. 
 

**************************** 

differential equation output 

---------------------------- 
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 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The level of output can be further controlled by the user with this final text input.  This program option 

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s 

manual.  To ignore this special output control, input the simple character string no. 
 

******************* 

user-defined output 

------------------- 

input no to ignore 

------------------ 

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0 

 

The last series of inputs allow the reading and writing of configuration input files.  The user should 

create a configuration file before attempting to read one.  These configuration files are simple text files 

which can be edited external to the rendezvous_ocs software.  Please consult Appendix C. 
 

*************************************** 

* optimal control configuration options 

*************************************** 

 

read an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2meo_10k_config.txt 

 

create an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2meo_10k_config1.txt 

 

Optimal control solution 
 

The following is the optimal control solution for this example.  The output includes the time and orbital 

characteristics at the beginning and end of each mission phase. 

 
 program rendezvous_ocs 

 ====================== 

   

 input file ==> leo2meo_10k.in 

   

 rendezvous trajectory 

   

 oblate earth gravity model 

   

 --------------------------- 

 beginning of maneuver phase 

 --------------------------- 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.800000000000D+04    0.150000000000D-01    0.285000000000D+02    0.100000000000D+03 
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     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200000000000D+02    0.300000000000D+02    0.130000000000D+03    0.118684693004D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.658713032027D+04    0.325905620287D+04    0.288604970418D+04    0.789563272225D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.381028378016D+01    -.564780744839D+01    -.217399960475D+01    0.715138208606D+01 

   

 --------------------- 

 end of maneuver phase 

 --------------------- 

 

 mission elapsed time     00:54:37.540 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.999778599805D+04    0.500760702724D-01    0.399921786418D+02    0.199752487246D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.550628877938D+02    0.467623343061D+02    0.246514821552D+03    0.165811819507D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.335362513193D+04    -.702990130399D+04    -.568340909816D+04    0.964196312202D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.515138258024D+01    0.360501455968D+01    -.181069217135D+01    0.654304811253D+01 

   

   

 spacecraft mass          3339.96227073119      kilograms 

   

 propellant mass          4660.03772926881      kilograms 

   

 phase duration           3277.53953053337      seconds 

                          54.6256588422229      minutes 

   

 delta-v                  2998.07572342380      meters/second 

 

The following program output is the spacecraft mass, the propellant mass consumed, the actual thrust 

duration for all the maneuvers, and the accumulated delta-v for the mission. 
 

 spacecraft mass          3339.96227073119      kilograms 

   

 propellant mass          4660.03772926881      kilograms 

   

 phase duration           3277.53953053337      seconds 

                          54.6256588422229      minutes 

   

 delta-v                  2998.07572342380      meters/second 

 

This section of the numeric results summarizes the time and orbital conditions at the beginning and end 

of the transfer orbit coast. 
 

 ------------------------ 

 beginning of coast phase 

 ------------------------ 

 

 mission elapsed time     00:54:37.540 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.999778599805D+04    0.500760702724D-01    0.399921786418D+02    0.199752487246D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 
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  0.550628877938D+02    0.467623343061D+02    0.246514821552D+03    0.165811819507D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.335362513193D+04    -.702990130399D+04    -.568340909816D+04    0.964196312202D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.515138258024D+01    0.360501455968D+01    -.181069217135D+01    0.654304811253D+01 

   

 ------------------ 

 end of coast phase 

 ------------------ 

 

 mission elapsed time     01:27:60.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.100000000000D+05    0.500000000000D-01    0.400000000000D+02    0.200000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.550000000000D+02    0.120000000000D+03    0.320000000000D+03    0.165866900904D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.862186499607D+04    0.353038894193D+04    -.422710739886D+04    0.102307692308D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.459681283666D+00    0.541422590670D+01    0.292176275871D+01    0.616942839083D+01 

   

   

 coast duration           2002.46046946663      seconds 

                          33.3743411577771      minutes 

 

After the simulation is complete, the software will display a simulation summary similar to the 

following; 
 

 SIMULATION SUMMARY 

 ================== 

   

 initial mass             8000.00000000000      kilograms 

   

 total propellant mass    4660.03772926881      kilograms 

   

 final spacecraft mass    3339.96227073119      kilograms 

   

 total delta-v            2998.07572342380      meters/second 

   

 total sim duration       5280.00000000000      seconds 

                          88.0000000000000      minutes 

 

 

The rendezvous_ocs computer program will also create an output file called orbits.csv.  This file 

contains the Earth-centered inertial position and velocity vectors of the park orbit and final mission 

orbit.  The rendezvous_ocs software package includes a MATLAB script called oplot.m that can be 

used to create trajectory graphic displays using this data file.  The interactive graphic features of 

MATLAB allow the user to rotate and zoom the displays.  These capabilities allow the user to 

interactively find the best viewpoint as well as verify basic orbital geometry of the orbital transfer. 

 

The following is the graphics display for this example.  The initial orbit trace is red, the final orbit is 

blue and the transfer orbit is black.  The dimensions are Earth radii (ER) and the plot is labeled with an 

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. 
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The following two plots illustrate the evolution of the pitch and yaw steering angles and the throttle 

setting during the two propulsive maneuvers determined by the software. 
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The next two plots illustrate the behavior of the inertial right ascension and declination, and the 

accumulated delta-v and throttle setting during the simulation. 

 

        
 

The next pair of plots illustrate the behavior of the semimajor axis, eccentricity, inclination and the right 

ascension of the ascending node (RAAN) during the simulation. 

 

        
 

Verification of the optimal control solution 
 

The optimal control solution determined by the Sparse Optimization Suite can be verified by 

numerically integrating the orbital equations of motion with the OC-computed optimal control solution.  

This is equivalent to solving an initial value problem (IVP) that uses the optimal unit thrust vector 

solution.  This part of the rendezvous_ocs computer program uses a Runge-Kutta-Fehlberg 7(8) 

variable step size method to integrate the orbital equations of motion. 

 

The following is a display of the final solution computed using this explicit numerical integration 

method. 
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 verification of optimal control solution 

 ======================================== 

   

 final mass               3339.96216840498      kilograms 

   

 propellant mass          4660.03783159502      kilograms 

   

 delta-v                  2998.07650071517      meters/second 

   

   

 final mission orbit 

 ------------------- 

 

 mission elapsed time     01:27:60.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.100000037673D+05    0.500000524679D-01    0.400000018124D+02    0.199999582004D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.549999947879D+02    0.120000292543D+03    0.319999874547D+03    0.165866994633D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.862187310660D+04    0.353037110635D+04    -.422712123100D+04    0.102307756263D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.459669452953D+00    0.541422750064D+01    0.292175590011D+01    0.616942566002D+01 

 

Creating an initial guess 
 

The software allows the user to input either a delta-v or thrust duration initial guess.  For a delta-v initial 

guess, the software estimates the thrust duration using the rocket equation.  An estimate of the thrust 

duration can be determined from the following expression: 

 

 
sp p p ex

d

I m g m V
t

F F
   

 

The propellant mass required for a given V  is a function of the initial (or final) mass of the spacecraft 

and the exhaust velocity as follows: 

 

 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

 

In these equations 
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 final mass
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 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i
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page 13 

The software uses a tangential thrusting steering method to generate an initial guess for the optimal 

trajectory.  For tangential thrusting, the unit thrust vector in the modified equinoctial frame at all times is 

simply  0 1 0
T

T u . 

 

The dynamic variables and control variables at each grid point are determined by the Sparse 

Optimization Suite by setting the initial guess option INIT(1) = 6 with INIT(2) = 2.  These 

program options create an initial guess from the numerical integration of the equations programmed in 

the oderhs subroutine.  The number and location of the initial collocation nodes are determined from 

the variable step-size numerical integration.  The INIT(2) = 2 option tells the program to use a 

Dormand-Prince numerical integration method. 

 

Please note that this algorithm creates a coplanar initial guess. 

 

If the software cannot find a feasible solution, try increasing the guess for the thrust duration or the 

value for the magnitude of the delta-v. 

 

Binary restart data files can also be used to initialize a rendezvous_ocs simulation.  A typical 

scenario is 
 

1. Create a binary restart file from a converged and optimized simulation 
 

2. Modify the original input file with slightly different spacecraft characteristics, propulsive 

parameters or perhaps final mission targets and/or constraints 
 

3. Use the previously created binary restart file as the initial guess for the new simulation 

 

This techniques works well provided the two simulations are not dramatically different.  Sometimes it 

may be necessary to make successive small changes in the mission definition and run multiples 

simulations to eventually reach the final desired solution. 

 

Problem setup 
 

This section provides additional details about the software implementation.  It explains such things as 

point and path constraints, the performance index and the numerical technique used to create an initial 

guess for the software. 

 

(1) Point functions – initial orbit constraints 

 

For this two-point boundary value problem (TPBVP), both lower and upper bounds for all modified 

equinoctial elements are set equal to the user-defined initial modified equinoctial orbital elements as 

follows: 

 

L U i L U i

L U i L U i

L U i L U i

p p p f f f

g g g h h h

k k k L L L

   

   

   

 

 

In Sparse Optimization Suite terminology, these constraints or boundary conditions are called point 

functions. 
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(2) Performance index – maximize final spacecraft mass 

 

The objective function or performance index J for this simulation is the mass of the spacecraft at the end 

of the mission.  This is simply 

 

 
fJ m  

 

The value of the maxmin indicator tells the software whether the user is minimizing or maximizing the 

performance index.  The spacecraft mass at the initial time is fixed to the user-defined initial value. 

 

(3) Path constraint – unit thrust vector scalar magnitude 

 

For variable attitude steering, the scalar magnitude of the components of the unit thrust vector at any 

time during the simulation is constrained as follows: 

 

 2 2 2 1
r t nT T T Tu u u   u  

 

(4) Point functions – final mission orbit constraints 

 

The final mission constraints enforced by the software are determined by the trajectory type.  For the 

flyby trajectory option, the final orbit position vector is constrained to the values corresponding to the 

user-defined final orbit.  The rendezvous trajectory option adds the final three components of the inertial 

velocity vector to this constraint set. 

 

The computation of inertial position and velocity vectors from the modified equinoctial orbital elements 

in described in the Technical Discussion section later in this document. 

 

Bounds on the dynamic variables 

 

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial 

dynamic variables during the orbital transfer. 
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where 
iscm  is the initial spacecraft mass. 

 

For variable attitude steering, the three components of the unit thrust vector are constrained as follows: 
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Technical Discussion 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These equations 

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.  However, 

two components of the orbital element set are singular for an orbital inclination of 180 degrees. 

 

The relationship between direct modified equinoctial and classical orbital elements is defined by the 

following definitions 
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 where 
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The relationship between classical and modified equinoctial orbital elements is summarized as follows: 

 

semimajor axis 

 
2 21

p
a

f g


 
 

 

orbital eccentricity 

 

 
2 2e f g   

 

orbital inclination 

  1 2 22 tani h k   

 

argument of periapsis 

 

    1 1tan tang f k h     

 

right ascension of the ascending node 

 

  1tan k h   
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true anomaly 

 

    1tanL L g f        

 

The mathematical relationships between an inertial state vector and the corresponding modified 

equinoctial elements are summarized as follows: 
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velocity vector 
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where 
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The system of first-order modified equinoctial equations of orbital motion are given by 
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where , ,r t n    are non-two-body perturbations in the radial, tangential and normal directions, 

respectively.  The radial direction is along the radius vector of the spacecraft measured positive in a 

direction away from the gravitational center, the tangential direction is perpendicular to this radius 

vector measured positive in the direction of orbital motion, and the normal direction is positive along the 

angular momentum vector of the spacecraft’s orbit. 

 

The equations of orbital motion can also be expressed in vector form as follows: 
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The total non-two-body acceleration vector is given by ˆ ˆ ˆ
r r t t n n     P i i i . 

 

where ˆ ˆ ˆ,  and r t ni i i  are unit vectors in the radial, tangential and normal directions.  These unit vectors can 

be computed from the inertial position vector r and velocity vector v according to 
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For unperturbed two-body motion, 0P  and the first five equations of motion are simply 

0p f g h k     .  Therefore, for two-body motion these modified equinoctial orbital elements are 

constant.  The true longitude is often called the fast variable of this orbital element set. 

 

Non-spherical Earth Gravity 

 

The non-spherical gravitational acceleration vector can be expressed as 
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  ˆ 0 0 1
T
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In these equations the north direction component is indicated by subscript N and the radial direction 

component is subscript r. 

 

The contributions due to the zonal gravity effects of 2 3 4, ,J J J  are as follows: 
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For a zonal only Earth gravity model, the east component is identically zero. 

 

Finally, the zonal gravity perturbation contribution is 
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For 
2J  effects only, the three components are as follows: 
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Propulsive Thrust 

 

The acceleration due to propulsive thrust can be expressed as 

 

 
 

ˆ
T T

T

m t
a u  

where T is the thrust magnitude, m is the spacecraft mass and ˆ       
r t n

T

T T T Tu u u   u  is the unit pointing 

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system.  The 

components of this unit vector are the control variables. 

 

The propellant mass flow rate is determined from 
 

 
sp

dm T
m

dt g I
   

 

where g is the acceleration of gravity and spI  is the specific impulse of the propulsive system.  The 

product spg I  is also called the exhaust velocity. 

 

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt   where 

iscm  is the initial 

mass of the spacecraft and m  is the propellant flow rate. 

 

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle   and 

the out-of-plane yaw angle   as follows: 
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 sin cos cos cos sin
r t nT T Tu u u        

 

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector 

according to 
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Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located 

at the spacecraft.  The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane 

yaw angle is positive in the direction of the angular momentum vector.  The inverse tangent calculation 

in the second equation is a four quadrant operation. 

 

The rendezvous_ocs software provides the steering angles and the components of the unit thrust 

vector in both the inertial and modified equinoctial coordinate systems.  The following section 

summarizes the inertial-to/from-modified equinoctial coordinate transformations and the calculation of 

the inertial unit thrust vector in terms of right ascension and declination angles. 

 

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu  and the corresponding 

unit thrust vector in the modified equinoctial system ˆ
MEETu  is given by 
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This relationship can also be expressed as 
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In these equations, r  is the inertial position vector and v  is the inertial velocity vector of the spacecraft. 

 

In the rendezvous_ocs computer program, the components of the inertial unit thrust vector are 

defined in terms of the right ascension   and the declination angle   as follows: 

 

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u        

 



page 21 

Finally, the right ascension and declination angles can be determined from the components of the ECI 

unit thrust vector according to 

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u     

 

where the calculation for right ascension is a four quadrant inverse tangent operation. 
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APPENDIX A 
 

Contents of the Simulation Summary and CSV Files 
 

This appendix is a brief summary of the information contained in the simulation summary screen 

displays and the CSV data files produced by the rendezvous_ocs software. 

 

The simulation summary screen display contains the following information: 

 
mission elapsed time = simulation time since beginning of the mission (hh:mm:ss.sss) 

 

sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers 

 

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second 

 

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per 

second 

 

spacecraft mass = current spacecraft mass in kilograms 

 

propellant mass = expended propellant mass in kilograms 

 

phase duration = current phase duration in seconds and minutes 

 

thrust duration = maneuver duration in seconds 

 

delta-v = scalar magnitude of the maneuver in meters/seconds 

 

The accumulated delta-v is determined using a cubic spline integration of the thrust acceleration data at 

each collocation node. 

 

The comma-separated-variable disk file is created by the odeprt subroutine and contains the following 

information: 
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time (sec) = simulation time since ignition in seconds 

 

semimajor axis (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argument of perigee (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

period (min) = orbital period in minutes 

 

mass = spacecraft mass in kilograms 

 

thracc = thrust acceleration in meters/second**2 

 

yaw = thrust vector yaw angle in degrees 

 

pitch = thrust vector pitch angle in degrees 

 

perigee altitude = perigee altitude in kilometers 

 

apogee altitude = apogee altitude in kilometers 

 

ut-radial = radial component of unit thrust vector 

 

ut-tangential = tangential component of unit thrust vector 

 

ut-normal = normal component of unit thrust vector 

 

semi-parameter = orbital semiparameter in kilometers 

 

f equinoctial element = modified equinoctial orbital element 

 

g equinoctial element = modified equinoctial orbital element 

 

h equinoctial element = modified equinoctial orbital element 

 

k equinoctial element = modified equinoctial orbital element 

 

true longitude = true longitude in degrees 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

fpa (deg) = flight path angle in degrees 

 

deltav (mps) = accumulative delta-v in meters per second 

 

The orbits.csv file contains the following information: 

 
time (seconds) = simulation time since ignition in seconds 

 

rp1-x (er) = x-component of the initial orbit position vector in earth radii 

rp1-y (er) = y-component of the initial orbit position vector in earth radii 

rp1-z (er) = z-component of the initial orbit position vector in earth radii 

rp2-x (er) = x-component of the final orbit position vector in earth radii 

rp2-y (er) = y-component of the final orbit position vector in earth radii 
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rp2-z (er) = z-component of the final orbit position vector in earth radii 
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APPENDIX B 
 

Example Flyby Trajectory Analysis 
 

This appendix summarizes a flyby mission from LEO to MEO.  This example starts and ends at the 

same orbits as the previous example.  However, the propulsive thrust is 5000 Newtons and the total 

simulation time is fixed to 100 minutes.  Furthermore, since this is a flyby trajectory, the orbit transfer 

only matches the three components of the position vector of the final mission orbit at the final time. 

 

Here’s the initial part of the simulation definition input file for this example. 

 
************************************* 

** finite-burn earth-orbit rendezvous 

** trajectory optimization 

** program rendezvous_ocs 

** leo2meo_flyby.in - April 10, 2012 

************************************* 

 

trajectory type (1 = flyby, 2 = rendezvous) 

1 

 

initial guess for total simulation duration (minutes) 

95.0 

 

lower bound for total simulation duration (minutes) 

100.0 

 

upper bound for total simulation duration (minutes) 

100.0 

 

initial spacecraft mass (kilograms) 

8000.0 

 

***************************************** 

type of propulsive maneuver initial guess 

***************************************** 

1 = thrust duration 

2 = delta-v magnitude 

--------------------- 

2 

 

------------------- 

propulsive maneuver 

------------------- 

 

thrust magnitude (newtons) 

5000.0 

 

specific impulse (seconds) 

350.0 

 

initial guess for delta-v (meters/second) 

2925.0 

 

initial guess for thrust duration (seconds) 

170.0 

 

lower bound for throttle setting 

0.0 

 

upper bound for throttle setting 

1.0 

 



page 26 

Here’s the program output for this example. 

 
 program rendezvous_ocs 

 ====================== 

   

 input file ==> leo2meo_flyby.in 

   

 flyby trajectory 

   

 oblate earth gravity model 

   

 --------------------------- 

 beginning of maneuver phase 

 --------------------------- 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.800000000000D+04    0.150000000000D-01    0.285000000000D+02    0.100000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200000000000D+02    0.300000000000D+02    0.130000000000D+03    0.118684693004D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.658713032027D+04    0.325905620287D+04    0.288604970418D+04    0.789563272225D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.381028378016D+01    -.564780744839D+01    -.217399960475D+01    0.715138208606D+01 

   

 --------------------- 

 end of maneuver phase 

 --------------------- 

 

 mission elapsed time     01:10:11.736 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.898711286539D+04    0.235466089640D+00    0.350916114708D+02    0.903365417492D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.625248414158D+02    0.172979511791D+03    0.263316053540D+03    0.141315573076D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.739228594994D+04    -.529738113942D+04    -.632512076131D+04    0.110776934037D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.298144849526D+01    0.430206674637D+01    -.463960881703D+00    0.525471912855D+01 

   

   

 spacecraft mass          3343.59238906710      kilograms 

   

 propellant mass          4656.40761093290      kilograms 

   

 phase duration           4211.73581241822      seconds 

                          70.1955968736369      minutes 

   

 delta-v                  2994.34791421085      meters/second 

   

 ------------------------ 

 beginning of coast phase 

 ------------------------ 

 

 mission elapsed time     01:10:11.736 
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      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.898711286539D+04    0.235466089640D+00    0.350916114708D+02    0.903365417492D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.625248414158D+02    0.172979511791D+03    0.263316053540D+03    0.141315573076D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.739228594994D+04    -.529738113942D+04    -.632512076131D+04    0.110776934037D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.298144849526D+01    0.430206674637D+01    -.463960881703D+00    0.525471912855D+01 

   

 ------------------ 

 end of coast phase 

 ------------------ 

 

 mission elapsed time     01:40:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.898867629134D+04    0.235360368321D+00    0.351008512173D+02    0.903369639672D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.624745498836D+02    0.223728548707D+03    0.314065512674D+03    0.141352450221D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.862186499607D+04    0.353038894193D+04    -.422710739886D+04    0.102307692308D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.192043174636D+01    0.473402281402D+01    0.273461673498D+01    0.579458012140D+01 

   

   

 coast duration           1788.26418758178      seconds 

                          29.8044031263631      minutes 

   

   

 SIMULATION SUMMARY 

 ================== 

   

 initial mass             8000.00000000000      kilograms 

   

 total propellant mass    4656.40761093290      kilograms 

   

 final spacecraft mass    3343.59238906710      kilograms 

   

 total delta-v            2994.34791421085      meters/second 

   

 total sim duration       6000.00000000000      seconds 

                          100.000000000000      minutes 

   

   

 verification of optimal control solution 

 ======================================== 

   

 final mass               3343.59248030948      kilograms 

   

 propellant mass          4656.40751969052      kilograms 

   

 delta-v                  2994.34782001675      meters/second 

   

   

 final mission orbit 

 ------------------- 

 

 mission elapsed time     01:40:00.000 
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      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.898867644662D+04    0.235360359825D+00    0.351008505110D+02    0.903369671277D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.624745489581D+02    0.223728544739D+03    0.314065511867D+03    0.141352453884D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.862186536286D+04    0.353038874660D+04    -.422710749938D+04    0.102307695140D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.192043150637D+01    0.473402286160D+01    0.273461656678D+01    0.579458000135D+01 

 

 

Here are plots of the behavior of the control variables and throttle setting for this example. 
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APPENDIX C 
 

Typical Sparse Optimization Suite Configuration File 
 

The rendezvous_ocs computer progran can read and use a user-defined configuration file.  A 

description of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms 

for Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization  of the 

Sparse Optimization Suite user’s manual.  Please note that the rendezvous_ocs software can read and 

use a subset of the information in this file.  For example, a subset configuration file might contain only 

the following information; 

 
ODETOL=0.1D-06 

INSNLP:IOFLAG=5 

SOCOUT=I4K4 

 

The following is a typical “full version” configuration file created during the execution of the 

rendezvous_ocs software. 

 
AEQTOL=0.1000000000000000D-02     

DTAUX=0.0000000000000000D+00      

OBJCTL=0.1000000000000000D-04     

ODETOL=0.1000000011686097D-06     

PGDCTL=0.1000000000000000D-02     

PRTMSD=0.1490116119384766D-07     

PRTMXD=0.1000000000000000D-02     

PRTSFD=0.1000000000000000D-04     

QDRTOL=0.1000000000000000D-02     

RESTOL=0.1000000000000000D-04     

SMLTOL=0.1490116119384766D-10     

TOLJSD=0.1000000000000000D-05     

TOLM5A=0.1490116119384766D-07     

TOLM5R=0.1490116119384766D-07     

IDSCPH=0                 

IDSCND=0                 

IDSCVR=0                 

IDSCFN=0                 

IDTSFD=-1                

IPFAUX=0                 

IPFSFD=0                 

IPRSFD=1                 

IPGRD=0                  

IPNLP=10                 

IPODE=0                  

IPUAUX=0                 

IPUOCP=6                 

IRSTRT=2                 

ISCALE=0                 

ISFHES=41                

ISFINP=42                

ISFRST=43                

ISFSCL=44                

ITSWCH=2                 

M5DTYP=0                 

MITODE=20                

MTSWCH=-1                

MXDATA=0                 

MXPARM=10                

MXPCON=20                

MXSTAT=20                

MXTERM=50                

NPTAUX=100               

NSSWCH=-1                

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0                      

SPRTHS=SPARSE                                                                    

NLPALG=SNLPMN                                                                    

NLPOMR=M                                                                         

KEYDPL=.lueiLUE                                                                  



page 30 

RHSTMP=RHSTMPLT                                                                  

RSTFIL=tlto1.rsbin                                                              

SCLFIL=scalewgt.fil                                                              

INSNLP:ALFLWR=0.0000000000000000D+00     

INSNLP:ALFUPR=0.1000000000000000D+01     

INSNLP:CONTOL=0.1490116119384766D-07     

INSNLP:EPSRLF=0.1490116119384766D-07     

INSNLP:OBJTOL=0.9999999747378752D-05     

INSNLP:PGDTOL=0.1000000000000000D-04     

INSNLP:SLPTOL=0.9000000000000000D+00     

INSNLP:SFZTOL=0.1000000000000000D-01     

INSNLP:TOLFIL=0.2000000000000000D+01     

INSNLP:TOLKTC=0.1110953834938985D+26     

INSNLP:TOLPVT=0.1000000000000000D-02     

INSNLP:IHESHN=0                 

INSNLP:IOFLAG=5                 

INSNLP:IOFLIN=-1                

INSNLP:IOFMFR=0                 

INSNLP:IOFPAT=0                 

INSNLP:IOFSHR=0                 

INSNLP:IOFSRC=0                 

INSNLP:IPUDRF=0                 

INSNLP:IPUFZF=0                 

INSNLP:IPUMF1=11                

INSNLP:IPUMF2=12                

INSNLP:IPUMF3=13                

INSNLP:IPUMF4=14                

INSNLP:IPUMF5=15                

INSNLP:IPUMF6=16                

INSNLP:IPUMF7=17                

INSNLP:IPUNLP=6                 

INSNLP:IPUSTF=0                 

INSNLP:IRELAX=1                 

INSNLP:ITDRQP=-1                

INSNLP:ITFZQP=-1                

INSNLP:IT1MAX=20                

INSNLP:JACPRM=0                 

INSNLP:LYNFNC=0                 

INSNLP:LYNOUT=0                 

INSNLP:LYNPLT=0                 

INSNLP:LYNPNT=101               

INSNLP:LYNVAR=0                 

INSNLP:MAXLYN=5                 

INSNLP:MAXNFE=50000             

INSNLP:MNSAME=2                 

INSNLP:NEWTON=0                 

INSNLP:NITMAX=1000              

INSNLP:NITMIN=0                 

INSNLP:NORMAL=0                 

INSNLP:ALGOPT=FM     

INSNLP:KTOPTN=SMALL  

INSNLP:QPOPTN=SPARSE 

INSNLP:BIGCON=-0.1000000000000000D+01    

INSNLP:FEATOL=0.1000000000000000D-01     

INSNLP:PMULWR=0.1000000000000000D+00     

INSNLP:PTHTOL=0.1000000000000000D+02     

INSNLP:RHOLWR=0.1000000000000000D+03     

INSNLP:IMAXMU=10                

INSNLP:MUCALC=3                 

INSNLP:MXQPIT=1                 

 



Orbital Mechanics with MATLAB 

Low-Thrust Orbital Transfer with Solar-Electric Propulsion 
 
This document describes an interactive MATLAB script (sep_ltot.m) which can be used to 
determine the characteristics of continuous, low-thrust orbital transfer between two nonplanar 
circular orbits using solar-electric propulsion (SEP).  The numerical method used in this script is 
described in Chapter 14 of the book Orbital Mechanics by V. Chobotov and the technical paper 
“The Reformulation of Edelbaum's Low-thrust Transfer Problem Using Optimal Control 
Theory” by Jean. A. Kechichian, AIAA-92-4576-CP.  The original Edelbaum algorithm is 
described in “Propulsion Requirements for Controllable Satellites”, ARS Journal, August 1961, 
pp. 1079-1089. 
 
This algorithm is valid for total inclination changes ∆i  given by .  This algorithm 
assumes that the thrust acceleration magnitude and spacecraft mass are both constant during the 
orbit transfer.  Earth shadow effects on the orbital transfer are ignored in this MATLAB script. 

0 114i< ∆ < .6

 
The propulsive thrust provided by an SEP system is given by 
 

 2

sp

PT
gI
η

=  

 
where η  is the non-dimensional propulsive efficiency, P is the input power in kilowatts, g is the 
acceleration of gravity in meters/second and spI  is the specific impulse in seconds.  The quantity 

spgI  is also called the exhaust velocity.  Note that with these metric units the thrust will be in 
milli-newtons.  The thrust acceleration required in the equations to follow is equal to Ta T m=  
where m is the mass of the spacecraft. 
 
The initial thrust vector yaw angle β0 is given by the following expression 
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⎝ ⎠

 

 
where the speed on the initial circular orbit is 0V µ= 0r  and the speed on the final circular 

orbit is f fV µ= r 0.  In these equations 0 er r h= +  is the geocentric radius of the initial orbit, 

f er r h= + f  is the geocentric radius of the final orbit, re  is the radius of the Earth and µ  is the 
gravitational constant of the Earth.  The initial circular orbit altitude is h , the final circular orbit 
altitude is h , and  is the total orbital inclination change. 

0

f i∆
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The total velocity change required for a low-thrust orbit transfer is given by 
 

 0 0
0 0

0
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VV V
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ββ
π β

∆ = −
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The total transfer time is given by Tt V a= ∆  where  is the thrust acceleration.  The time 
evolution of the out-of-plane yaw angle, speed and inclination change are given by the following 
three expressions: 

Ta
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0 0
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β π β
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Finally, the propellant mass  required for the maneuver can be determined from the ideal 
rocket equation as follows: 

pm

 ( )1 spV gI
p im m e−∆= −  

 
where  is the initial spacecraft mass. im
 
This MATLAB script will prompt you for the initial and final altitudes and orbital inclinations, 
and the SEP propulsive characteristics.  The following is a typical user interaction with this 
script.  It illustrates an orbital transfer from a low Earth orbit (LEO) with an inclination of 28.5° 
to a geosynchronous Earth orbit (GSO) with an orbital inclination of 0°. 
 

   SEP Low-thrust Orbit Transfer Analysis 
 
 
please input the initial altitude (kilometers) 
? 621.86 
 
please input the final altitude (kilometers) 
? 35787.86 
 
please input the initial orbital inclination (degrees) 
(0 <= inclination <= 180) 
? 28.5 
 
please input the final orbital inclination (degrees) 
(0 <= inclination <= 180) 
? 0 
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please input the initial spacecraft mass (kilograms) 
? 1147.732571 
 
please input the SEP propulsive efficiency (non-dimensional) 
? .65 
 
please input the SEP input power (kilowatts) 
? 10 
 
please input the SEP specific impulse (seconds) 
? 3300 

 
The following is the output created for this example. 
 

initial orbit altitude        621.8600 kilometers  
 
initial orbit inclination      28.5000 degrees  
 
initial orbit velocity       7546.0538 meters/second  
 
 
final orbit altitude        35787.8600 kilometers  
 
final orbit inclination         0.0000 degrees  
 
final orbit velocity         3074.5936 meters/second  
 
 
propulsive efficiency          0.6500  
 
input power                    10.0000 kilowatts 
 
specific impulse             3300.0000 seconds 
 
thrust                          0.4017 newtons 
 
initial spacecraft mass      1147.7326 kilograms 
 
final spacecraft mass         959.8933 kilograms 
 
propellant mass               187.8393 kilograms 
 
 
total inclination change       28.5000 degrees 
 
total delta-v                5783.7751 meters/second  
 
thrust duration               191.2624 days  
 
initial yaw angle              21.9850 degrees  
 
thrust acceleration           0.000350 meters/second^2 
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The software will also graphically display the time evolution of the thrust vector yaw angle, 
spacecraft speed, inclination change and semimajor axis.  The graphics for this example are as 
follows: 
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Solar Sail Trajectory Analysis with MATLAB 
 

This document describes an interactive MATLAB script named ss2d_opt.m that can be used to 

analyze and optimize two-dimensional, heliocentric solar sail trajectories between the orbits of Earth and 

Venus and between the Earth and Mars.  In this script, the heliocentric planet orbits are assumed to be 

circular and coplanar.  The optimal steering angles for minimum transfer time are modeled as piecewise-

linear variations as suggested in “Near Minimum-Time Trajectories for Solar Sails”, by Michiel Otten 

and Colin R. McInnes, AIAA Journal of Guidance, Control and Dynamics, Vol. 24, No. 3. 

 

The optimization of these steering angles is performed using the SNOPT nonlinear programming (NLP) 

algorithm.  MATLAB versions of SNOPT for several computer platforms can be found at Professor 

Philip Gill’s web site which is located at http://scicomp.ucsd.edu/~peg/.  Professor Gill’s web site also 

includes a PDF version of the SNOPT software user’s guide. 

 

This MATLAB script solves the problem of transferring from the Earth’s orbit and arriving at the orbit 

of either Venus or Mars with the proper distance and velocity.  It does not attempt to solve the 

rendezvous problem between the actual or ephemeris locations of each planet.  The ss2d_opt script 

provides both numerical and graphical information about the trajectory analysis. 

 

Interacting with the script 
 

To execute the ss2d_opt script, log into the directory containing the source code and type ss2d_opt 

in the MATLAB command window. 

 

The ss2d_opt MATLAB script is “data driven” by a simple text file created by the user.  The script 

will prompt the user for the name of the data file with a screen similar to 

 

 
 

The file type defaults to names with a *.dat filename extension.  However, you can select any 

compatible ASCII data file by selecting the Files of type: field or by typing the name of the file directly 

in the File name: field. 

 

http://scicomp.ucsd.edu/~peg/
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The following are the contents of a typical ss2d_opt compatible input data file.  Please note the proper 

units.  User input is denoted in bold font. 

 
*************************************** 

* input data file for ss2d_opt.m 

* Earth-to-Mars trajectory - ideal sail 

*************************************** 

 

number of trajectory segments 

25 

 

characteristic acceleration (meters/second**2) 

0.001 

 

optical force model coefficient b1 (b1 = 0 = ideal) 

0.0 

 

optical force model coefficient b2 (b2 = 1 = ideal) 

1.0 

 

optical force model coefficient b3 (b3 = 0 = ideal) 

0.0 

 

target planet (1 = Venus, 2 = Mars) 

2 

 

initial guess for mission duration (days) 

400 

 

lower bound for mission duration (days) 

250 

 

upper bound for mission duration (days) 

500 

 

initial guess for steering angles (degrees) 

20.0 

 

lower bound for steering angles (degrees) 

0.0 

 

upper bound for steering angles (degrees) 

90.0 

 

The following is the numerical information output by the script for this example. 

 
program ss2d_opt - Earth-to-Mars 

 

 number of segments 25  

 

 initial state vector  

 

  radius                  1.00000000 (AU) 

 

  radial velocity         0.00000000 (AU/day) 

 

  transverse velocity     1.00000000 (AU/day) 

 

 

 final state vector  

 

 

  radius                  1.52368000 (AU) 
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  radial velocity         0.00000000 (AU/day) 

 

  transverse velocity     0.81012702 (AU/day) 

 

  total transfer time     7.01572813 (non-dimensional) 

 

  total transfer time   407.84140084 days 

 

The following is a plot of the optimal piecewise-linear steering angles during the transfer. 

 

 
 

This plot illustrates the transfer trajectory between the Earth (blue) and Mars (red).  The beginning and 

end of the transfer is marked with a small o.  Please note the scale for the x- and y-coordinates are 

Astronomical Units. 
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The following two plots illustrate the behavior of the radial distance and polar angle during the mission.  

The scale for the radial distance is Astronomical Units and the polar angle scale is degrees. 

 

    
 

These next two plots illustrate the behavior of the radial and tangential or transverse velocities during 

the transfer.  The scale for both velocity plots is AU/day. 

 

    
 

The ss2d_opt MATLAB script will create color Postscript disk files of these graphic images.  These 

images include a TIFF preview and are created with MATLAB code similar to 

 
print -depsc -tiff -r300 polar_angle.eps 

 

Additional script examples can be found in Appendix A. 

 

Technical Discussion 
 

This trajectory optimization problem is modeled in a two-dimensional polar coordinate system.  The 

planets are assumed to be in circular and coplanar heliocentric orbits.  No allowance is made for the 

eccentricity or orbital inclination of the planetary orbits.  Therefore, all orbital motion is confined to the 

ecliptic plane. 
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The following diagram illustrates the geometry of this coordinate system along with the orientation of 

the steering angle. 

 
 

In this diagram, r is the heliocentric distance of the solar sail,   is the polar angle, v is the transverse or 

tangential component of the velocity, u is the radial component of the solar sail’s velocity and   is the 

steering or solar sail orientation angle.  The steering angle is measured relative to the tangential direction 

and is positive in the counter-clockwise direction. 

 

Solar radiation pressure 

 

Space travel by solar sail is made possible by solar radiation pressure (SRP).  The solar radiation force 

results from the impingement of photons on the reflective, Sun-facing surface of the solar sail. 

 

The solar radiation pressure at any heliocentric distance r is given by 

 

 

2 2

0r S r
P P

r c r

 


   
    

   
  

 

   where 

 

 

2

2

0

4.563 = SRP at 1 AU

1368  at 1 AU
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 speed of light
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S w m

r

c
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









  

 

0 




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Dimensional analysis 

 

To “streamline” the numerical calculations, the fundamental distance, velocity and time in the equations 

of motion are normalized.  In this MATLAB script, all heliocentric distances are normalized with 

respect to the Astronomical Unit which is equal to 149597870.691 kilometers.  Likewise, all velocity 

values are normalized with respect to the “local circular velocity” at the heliocentric distance of the 

Earth’s circular orbit, 0r .  Therefore, the velocity unit is 0r    since 0r  is equal to 1 AU. 

 

Finally, all time values are normalized with respect to 3

0 1r     since again  0r  is equal to 1 

AU.  In these equations,   is the gravitational constant of the Sun.  The corresponding value for this 

astronomical constant is 3 20.0002959122082855912 AU day  . 

 

Equations of motion 

 

The two-dimensional equations of motion in the polar coordinate system are given by 

 

 
 

 

2
2

1 2 32 2

2 32

1
cos cos cos

cos sin cos

r u

v

r

v a
u b b b

r r r

uv a
v b b

r r



  

  





 
     

 

 
    

 

  

 

   where 

 

 

1 2 3

 radial distance

 polar angle

 radial velocity

 transverse (tangential) velocity

 solar sail steering angle

 acceleration ratio

, ,  sail optical properties

r

u

v

a

b b b



















  

 

The acceleration ratio is the ratio of the of the acceleration due to SRP and the acceleration due to the 

point-mass gravity of the Sun, both evaluated at a distance of 1 AU.  The SRP acceleration is also called 

the characteristic acceleration which is defined to be the acceleration experienced by an ideal solar sail 

oriented perpendicular to the direction of the Sun at a heliocentric distance of 1 AU. 
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Therefore, the acceleration ratio   is equal to 
ca a

 where 
ca  is the characteristic acceleration and a

  

is the solar acceleration.  Values for the characteristic acceleration are typically 0.5 to 1.0 millimeters 

per second
2
.  The acceleration due to the Sun is equal to 2r .  If we convert the characteristic 

acceleration in meters per second to normalized units according to 

 

 
 

2

2

86400

1000 149597870.691
c

s daym
a

s m km km AU

 
  

  

  

 

we will have characteristic acceleration in units of AU per day.  Likewise, we can convert the solar 

acceleration to the same unit according to 

 

 
   

23 2

2 2 2

86400

149597870.691

km s s daykm
a

r km s km AU




 
    

 
  

 

The sail optical properties are a function of the method and material used to manufacture the sail.  For an 

ideal solar sail, 1 3 0b b   and 2 1b  .  According to “Solar sail trajectories with piecewise-constant 

steering laws”, by Giovanni Mengali and Alessandro A. Quarta, Aerospace Science and Technology, 13 

(2009) 431-441, the values for a solar sail with a highly reflective aluminum-coated front side and a 

highly emissive chromium-coated back side are 1 20.0864, 0.8272b b   and 3 0.00545b   . 

 

Trajectory optimization 

 

A trajectory optimization problem can be described by a system of dynamic variables 

 

 
 

 

t

t

 
  
 

y
z

u
 

 

consisting of the state variables y  and the control variables u  for any time t.  In this discussion vectors 

are denoted in bold. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows: 

 

    , , ,
d

t t t
dt

    
y

y f y u p  

 

where p is a vector of problem parameters that is not time dependent. 

 

The initial dynamic variables at time 0t  are defined by    0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by    , ,f f f ft t t   ψ ψ y u .  These conditions are called the 

boundary values of the trajectory problem.  The problem may also be subject to path constraints of the 

form    , , 0t t t   g y u . 
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For any mission time t there are also simple bounds on the state variables 

 

  l ut y y y  

the control variables 

  l ut u u u  

 

and the problem parameters 

  l ut p p p  

 

The basic nonlinear programming problem (NLP is to determine the control vector history and problem 

parameters that minimize the scalar performance index or objective function given by 

 

    0 0, , , ,f fJ t t t t    y y p  

 

while satisfying all the user-defined mission constraints. 

 

In this MATLAB script, the total transfer time is the objective function which we are attempting to 

minimize.  The control variables are the steering angles in each time segment.  The final boundary 

conditions or equality constraints are the heliocentric distance and velocities at the destination planet. 

 

The initial conditions are fixed to the normalized values 0 0 0 01, 0, 1, 0r u v     .  The final boundary 

conditions are 0.723331fr   for Venus, 1.52368fr   for Mars, 0, 1f f fu v r  .  The final polar 

angle is not constrained since we are solving a minimum time orbital transfer problem. 

 

The following is the MATLAB source code that initializes the optimization problem.  It establishes the 

proper initial and final conditions, calculates initial guesses for the steering angles and objective 

function, and also sets lower and upper bounds on the final dynamic variables and objective function. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% initial and final times and states 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% define state vector at initial time 

  

xinitial(1) = 1.0d0; 

  

xinitial(2) = 0.0d0; 

  

xinitial(3) = 1.0d0; 

  

xinitial(4) = 0.0; 

  

% final conditions 

  

if (iplanet == 1) 

     

    % Venus 

     

    xfinal(1) = 0.723331; 
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else 

     

    % Mars 

     

    xfinal(1) = 1.52368d0; 

     

end 

  

xfinal(2) = 0.0d0; 

  

xfinal(3) = sqrt(1.0d0 / xfinal(1)); 

  

% initial guess for non-dimensional transfer time 

  

xg(1) = time_g / tfactor; 

  

% initial guess for steering angles (radians) 

  

xg(2:nsegments + 1) = alpha_g; 

  

% transpose initial guess 

  

xg = xg'; 

  

% upper and lower bounds for non-dimensional transfer time 

  

xlb(1) = time_lb / tfactor; 

  

xub(1) = time_ub / tfactor; 

  

% upper and lower bounds for steering angles (radians) 

  

xlb(2:nsegments + 1) = alpha_lb; 

  

xub(2:nsegments + 1) = alpha_ub; 

  

% transpose bounds 

  

xlb = xlb'; 

  

xub = xub'; 

  

% define lower and upper bounds on objective function (transfer time) 

  

flow(1) = 0.0d0; 

  

fupp(1) = +Inf; 

  

% define bounds on final state vector equality constraints 

  

flow(2) = xfinal(1); 

fupp(2) = xfinal(1); 

  

flow(3) = xfinal(2); 

fupp(3) = xfinal(2); 

  

flow(4) = xfinal(3); 

fupp(4) = xfinal(3); 
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flow = flow'; 

  

fupp = fupp'; 

 

The following is the call to the SNOPT algorithm to solve the problem. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% solve solar sail shooting problem 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

snscreen('on'); 

  

[x, f, inform, xmul, fmul] = snopt(xg, xlb, xub, flow, fupp, 'ss2d_shoot'); 

 

The following is the MATLAB source code for the function that performs the shooting calculations.  

This function starts with the initial conditions and integrates the equations of motion along each 

trajectory segment using the current values of the steering angles for each segment. 

 
function [f, g] = ss2d_shoot (x) 

  

% objective function and equality constraints 

  

% simple shooting method 

  

% inputs 

  

%  x(1) = current value of transfer time (objective function) 

%  x(2, nsegments) = current values of steering angle alpha 

  

% outputs 

  

%  f = vector of equality constraints and 

%      objective function evaluated at x 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global tfactor nsegments alpha_wrk xinitial 

  

% compute duration of each time interval (non-dimensional) 

  

deltat = x(1) / nsegments; 

  

% specify number of differential equations 

  

neq = 4; 

  

% truncation error tolerance 

  

tetol = 1.0e-10; 

  

% initialize initial time 

  

ti = -deltat; 

  

% total non-dimensional time of flight 
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tof = x(1); 

  

% set initial conditions 

  

yi(1) = xinitial(1); 

  

yi(2) = xinitial(2); 

  

yi(3) = xinitial(3); 

  

yi(4) = xinitial(4); 

  

% step size guess (non-dimensional time) 

  

h = (1200.0 / 86400.0) / tfactor; 

  

% integrate for all segments 

  

for i = 1:1:nsegments 

     

    alpha_wrk = x(i + 1); 

     

    % increment initial and final times 

     

    ti = ti + deltat; 

     

    tf = ti + deltat; 

     

    % integrate from current ti to tf 

     

    yfinal = rkf78('ss2d_eqm_opt', neq, ti, tf, h, tetol, yi); 

     

    % reset integration vector 

     

    yi = yfinal; 

     

    % check for end of simulation 

     

    if (tf >= tof) 

         

        break; 

         

    end 

     

end 

  

% objective function (minimize non-dimensional transfer time) 

  

f(1) = x(1); 

  

% compute equality constraints (final state boundary conditions) 

  

f(2) = yfinal(1); 

  

f(3) = yfinal(2); 

  

f(4) = yfinal(3); 

  

% transpose 
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f = f'; 

  

% no derivatives 

  

g = []; 

 

The following is the MATLAB function that evaluates the two-dimensional equations of motion. 

 
function ydot = ss2d_eqm_opt (t, y) 

  

% two-dimensional solar sail polar equations of motion 

  

% required by ss2d_opt.m 

  

% input 

  

%  t    = non-dimensional simulation time 

%  y(1) = radial distance (r) 

%  y(2) = radial component of velocity (u) 

%  y(3) = tangential component of velocity (v) 

%  y(4) = polar angle (radians) 

  

% output 

  

%  ydot(1) = r-dot 

%  ydot(2) = u-dot 

%  ydot(3) = v-dot 

%  ydot(4) = theta-dot 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global b1 b2 b3 acc_srp alpha_wrk 

  

% evaluate equations of motion at current conditions 

  

r = y(1); 

  

u = y(2); 

  

v = y(3); 

  

afactor = (acc_srp / r^2) * cos(alpha_wrk); 

  

% r-dot 

  

ydot(1) = u;  

  

% u-dot 

  

ydot(2) = (v^2 / r) - (1.0 / r^2) + afactor * (b1 + b2 * cos(alpha_wrk)^2 ... 

    + b3 * cos(alpha_wrk)); 

  

% v-dot 

  

 

ydot(3) = -(u * v / r) + afactor * sin(alpha_wrk) * (b2 * cos(alpha_wrk) + b3); 
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% theta-dot 

  

ydot(4) = v / r; 
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Appendix A 
 

Additional Script Examples 
 

This appendix summarizes input data files and script results for two additional examples.  The first 

example is an Earth-to-Venus transfer with an ideal solar sail and the second example illustrates an 

Earth-to-Mars mission with a non-ideal solar sail. 

 

Earth-to-Venus with ideal solar sail 

 

For this example, the steering angles are negative since they are bounded by 90 0   .  These 

bounds force the script to fly an interplanetary transfer to an inner planet. 

 
**************************************** 

* input data file for ss2d_opt.m 

* Earth-to-Venus trajectory - ideal sail 

**************************************** 

 

number of trajectory time segments 

35 

 

characteristic acceleration (meters/second**2) 

0.001 

 

optical force model coefficient b1 (b1 = 0 = ideal) 

0.0 

 

optical force model coefficient b2 (b2 = 1 = ideal) 

1.0 

 

optical force model coefficient b3 (b3 = 0 = ideal) 

0.0 

 

target planet (1 = Venus, 2 = Mars) 

1 

 

initial guess for mission duration (days) 

200 

 

lower bound for mission duration (days) 

150 

 

upper bound for mission duration (days) 

250 

 

initial guess for steering angles (degrees) 

-20.0 

 

lower bound for steering angles (degrees) 

-90.0 

 

upper bound for steering angles (degrees) 

0.0 

 

The following is the script output for this example. 

 
program ss2d_opt - Earth-to-Venus 

 

 number of segments 35  
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 initial state vector  

 

  radius                  1.00000000 (AU) 

 

  radial velocity         0.00000000 (AU/day) 

 

  transverse velocity     1.00000000 (AU/day) 

 

 

 final state vector  

 

  radius                  0.72333100 (AU) 

 

  radial velocity        -0.00000001 (AU/day) 

 

  transverse velocity     1.17579460 (AU/day) 

 

 

  total transfer time     3.52308069 (non-dimensional) 

 

  total transfer time   204.80527993 days 
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Earth-to-Mars with optical solar sail 

 

This example uses 50 trajectory segments and models a typical non-ideal solar sail. 

 
******************************************* 

* input data file for ss2d_opt.m 

* Earth-to-Mars trajectory – non-ideal sail 

******************************************* 

 

number of trajectory segments 

50 

 

characteristic acceleration (meters/second**2) 

0.001 

 

optical force model coefficient b1 (b1 = 0 = ideal) 

0.0864 

 

optical force model coefficient b2 (b2 = 1 = ideal) 

0.8272 

 

optical force model coefficient b3 (b3 = 0 = ideal) 

-5.45e-3 

 

target planet (1 = Venus, 2 = Mars) 

2 

 

initial guess for mission duration (days) 

400 

 

lower bound for mission duration (days) 

250 

 

upper bound for mission duration (days) 

500 

 

initial guess for steering angles (degrees) 

20.0 

 

lower bound for steering angles (degrees) 

0.0 

 

upper bound for steering angles (degrees) 

90.0 

 

The following is the script output for this example. 

 
program ss2d_opt - Earth-to-Mars 

 

 number of segments 50  

 

 initial state vector  

 

  radius                  1.00000000 (AU) 

 

  radial velocity         0.00000000 (AU/day) 

 

  transverse velocity     1.00000000 (AU/day) 

 

 

 final state vector  

 

  radius                  1.52367998 (AU) 

 



Orbital Mechanics with MATLAB 

page 17 

 

  radial velocity         0.00000000 (AU/day) 

 

  transverse velocity     0.81012702 (AU/day) 

 

 

  total transfer time     7.70083775 (non-dimensional) 

 

  total transfer time   447.66849522 days 
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Bi-elliptic Transfer Between Coplanar Circular Orbits 
 

This document describes a MATLAB script called bielliptic.m that can be used to determine the 

characteristics of a time-free, three impulse bi-elliptic transfer between two coplanar circular orbits.  The 

impulsive V  assumption means that the velocity, but not the position, of the space vehicle is changed 

instantaneously.  This script also creates graphic displays of the three-dimensional orbits and transfer 

trajectory, and the evolution of the primer vector and its derivative. 

 

For the coplanar bi-elliptic transfer, all three velocity impulses are confined to the orbital planes of the 

initial and final orbits.  The first impulse creates an elliptical transfer orbit with a perigee altitude equal 

to the altitude of the initial circular orbit and an apogee altitude well beyond the altitude of the final 

orbit.  The second impulse creates a second transfer ellipse with an apogee radius equal to that of the 

first transfer ellipse and a perigee radius identical to the value of the final orbit radius. 

 

The third impulsive maneuver circularizes the second transfer orbit at perigee of the transfer orbit.  The 

first two impulses are posigrade which means that they are in the direction of orbital motion.  The third 

impulse is retrograde since it must slow down the spacecraft for insertion into the final mission orbit. 

 

For final to initial radius ratios greater than 15.58, the bi-elliptic transfer requires less total propulsive 

energy than the Hohmann transfer.  It can also be shown that an outer (intermediate apogee altitude 

greater than the final orbit altitude) bi-elliptic transfer is more efficient than an inner transfer. 

 

Interacting with the script 
 

The following is a typical user interaction with this script.  User inputs to the script are in bold font.  

Please note that the script will either accept a user-defined intermediate altitude or calculate the 

optimum value using Brent’s root-finding algorithm. 

 
Bi-elliptic Orbit Transfer Analysis 

 

 

please input the initial altitude (kilometers) 

? 300.0 

 

 

please input the final altitude (kilometers) 

? 5000.0 

 

 

type of intermediate altitude computation 

 

  <1> optimal 

 

  <2> user-defined 

 

 selection (1 or 2) 

? 2 

 

please input the bi-elliptic altitude (kilometers) 

? 10000.0 
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The following is the script output created for this example. 

 
Bi-elliptic Orbit Transfer Analysis 

----------------------------------- 

 

initial orbit altitude                 300.0000 kilometers  

 

initial orbit radius                  6678.1363 kilometers  

 

initial orbit velocity                7725.7606 meters/second  

 

 

first ellipse perigee altitude         300.0000 kilometers  

 

first ellipse perigee radius          6678.1363 kilometers  

 

first ellipse apogee altitude        10000.0000 kilometers  

 

first ellipse apogee radius          16378.1363 kilometers  

 

first ellipse perigee velocity        9208.6069 meters/second  

 

first ellipse apogee velocity         3754.7820 meters/second  

 

first ellipse eccentricity           0.42070981  

 

 

second ellipse perigee altitude       5000.0000 kilometers  

 

second ellipse perigee radius        11378.1363 kilometers  

 

second ellipse apogee altitude       10000.0000 kilometers  

 

second ellipse apogee radius         16378.1363 kilometers  

 

second ellipse perigee velocity       6429.8373 meters/second  

 

second ellipse apogee velocity        4466.9042 meters/second  

 

second ellipse eccentricity          0.18013946  

 

 

final orbit altitude                  5000.0000 kilometers  

 

final orbit radius                   11378.1363 kilometers  

 

final orbit velocity                  5918.7953 meters/second  

 

 

first delta-v                         1482.8463 meters/second  

 

second delta-v                         712.1221 meters/second  

 

third delta-v                          511.0420 meters/second  

 

total delta-v                         2706.0105 meters/second  

 

first ellipse transfer time              1.7109 hours  

                                         0.0713 days  

 

second ellipse transfer time             2.2598 hours  

                                         0.0942 days  

 

total transfer time                      3.9707 hours  

                                         0.1654 days 
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The bielliptic MATLAB script will also create graphic displays of the three-dimensional initial, 

final and transfer trajectory and the evolution of the primer vector and its derivative.  The first graphic 

image is a three-dimensional display of the solution.  In this image, the initial orbit is red, the final orbit 

is green, and the transfer trajectory is blue.  The dimensions are Earth radii (ER) and the plot is labeled 

with an ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.  The 

interactive graphic features of MATLAB allow the user to rotate and zoom the display.  These 

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer. 
 

 
These next two plots illustrate the evolution of the primer vector and its derivative as a function of time, 

in days, since the first impulse.  The location of each impulse is marked with a small red circle. 
 

 
 

The bielliptic MATLAB script will also create color Postscript disk files of these graphic images.  

Each image includes a TIFF preview and is created with MATLAB source code similar to 
 

print -depsc -tiff -r300 bielliptic1.eps 
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For comparison, here are the characteristics of this mission using a two impulse Hohmann transfer. 

 
Hohmann Orbit Transfer Analysis 

------------------------------- 

 

initial orbit altitude              300.0000 kilometers  

 

initial orbit radius               6678.1363 kilometers  

 

initial orbit inclination             0.0000 degrees  

 

initial orbit velocity             7725.7606 meters/second  

 

 

final orbit altitude               5000.0000 kilometers  

 

final orbit radius                11378.1363 kilometers  

 

final orbit inclination               0.0000 degrees  

 

final orbit velocity               5918.7953 meters/second  

 

 

first inclination change              0.0000 degrees 

 

second inclination change             0.0000 degrees 

 

total inclination change              0.0000 degrees 

 

 

first delta-v                       947.4074 meters/second  

 

second delta-v                      828.2781 meters/second  

 

total delta-v                      1775.6855 meters/second  

 

 

transfer orbit semimajor axis      9028.1363 kilometers  

 

transfer orbit eccentricity       0.26029736  

 

transfer orbit inclination            0.0000 degrees  

 

transfer orbit perigee velocity    8673.1680 meters/second  

 

transfer orbit apogee velocity     5090.5171 meters/second  

 

transfer orbit coast time          4268.5281 seconds  

                                     71.1421 minutes  

                                      1.1857 hours 

 

Since the radius ratio  f ir r  for this example is less than 15.58, the Hohmann orbit transfer is more 

efficient, in terms of the total V  required, than the bi-elliptic transfer. 

 

The following is the script output for this same example where we allow the software to compute the 

optimal intermediate altitude.  Since the radius ratio is less than 15.58, the script finds a two impulse 

Hohmann transfer.  For this situation, the apogee altitude of the intermediate transfer ellipses is equal to 

the altitude of the final circular orbit. 
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Bi-elliptic Orbit Transfer Analysis 

----------------------------------- 

 

initial orbit altitude                 300.0000 kilometers  

 

initial orbit radius                  6678.1363 kilometers  

 

initial orbit velocity                7725.7606 meters/second  

 

 

first ellipse perigee altitude         300.0000 kilometers  

 

first ellipse perigee radius          6678.1363 kilometers  

 

first ellipse apogee altitude         5000.0003 kilometers  

 

first ellipse apogee radius          11378.1366 kilometers  

 

first ellipse perigee velocity        8673.1680 meters/second  

 

first ellipse apogee velocity         5090.5170 meters/second  

 

first ellipse eccentricity           0.26029737  

 

 

second ellipse perigee altitude       5000.0000 kilometers  

 

second ellipse perigee radius        11378.1363 kilometers  

 

second ellipse apogee altitude        5000.0003 kilometers  

 

second ellipse apogee radius         11378.1366 kilometers  

 

second ellipse perigee velocity       5918.7953 meters/second  

 

second ellipse apogee velocity        5918.7952 meters/second  

 

second ellipse eccentricity          0.00000001  

 

 

final orbit altitude                  5000.0000 kilometers  

 

final orbit radius                   11378.1363 kilometers  

 

final orbit velocity                  5918.7953 meters/second  

 

 

first delta-v                          947.4074 meters/second  

 

second delta-v                         828.2781 meters/second  

 

third delta-v                            0.0000 meters/second  

 

total delta-v                         1775.6856 meters/second  

 

 

first ellipse transfer time              1.1857 hours  

                                         0.0494 days  

 

second ellipse transfer time             1.6776 hours  

                                         0.0699 days  

 

total transfer time                      2.8633 hours  

                                         0.1193 days 
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Here’s the script output and primer plots for an orbit transfer example where we allow the software to 

compute the optimal apogee altitude of the two intermediate transfer ellipses.  For this example, the 

altitude of the initial circular orbit is 300 kilometers and the altitude of the final circular orbit is 100,000 

kilometers  15.929f ir r  . 

 
Bi-elliptic Orbit Transfer Analysis 

----------------------------------- 

 

initial orbit altitude                 300.0000 kilometers  

 

initial orbit radius                  6678.1363 kilometers  

 

initial orbit velocity                7725.7606 meters/second  

 

 

first ellipse perigee altitude         300.0000 kilometers  

 

first ellipse perigee radius          6678.1363 kilometers  

 

first ellipse apogee altitude     10631435.2731 kilometers  

 

first ellipse apogee radius       10637813.4094 kilometers  

 

first ellipse perigee velocity       10922.4475 meters/second  

 

first ellipse apogee velocity            6.8568 meters/second  

 

first ellipse eccentricity           0.99874524  

 

 

second ellipse perigee altitude     100000.0000 kilometers  

 

second ellipse perigee radius       106378.1363 kilometers  

 

second ellipse apogee altitude    10631435.2731 kilometers  

 

second ellipse apogee radius      10637813.4094 kilometers  

 

second ellipse perigee velocity       2723.9367 meters/second  

 

second ellipse apogee velocity          27.2394 meters/second  

 

second ellipse eccentricity          0.98019802  

 

 

final orbit altitude                100000.0000 kilometers  

 

final orbit radius                  106378.1363 kilometers  

 

final orbit velocity                  1935.7207 meters/second  

 

 

first delta-v                         3196.6869 meters/second  

 

second delta-v                          20.3825 meters/second  

 

third delta-v                          788.2160 meters/second  

 

total delta-v                         4005.2855 meters/second  

 

 

first ellipse transfer time          16971.5253 hours  

                                       707.1469 days  
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second ellipse transfer time         17210.5245 hours  

                                       717.1052 days  

 

total transfer time                  34182.0498 hours  

                                      1424.2521 days 

 

   
 

Here’s the Hohmann transfer solution for this example.  Since the radius ratio for this example is greater 

than 15.58, the bi-elliptic orbit transfer is more efficient than the Hohmann transfer. 

 
Hohmann Orbit Transfer Analysis 

------------------------------- 

 

initial orbit altitude              300.0000 kilometers  

 

initial orbit radius               6678.1363 kilometers  

 

initial orbit inclination             0.0000 degrees  

 

initial orbit velocity             7725.7606 meters/second  

 

 

final orbit altitude              100000.0000 kilometers  

 

final orbit radius                106378.1363 kilometers  

 

final orbit inclination               0.0000 degrees  

 

final orbit velocity               1935.7207 meters/second  

 

 

first inclination change              0.0000 degrees 

 

second inclination change             0.0000 degrees 

 

total inclination change              0.0000 degrees 

 

 

first delta-v                      2872.5124 meters/second  

 

second delta-v                     1270.3893 meters/second  

 

total delta-v                      4142.9017 meters/second  

 

 

transfer orbit semimajor axis     56528.1363 kilometers  
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transfer orbit eccentricity       0.88186173  

 

transfer orbit inclination            0.0000 degrees  

 

transfer orbit perigee velocity   10598.2730 meters/second  

 

transfer orbit apogee velocity      665.3314 meters/second  

 

transfer orbit coast time         66877.1857 seconds  

                                   1114.6198 minutes  

                                     18.5770 hours 

 

Technical Discussion 
 

The following diagram (not to scale) illustrates the geometry of the coplanar bi-elliptic orbit transfer.  In 

this figure, 
ir  is the geocentric radius of the initial circular orbit, 

ar  is the apogee radius of the two 

transfer ellipses, and fr  is the radius of the final circular orbit.  The locations and directions of the first, 

second and third impulsive maneuvers are labeled 1 2,V V   and 3V , respectively. 

 

1V

2V

3V

i
r

f
r

ar

 
 

The total impulsive delta-v for a bi-elliptic orbital transfer is a function of the initial, intermediate and 

final orbital altitudes.  The relationship between geocentric radius and orbital altitude is as follows: 

 

 i e i a e a f e fr r h r r h r r h       
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where ri  is the geocentric radius of the initial circular park orbit, 
ar  is the radius at the intermediate 

impulse, and rf  is the radius of the final circular mission orbit.  In these equations, ,  and i a fh h h  are the 

corresponding altitudes and re  is the radius of the Earth. 

 

The magnitude of the first impulse is 

 
11 p iV v v    

 

and is simply the difference between the speed on the initial circular orbit and the perigee speed of the 

first transfer ellipse.  The scalar magnitude of the second impulse is 
 

 2 2 1a a
V v v    

 

which is the difference between the speed at apogee of the first transfer ellipse and the apogee speed of 

the second transfer ellipse. 

 

Finally, the scalar magnitude of the final delta-v is 

 

 
3 2pfV v v    

 

which is the speed difference between the final circular orbit and the speed at perigee of the second 

transfer ellipse. 

 

The orbital speeds required for these computations can be determined from 

 

 
i f

i f

v v
r r

 
   

 

 
1 1

1 1

2 2
p a

i a

v v
r a r a

   
     

 

 
2 2

2 2

2 2
p a

f a

v v
r a r a

   
     

 

In these equations,   is the gravitational constant of the central body, and the semimajor axis of each 

transfer ellipse is computed from 

 
1 2

2 2

a fi a
r rr r

a a


   

 

The transfer time from the first impulse to the final impulse is equal to the sum of the half orbital periods 

of the two transfer ellipses according to 

 
3 3

1 2a a
  

 
   
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Software implementation 
 

For the optimal intermediate altitude script option, the software calls the built-in bounded 

minimization MATLAB algorithm to solve for the intermediate apogee altitude that minimizes the total 

delta-v required for the mission. 

 

The call to the algorithm is as follows: 

 
[x, fx, exitflag] = fminbnd('befunc', xmin, xmax); 

 

where befunc is the objective function for this problem.  In the argument list, xmin and xmax are the 

lower and upper bounds for the intermediate radius, x is the solved-for intermediate altitude, and fx is 

the corresponding total delta-v.  In this script, they are equal to the radius of the final orbit and one 

hundred times this radius as follows 

 
xmin = rf; 

 
xmax = 100.0 * rf; 

 

The following is the MATLAB source code for the objective function. 

 
function fx = befunc (x) 

  

% bi-elliptic radius objective function 

  

% required by bielliptic.m 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global mu ri rf 

  

% semimajor axes of the transfer orbits (kilometers) 

  

sma1 = (ri + x) / 2.0; 

  

sma2 = (x + rf) / 2.0; 

  

% initial orbit velocity (kilometers/second) 

  

vi = sqrt(mu / ri); 

  

% first transfer ellipse periapsis velocity (kilometers/second) 

  

vt1a = sqrt((2.0 * mu / ri) - (mu / sma1)); 

  

% first transfer ellipse apoapsis velocity (kilometers/second) 

  

vt1b = sqrt((2.0 * mu / x) - (mu / sma1)); 

  

% second transfer ellipse periapsis velocity (kilometers/second) 

  

vt2b = sqrt((2.0 * mu / x) - (mu / sma2)); 
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% second transfer ellipse periapsis velocity (kilometers/second) 

  

vt2c = sqrt((2.0 * mu / rf) - (mu / sma2)); 

  

% final orbit velocity (kilometers/second) 

  

vf = sqrt(mu / rf); 

  

% compute delta-v contibutions (kilometers/second) 

  

dva = abs(vt1a - vi); 

  

dvb = abs(vt2b - vt1b); 

  

dvc = abs(vf - vt2c); 

    

% calculate objective function value 

  

fx = dva + dvb + dvc; 

 

The classic bi-elliptic technical paper is “The Bi-elliptical Transfer Between Co-planar Circular Orbits” 

by Rudolf F. Hoelker and Robert Silber which was published in Advances in Ballistic Missiles and 

Space Technology, Volume 3, Pergamon, Oxford, 1961. 

 

An excellent document that describes impulsive orbital transfers is “Optimal Impulsive Maneuvers in 

Orbital Transfers” by Silvano Sgubini and Paolo Teofilatto.  A PDF version of this document can be 

downloaded from http://naca.central.cranfield.ac.uk/dcsss/2002/E05a_sgubini.pdf. 

 

Additional information can also be found in Chapter 6 of “Fundamentals of Astrodynamics and 

Applications” by David A. Vallado, Microcosm Press, 2007. 

 

Primer Vector Analysis 
 

This section summarizes the primer vector analysis included with this MATLAB script.  The term 

primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity.  A 

technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for 

Space Navigation, Butterworths, London, 1963.  Another excellent resource is “Primer Vector Theory 

and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-

burn, Space Trajectories”, also by Jezewski. 

 

As shown by Lawden, the following four necessary conditions must be satisfied in order for an 

impulsive orbital transfer to be locally optimal: 

 

(1) the primer vector and its first derivative are everywhere continuous 
 

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and 

has unit magnitude  ˆ ˆ  and 1T  p p u p  

 

(3) the magnitude of the primer vector may not exceed unity on a coasting arc  1p p  

 

 
 

 

http://naca.central.cranfield.ac.uk/dcsss/2002/E05a_sgubini.pdf
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(4) at all interior impulses (not at the initial or final times) 0p p ; therefore, 0d dt p  at the 

intermediate impulses 

 

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses 

provide information about how to improve the nominal transfer trajectory by changing the endpoint 

times and/or moving the impulse times.  These four cases for non-zero slopes are summarized as 

follows; 

 

 If 
0 0p   and 0fp    perform an initial coast before the first impulse and add a final coast 

after the second impulse 
 

 If 0 0p   and 0fp    perform an initial coast before the first impulse and move the second 

impulse to a later time 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and add a final coast after the 

second impulse 
 

 If 0 0p   and 0fp    perform the first impulse at an earlier time and move the second 

impulse to a later time 

 

The primer vector analysis of a two impulse orbital transfer involves the following steps. 

 

First partition the two-body state transition matrix as follows: 

 

   0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
                
   

r r

r v

v v

r v

 

 

where 

 

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
               

       

r

r
 

and so forth. 

 

The value of the primer vector at any time t along a two body trajectory is given by 

 

      11 0 0 12 0 0, ,t t t t t p p p  

 

and the value of the primer vector derivative is 

 

      21 0 0 22 0 0, ,t t t t t p p p  

 

which can also be expressed as 
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   0

0

0

,t t
  

    
   

pp

pp
 

 

The primer vector boundary conditions at the initial and final impulses are as follows: 

 

    0
0 0

0

f

f f

f

t t


   
 

VV
p p p p

V V
 

 

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit 

vector in the direction of the corresponding impulse. 

 

The value of the primer vector derivative at the initial time is 

 

       1

0 0 12 0 11 0 0, ,f f ft t t t t  p p p p  

 

provided the 12  sub-matrix is non-singular. 

 

The scalar magnitude of the derivative of the primer vector can be determined from 

 

  
2d d

dt dt
 

p p p
p p

p
 

 

As noted by D. J. Jezewski, the primer vector is sometimes called the Lagrange multiplier, costate vector 

or perhaps an adjoint variable. 
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Program oneburn_ocs 
 

Single Maneuver, Finite-Burn Trajectory Optimization 
 

This document is the user’s manual for a Fortran computer program called oneburn_ocs that uses the 

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve an Earth orbit transfer 

trajectory optimization problem.  The software models the trajectory as a single, finite-burn propulsive 

maneuver followed by a user-defined, time-bounded final coast phase. This computer program attempts 

to maximize the final spacecraft mass.  Since this simulation involves a single continuous maneuver, this 

is equivalent to minimizing the required propellant mass. 

 

The important features of this scientific simulation are as follows: 
 

 single, continuous thrust orbital maneuver 
 

 variable inertial attitude steering 
 

 constant propulsive thrust magnitude 
 

 modified equinoctial equations of motion with oblate Earth gravity model 
 

 user-specified final coast phase 
 

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of 

trajectory optimization problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 

 

Additional information about the mathematical techniques and numerical methods used in the Sparse 

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation 

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org). 

 

The oneburn_ocs software consists of Fortran routines that perform the following tasks: 
 

 set algorithm control parameters and call the transcription/optimal control subroutine 
 

 define the problem structure and perform initialization related to scaling, lower and upper 

bounds, initial conditions, etc. 
 

 compute the right-hand-side differential equations 
 

 evaluate any point and path constraints 
 

 display the optimal solution results and create an output file 

 

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal 

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.  

The oneburn_ocs software allows the user to select the type of initial guess, collocation method, and 

other important algorithm control parameters. 

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/
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Program Execution 
 

An input file created by the user can be run from the command line or a simple batch file with a 

statement similar to the following: 

 
oneburn_ocs leo2gto.in 

 

If the software is executed without an input file on the command line, the computer program will display 

the following information screen and file name prompt: 

 
*************************************' 

*        program oneburn_ocs        *' 

*                                   *' 

*   single maneuver, finite-burn    *' 

*      trajectory optimization      *' 

*                                   *' 

*         February 20, 2012         *' 

*************************************' 

 

please input the name of the simulation definition file 

 

The user should respond to this prompt with the name of a compatible input data file including the 

filename extension. 

 

The screen output created by the oneburn_ocs computer program can be re-directed to a text file with 

a command line similar to 

 
oneburn_ocs leo2gto.in >leo2gto.txt 

 

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories 

and finally Command Prompt.  The size, font and other characteristics of the screen can be controlled 

by the user with the c:\ icon in the upper left corner of the window.  To log into the subdirectory created 

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory 

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is 

the name of the subdirectory created by the user. 

 

The DOS command line prompt looks similar to C:\oneburn_ocs>_. 

 

Input File Format and Contents 
 

The oneburn_ocs software is “data-driven” by a user-created text file.  This text file should be simple 

ASCII format with no special characters. 

 

The following is a typical input file used by this computer program.  In the following discussion the 

actual input file contents are in courier font and all explanations are in times italic font.  This example 

attempts to optimize the maneuver required to transfer a spacecraft from a circular low Earth orbit 

(LEO) to a typical elliptical geosynchronous transfer orbit (GTO). 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 
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correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 

 

The first six lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with six and only six initial text lines. 

 
************************************************ 

** earth-orbit trajectory optimization 

** single finite-burn maneuver with final coast 

** program oneburn_ocs 

** leo2gto.in – February 20, 2012 

************************************************ 

 

The first three inputs define the initial mass prior to the propulsive maneuver, and the thrust magnitude 

and specific impulse of the upper stage or spacecraft propulsion system. 
 

initial spacecraft mass (kilograms) 

10000.0 

 

thrust magnitude (newtons) 

99200.0 

 

specific impulse (seconds) 

450.0 

 

This next integer input defines the type of initial guess for the propulsive maneuver. 
 

******************************** 

type of propulsive initial guess 

******************************** 

1 = thrust duration 

2 = delta-v 

------------------- 

2 

 

The next two numeric inputs define either the user’s initial guess for the delta-v magnitude or the 

maneuver duration, and should be consistent with the previous input. 
 

initial guess for delta-v (meters/second) 

2800.0 

 

initial guess for thrust duration (seconds) 

550.0 

 

The next two inputs define the lower and upper bounds for the thrust duration.  These inputs are 

required for either type of propulsive initial guess. 
 

lower bound for thrust duration (seconds) 

0.01 

 

upper bound for thrust duration (seconds) 

10000.0 

 

The next section of the input data file lets the user define the characteristics of a final coast phase that 

follows the propulsive maneuver.  These three inputs define an initial guess for the coast duration as 

well as lower and upper bounds on the coast duration. 
 

************** 

coast maneuver 

************** 
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initial guess for coast duration (seconds) 

20.0 

 

lower bound for coast duration (seconds) 

1.0 

 

upper bound for coast duration (seconds) 

2000.0 

 

The next six inputs define the classical orbital elements of the initial park orbit.  These elements are 

defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

6563.14d0 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5d0 

 

argument of perigee (degrees) 

0.0 

 

right ascension of the ascending node (degrees) 

0.0d0 

 

true anomaly (degrees) 

0.0 

 

This next integer input allows the user to define the type of initial orbit constraints to use during the 

simulation. 
 

******************************** 

initial orbit constraint options 

******************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all initial orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

The next six inputs define the classical orbital elements of the final mission orbit.  These elements are 

defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

*************** 

* FINAL ORBIT * 

*************** 

 

semimajor axis (kilometers) 

24364.8d0 

 

orbital eccentricity (non-dimensional) 

0.73062206d0 

 

orbital inclination (degrees) 

26.3355d0 

 

argument of perigee (degrees) 

270.0d0 
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right ascension of the ascending node (degrees) 

0.0d0 

 

true anomaly (degrees) 

0.0d0 

 

This next integer input allows the user to define the type of final orbit constraints to use during the 

simulation. 
 

****************************** 

final orbit constraint options 

****************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all final orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

1 

 

This integer input specifies the type of gravity model to use during the simulation.  Option 2 will use a 

2J  gravity model in the spacecraft equations of motion. 
 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 

 

This next input defines the type of initial guess to use.  Please see the technical discussion section for 

information about how the first option is modeled.  Option 2 requires either a binary restart file created 

from a previous run using either initial guess option 1 or an updated binary restart file.  This feature is 

described in the next two sections. 
 

************************* 

* initial guess options * 

************************* 

 1 = numerical integration 

 2 = binary data file 

--------------------- 

1 

 

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input 

specifies the name of the file to use. 
 

name of binary initial guess data file 

leo2gto.rsbin 

 

The following input can be used to create or update an initial guess binary file.  The creation or update 

process uses the filename defined above.  For initial guess option 1, the software will create a binary 

restart file.  For initial guess option 2, an input of yes to this item will update the binary file used to 

initialize the simulation. 
 

****************************** 

* binary restart file option * 

****************************** 

 

create/update binary data file (yes or no) 

no 
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This next input specifies the type of solution data file to create. 
 

********************************************** 

* type of comma-delimited solution data file * 

********************************************** 

 1 = OCS-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

2 

 

For options 2 or 3, this input defines either the number of data points or the time step size of the data 

output in the solution file. 
 

number of user-defined nodes or print step size in solution data file 

100 

 

The name of the comma-separated-variable solution data file is defined in this next line. 
 

name of solution output file 

leo2gto.csv 

 

The next series of program inputs are algorithm control options and parameters for the Sparse 

Optimization Suite.  The first input is an integer that specifies the type of collocation method to use 

during the solution process.  For most simulations, the trapezoidal method is recommended. 
 

******************************** 

* algorithm control parameters * 

******************************** 

 

discretization/collocation method 

--------------------------------- 

 1 = trapezoidal 

 2 = separated Hermite-Simpson 

 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

The next input defines the relative error in the objective function. 
 

relative error in the objective function (performance index) 

1.0d-5 

 

The next input defines the relative error in the solution of the differential equations. 
 

relative error in the solution of the differential equations 

1.0d-7 

 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 

maximum number of mesh refinement iterations 

20 

 

The next input is an integer that defines the maximum number of function evaluations. 
 

maximum number of function evaluations 

50000 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 

maximum number of algorithm iterations 

10000 
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The level of output from the Sparse Optimization Suite NLP algorithm is controlled with the following 

integer input. 
 

*************************** 

sparse NLP iteration output 

--------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 

 

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the 

following integer input.  Please note that option 4 will create lots of information. 
 

********************** 

optimal control output 

---------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 

 

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled 

with the following integer input.  Please note that option 5 will create lots of information. 
 

**************************** 

differential equation output 

---------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The level of output can be further controlled by the user with this final text input.  This program option 

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s 

manual.  To ignore this special output control, input the simple character string no. 
 

******************* 

user-defined output 

------------------- 

input no to ignore 

------------------ 

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0 

 

The last series of inputs allow the reading and writing of configuration input files.  The user should 

create a configuration file before attempting to read one.  These configuration files are simple text files 

which can be edited external to the oneburn_ocs software.  Please consult Appendix C. 
 

*************************************** 

* optimal control configuration options 

*************************************** 

 

read an optimal control configuration file (yes or no) 

no 
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name of optimal control configuration file 

leo2gto_config.txt 

 

create an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2gto_config1.txt 

 

Optimal control solution 
 

The following is the optimal control solution for this example.  This example used variable attitude 

steering during the propulsive maneuver, and a final bounded coast.  The output includes the time and 

orbital characteristics at the beginning and end of the propulsive maneuver.  This example optimizes the 

maneuver required to transfer from a circular low Earth orbit (LEO) to a typical elliptical 

geosynchronous transfer orbit (GTO).  Appendix A contains a brief summary of this information. 

 
 program oneburn_ocs 

 =================== 

   

 input file ==> leo2gto.in 

   

 oblate earth gravity model 

   

 ------------------------ 

 beginning of finite burn 

 ------------------------ 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.656314000000D+04    0.303099251680D-16    0.285000000000D+02    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.343626272476D+03    0.284333562833D+03    0.284333562833D+03    0.881915957810D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.164199672837D+02    -.581964995764D+04    -.303417392626D+04    0.656314000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.772230207356D+01    -.501755544829D+00    0.920593794451D+00    0.779315089527D+01 

   

 ------------------ 

 end of finite burn 

 ------------------ 

 

 mission elapsed time     00:03:29.965 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243647798517D+05    0.730621883714D+00    0.263354841203D+02    0.269999803084D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.125070318737D-03    0.159279650912D+02    0.285927768175D+03    0.630817068563D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.183083308977D+04    -.574950274971D+04    -.284601509915D+04    0.667147162297D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.100245469314D+02    0.145694376803D+01    0.721178679773D+00    0.101555071272D+02 
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The following program output is the final spacecraft mass, the propellant mass consumed, the actual 

thrust duration for the maneuver, and the accumulated delta-v. 

 
 final mass             5280.17375040397      kilograms 

   

 propellant mass        4719.82624959603      kilograms 

   

 thrust duration        209.965300814227      seconds 

   

 delta-v                2818.25253032923      meters/second 

 

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at 

each collocation node or user-defined step size. 

 

This section of the numeric results summarizes the time and orbital conditions at the beginning and end 

of the final coast. 

 
 --------------------------- 

 beginning of coast maneuver 

 --------------------------- 

 

 mission elapsed time     00:03:29.965 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243647798517D+05    0.730621883714D+00    0.263354841203D+02    0.269999803084D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.125070318734D-03    0.159279650912D+02    0.285927768175D+03    0.630817068563D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.183083308977D+04    -.574950274971D+04    -.284601509915D+04    0.667147162297D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.100245469314D+02    0.145694376803D+01    0.721178679773D+00    0.101555071272D+02 

   

 --------------------- 

 end of coast maneuver 

 --------------------- 

 

 mission elapsed time     00:03:30.965 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243648000000D+05    0.730622060000D+00    0.263355000000D+02    0.270000000000D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.360000000000D+03    0.160144835450D+02    0.286014483545D+03    0.630817851038D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.184085640569D+04    -.574804194749D+04    -.284529200486D+04    0.667266252177D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.100220828732D+02    0.146465973235D+01    0.725009431797D+00    0.101544577367D+02 

   

   

 coast duration         1.00000000000151      seconds 

                       1.666666666669177E-002 minutes 
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The following plots illustrate the evolution of the inertial right ascension, declination and pitch and yaw 

angles during this finite-burn maneuver. 

 

 

          
 

 

The next two plots illustrate the evolution of the semimajor axis and orbital eccentricity of the transfer 

orbit during this finite-burn maneuver. 

 

        
 

 

These final two plots illustrate the behavior of the radial, tangential and radial components of the unit 

thrust vector, and the accumulated delta-v during the propulsive maneuver. 
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The following is a graphics display of the initial (red trace) and final orbits (blue trace). 
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Verification of the optimal control solution 
 

The optimal control solution determined by the Sparse Optimization Suite can be verified by 

numerically integrating the orbital equations of motion with the OC-computed initial park orbit 

conditions and the optimal control solution.  This is equivalent to solving an initial value problem (IVP) 

that uses the optimal unit thrust vector solution.  This part of the oneburn_ocs computer program uses 

a Runge-Kutta-Fehlberg 7(8) variable step size method to integrate the orbital equations of motion. 

 

The following is a display of the final solution computed using this explicit numerical integration 

method. 

 
 ======================================== 

 verification of optimal control solution 

 ======================================== 

 

 ------------------ 

 end of finite burn 

 ------------------ 

 

 mission elapsed time     00:03:29.965 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243647798517D+05    0.730621883714D+00    0.263354841203D+02    0.269999803084D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.125070318737D-03    0.159279650912D+02    0.285927768175D+03    0.630817068563D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.183083308977D+04    -.574950274971D+04    -.284601509915D+04    0.667147162297D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.100245469314D+02    0.145694376803D+01    0.721178679773D+00    0.101555071272D+02 

 

 

 final mass             5280.17375040377      kilograms 

 

 propellant mass        4719.82624959623      kilograms 

 

 thrust duration        209.965300814227      seconds 

 

 delta-v                2818.25213904842      meters/second 

 

 

 final mission orbit 

 ------------------- 

 

 mission elapsed time     00:03:30.965 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.243648000037D+05    0.730622059923D+00    0.263355000035D+02    0.270000000226D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.359999999997D+03    0.160144833255D+02    0.286014483551D+03    0.630817851180D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.184085640604D+04    -.574804194714D+04    -.284529200507D+04    0.667266252165D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.100220828707D+02    0.146465974729D+01    0.725009439586D+00    0.101544577369D+02 
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In additional to the user-defined solution output file, the oneburn_ocs program will create two 

additional comma-separated-variable  data files named orbits.csv and maneuver.csv.  The first file 

contains the position vectors of the initial and final orbits normalized with respect to the radius of the 

Earth.  The second data file contains the information described in Appendix A starting at ignition and 

ending at burnout of the propulsive maneuver. 

 

Creating an initial guess 
 

The software allows the user to input either a delta-v or thrust duration initial guess.  For a delta-v initial 

guess, the software estimates the thrust duration using the rocket equation.  For either type of initial 

guess, the user should also provide lower and upper bounds for the total thrust duration. 

 

An estimate of the thrust duration can be determined from the following expression: 

 

 
sp p p ex

d

I m g m V
t

F F
   

 

The propellant mass required for a given V  is a function of the initial (or final) mass of the spacecraft 

and the exhaust velocity as follows: 
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In these equations 
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The software requires an initial guess for the thrust duration.  The user should also provide lower and 

upper bounds for the total thrust duration.  All of these inputs should be in seconds.  If the Sparse 

Optimization Suite cannot find a feasible solution, try increasing the guess for thrust duration. 

 

The software uses a tangential thrusting steering method to generate an initial guess for the optimal 

trajectory.  For tangential thrusting, the unit thrust vector in the modified equinoctial frame at all times is 

simply  0 1 0
T

T u .  Please note that this type of steering method creates a coplanar initial guess.  

It works best when the initial and final orbits are nearly coplanar. 

 

The dynamic variables at each grid point of the initial guess are determined by setting the initial guess 

option INIT(1) = 6 with INIT(2) = 2 within the odeinp subroutine for this aerospace trajectory 
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optimization problem.  These program options create an initial guess from the numerical integration of 

the equations of motion coded in the oderhs subroutine.  The INIT(1) = 6 program option tells the 

Sparse Optimization Suite to construct an initial guess by solving an initial value problem (IVP) with a 

linear control approximation.  The INIT(2) = 2 program option tells the program to use the Dormand-

Prince variable step size numerical method to solve the initial value problem. 

 

Binary restart data files can also be used to initialize a oneburn_ocs simulation.  A typical scenario is 
 

1. Create a binary restart file from a converged and optimized simulation 
 

2. Modify the original input file with slightly different spacecraft characteristics, propulsive 

parameters or perhaps final mission targets and/or constraints 
 

3. Use the previously created binary restart file as the initial guess for the new simulation 

 

This techniques works well provided the two simulations are not dramatically different.  Sometimes it 

may be necessary to make successive small changes in the mission definition and run multiples 

simulations to eventually reach the final desired solution. 

 

Problem setup 
 

This part of the user’s manual provides details about the software implementation within 

oneburn_ocs.  It defines such things as point and path constraints (boundary conditions), bounds on 

the dynamic variables, and the performance index or objective function. 

 

(1) Point functions – initial orbit constraints 

 

The software allows the user to select one of the following initial orbit constraint options: 
 

1) constrain semimajor axis, eccentricity and inclination 

2) constrain all initial orbital elements 

3) option 2 with unconstrained true longitude 
 

For option 1, the initial orbit inclination is constrained by enforcing 
 

 2 2 tan
2

i
h k

 
   

 
 

 

where i is the initial orbit inclination. 

 

If the initial orbit is circular, the software enforces the following two equality constraints: 
 

 0  and  0f g   

 

Otherwise, for an elliptical initial orbit, the single equality constraint 
 

 
2 2f g e   

 

is enforced, where e is the initial orbit eccentricity. 
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For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal 

to the initial modified equinoctial orbital elements as follows: 

 

 

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 
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Option 3 is identical to option 2 with the initial true longitude unbounded. 

 

In optimal control terminology, these derived constraints or boundary conditions are called point 

functions. 

 

(2) Performance index – maximize final spacecraft mass 

 

The objective function or performance index J for this simulation is the mass of the spacecraft at 

burnout or termination of the propulsive maneuver.  This is simply 

 

 fJ m  

 

The value of the maxmin indicator in the Sparse Optimization Suite algorithm tells the software whether 

the user is minimizing or maximizing the performance index.  The spacecraft mass at the initial time is 

fixed to the user-defined initial value. 

 

(3) Path constraint – unit thrust vector scalar magnitude 

 

For a variable steering trajectory, the scalar magnitude of the components of the unit thrust vector at any 

time during the simulation is constrained as follows: 

 

 2 2 2 1
r t nT T T Tu u u   u  

 

(4) Point functions – final mission orbit constraints 

 

The software allows the user to select one of the following final orbit constraint options: 

 

1) constrain semimajor axis, eccentricity and inclination 

2) constrain all final orbital elements 

3) option 2 with unconstrained true longitude 
 

For option 1, the final orbit inclination is constrained by enforcing 
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 2 2 tan
2

i
h k

 
   

 
 

 

where i is the mission orbit inclination. 

 

If the final orbit is circular, the software enforces the following two equality constraints: 

 

 0  and  0f g   

 

Otherwise, for an elliptical mission orbit, the single equality constraint 

 

 2 2f g e   

 

is enforced, where e is the park orbit eccentricity. 

 

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal 

to the user-defined final modified equinoctial orbital elements as follows: 
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Option 3 is identical to option 2 with the final true longitude unbounded. 

 

Bounds on the dynamic variables 

 

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial 

dynamic variables during the orbital transfer. 
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where 
iscm  is the initial spacecraft mass. 

 

Finally, the three components of the unit thrust vector are constrained as follows 
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Technical Discussion 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These equations 

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.  However, 

two components of the orbital element set are singular for an orbital inclination of 180 degrees. 

 

The relationship between direct modified equinoctial and classical orbital elements is defined by the 

following definitions 
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 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





 

 

The relationship between classical and modified equinoctial orbital elements is summarized as follows: 

 

semimajor axis    
2 21

p
a

f g


 
 

 

orbital eccentricity    
2 2e f g   

 

orbital inclination     1 2 22 tani h k   

 

argument of periapsis     1 1tan tang f k h     

 

right ascension of the ascending node  1tan k h   

 

true anomaly        1tanL L g f        
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The mathematical relationships between an inertial state vector and the corresponding modified 

equinoctial elements are summarized as follows: 

 

position vector 
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velocity vector 
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The system of first-order modified equinoctial equations of orbital motion are given by 
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where , ,r t n    are non-two-body perturbations in the radial, tangential and normal directions, 

respectively.  The radial direction is along the radius vector of the spacecraft measured positive in a 

direction away from the gravitational center, the tangential direction is perpendicular to this radius 

vector measured positive in the direction of orbital motion, and the normal direction is positive along the 

angular momentum vector of the spacecraft’s orbit. 

 

The equations of orbital motion can also be expressed in vector form as follows: 
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The total non-two-body acceleration vector is given by 

 

 ˆ ˆ ˆ
r r t t n n     P i i i  

 

where ˆ ˆ ˆ,  and r t ni i i  are unit vectors in the radial, tangential and normal directions.  These unit vectors can 

be computed from the inertial position vector r and velocity vector v according to 
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For unperturbed two-body motion, 0P  and the first five equations of motion are simply 

0p f g h k     .  Therefore, for two-body motion these modified equinoctial orbital elements are 

constant.  The true longitude is often called the fast variable of this orbital element set. 

 

Non-spherical Earth Gravity 

 

The non-spherical gravitational acceleration vector can be expressed as 
 

 ˆ ˆ
N N r rg g g i i  

 

 where 
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and 

  ˆ 0 0 1
T

N e  

 

In these equations the north direction component is indicated by subscript N and the radial direction 

component is subscript r. 

 

The contributions due to the zonal gravity effects of 2 3 4, ,J J J  are as follows: 
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 where 

 

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k  order Legendre polynomial
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For a zonal only Earth gravity model, the east component is identically zero. 

 

Finally, the zonal gravity perturbation contribution is T

g a Q g  where ˆ ˆ ˆ      r t n
 
 

Q i i i . 
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For 
2J  effects only, the three components are as follows: 

 

 
 

 
2

22

2

24 2 2

12 sin cos3
1

2 1
r

e
J

h L k LJ R

r h k


 
    
  
 

 

 

 
   

 
2

2

2

24 2 2

sin cos cos sin12

1
t

e
J

h L k L h L k LJ R

r h k


  
   
  
 

 

 

 
  

 
2

2 22

2

24 2 2

1 sin cos6

1
n

e
J

h k h L k LJ R

r h k


   
   
  
 

 

 

Propulsive Thrust 

 

The acceleration due to propulsive thrust can be expressed as 

 

 
 

ˆ
T T

T

m t
a u  

where T is the thrust magnitude, m is the spacecraft mass and ˆ       
r t n

T

T T T Tu u u   u  is the unit pointing 

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system.  The 

components of this unit vector are the control variables. 

 

The propellant mass flow rate is determined from 
 

 
sp

dm T
m

dt g I
   

 

where g is the acceleration of gravity and spI  is the specific impulse of the propulsive system.  The 

product spg I  is also called the exhaust velocity. 

 

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt   where 

iscm  is the initial 

mass of the spacecraft and m  is the propellant flow rate. 

 

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle   and 

the out-of-plane yaw angle   as follows: 

 

 sin cos cos cos sin
r t nT T Tu u u        

 

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector 

according to 
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Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located 

at the spacecraft.  The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane 

yaw angle is positive in the direction of the angular momentum vector.  The inverse tangent calculation 

in the second equation is a four quadrant operation. 

 

The oneburn_ocs software provides the steering angles and the components of the unit thrust vector in 

both the inertial and modified equinoctial coordinate systems.  The following section summarizes the 

inertial-to/from-modified equinoctial coordinate transformations and the calculation of the inertial unit 

thrust vector in terms of right ascension and declination angles. 

 

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu  and the corresponding 

unit thrust vector in the modified equinoctial system ˆ
MEETu  is given by 

 

 ˆ ˆ ˆˆ ˆ
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u i i i u  

 

where 
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This relationship can also be expressed as 
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In these equations, r  is the inertial position vector and v  is the inertial velocity vector of the spacecraft. 

 

In the oneburn_ocs computer program, the components of the inertial unit thrust vector are defined in 

terms of the right ascension   and the declination angle   as follows: 

 

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u        

 

Finally, the right ascension and declination angles can be determined from the components of the ECI 

unit thrust vector according to 

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u     

 

where the calculation for right ascension is a four quadrant inverse tangent operation. 
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APPENDIX A 
 

Contents of the Simulation Summary and CSV Files 
 

This appendix is a brief summary of the information contained in the simulation summary screen 

displays and the CSV data files produced by the oneburn_ocs software. 

 

The simulation summary screen display contains the following information: 

 
mission elapsed time = simulation time since beginning of maneuver (hh:mm:ss.sss) 

 

sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers 

 

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second 

 

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per 

second 

 

final mass = final spacecraft mass in kilograms 

 

propellant mass = expended propellant mass in kilograms 

 

thrust duration = maneuver duration in seconds 

 

delta-v = scalar magnitude of the maneuver in meters/seconds 

 

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at 

each collocation node or user-defined step size. 

 

The user-defined comma-separated-variable (csv) disk file is created by the odeprt subroutine and 

contains the following information: 

 
time (sec) = simulation time since ignition in seconds 
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time (min) = simulation time since ignition in minutes 

 

semimajor axis (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

arg of perigee (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

period (min) = orbital period in minutes 

 

mass (kg) = spacecraft mass in kilograms 

 

thracc (mps/s) = thrust acceleration in meters/second**2 

 

perigee altitude = perigee altitude in kilometers 

 

apogee altitude = apogee altitude in kilometers 

 

ut-radial = radial component of unit thrust vector 

 

ut-tangential = tangential component of unit thrust vector 

 

ut-normal = normal component of unit thrust vector 

 

ut-eci-x = x-component of eci unit thrust vector 

 

ut-eci-y = y-component of eci unit thrust vector 

 

ut-eci-z = z-component of eci unit thrust vector 

 

semi-parameter = orbital semiparameter in kilometers 

 

f equinoctial element = modified equinoctial orbital element 

 

g equinoctial element = modified equinoctial orbital element 

 

h equinoctial element = modified equinoctial orbital element 

 

k equinoctial element = modified equinoctial orbital element 

 

true longitude = true longitude in degrees 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

rmag (km) = magnitude of spacecraft’s position vector in kilometers 

 

vx (km) = x-component of the spacecraft’s velocity vector in kilometers/second 

 

vy (km) = y-component of the spacecraft’s velocity vector in kilometers/second 

 

vz (km) = z-component of the spacecraft’s velocity vector in kilometers/second 

 

vmag (km) = magnitude of spacecraft’s velocity vector in kilometers/second 

 

rasc (deg) = inertial right ascension of the unit thrust vector in degrees 

 

decl (deg) = inertial declination of the unit thrust vector in degrees 
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yaw (deg) = out-of-plane yaw angle of the unit thrust vector in degrees 

 

pitch (deg) = in-plane pitch angle of the unit thrust vector in degrees 

 

fpa (deg) = inertial flight path angle in degrees 

 

deltav (mps) = accumulative delta-v in meters per second 

 

The orbits.csv file contains the following information: 

 
time (seconds) = simulation time since ignition in seconds 

 

rp1-x (er) = x-component of the initial orbit position vector in earth radii 

rp1-y (er) = y-component of the initial orbit position vector in earth radii 

rp1-z (er) = z-component of the initial orbit position vector in earth radii 

rp2-x (er) = x-component of the final orbit position vector in earth radii 

rp2-y (er) = y-component of the final orbit position vector in earth radii 

rp2-z (er) = z-component of the final orbit position vector in earth radii 
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APPENDIX B 
 

Example LEO-to-LEO Orbit Transfer 
 

This appendix illustrates the orbit transfer for a non-coplanar LEO-to-LEO example.  For this example, 

all the orbital elements except true longitude for both the initial and final orbits are fixed. 

 

The main portion of the simulation definition file for this example is as follows: 

 
************************************************ 

** earth-orbit trajectory optimization 

** single finite-burn maneuver with final coast 

** program oneburn_ocs 

** leo2leo.in - February 21, 2012 

************************************************ 

 

initial spacecraft mass (kilograms) 

10000.0 

 

thrust magnitude (newtons) 

99200.0 

 

specific impulse (seconds) 

450.0 

 

******************************** 

type of propulsive initial guess 

******************************** 

1 = thrust duration 

2 = delta-v 

------------------- 

2 

 

initial guess for delta-v (meters/second) 

5800.0d0 

 

initial guess for thrust duration (seconds) 

4550.0 

 

lower bound for thrust duration (seconds) 

0.01 

 

upper bound for thrust duration (seconds) 

10000.0 

 

************** 

coast maneuver 

************** 

 

initial guess for coast duration (seconds) 

10.0 

 

lower bound for coast duration (seconds) 

1.0 

 

upper bound for coast duration (seconds) 

200.0 

 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

6563.14 
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orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5d0 

 

argument of perigee (degrees) 

0.0 

 

right ascension of the ascending node (degrees) 

20.0d0 

 

true anomaly (degrees) 

0.0d0 

 

******************************** 

initial orbit constraint options 

******************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all initial orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

*************** 

* FINAL ORBIT * 

*************** 

 

semimajor axis (kilometers) 

6728.14d0 

 

orbital eccentricity (non-dimensional) 

0.0d0 

 

orbital inclination (degrees) 

51.6d0 

 

argument of perigee (degrees) 

0.0d0 

 

right ascension of the ascending node (degrees) 

20.0d0 

 

true anomaly (degrees) 

0.0d0 

 

****************************** 

final orbit constraint options 

****************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all final orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 

 

************************* 

* initial guess options * 

************************* 
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 1 = numerical integration 

 2 = binary data file 

--------------------- 

1 

 

name of binary initial guess data file 

leo2leo.rsbin 

 

****************************** 

* binary restart file option * 

****************************** 

 

create/update binary restart file (yes or no) 

no 

 

********************************************** 

* type of comma-delimited solution data file * 

********************************************** 

 1 = OCS-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

1 

 

number of user-defined nodes or print step size in solution data file 

100 

 

name of solution output file 

leo2leo.csv 

 

******************************** 

* algorithm control parameters * 

******************************** 

 

discretization/collocation method 

--------------------------------- 

 1 = trapezoidal 

 2 = separated Hermite-Simpson 

 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

relative error in the objective function (performance index) 

1.0d-5 

 

relative error in the solution of the differential equations 

1.0d-7 

 

maximum number of mesh refinement iterations 

20 

 

maximum number of function evaluations 

500000 

 

maximum number of algorithm iterations 

10000 

 

*************************** 

sparse NLP iteration output 

--------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 
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********************** 

optimal control output 

---------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 

 

**************************** 

differential equation output 

---------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The following is the graphics display for this example.  The initial orbit trace is blue, the final orbit is 

red and the transfer maneuver trace is black. 
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Here are the numerical results created by the oneburn_ocs program for this example. 

 
 program oneburn_ocs 

 =================== 

   

 input file ==> leo2leo.in 

   

 oblate earth gravity model 

   

 ------------------------ 

 beginning of finite burn 

 ------------------------ 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.656314000000D+04    0.231260711765D-15    0.285000000000D+02    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200000000000D+02    0.349632240730D+03    0.349632240730D+03    0.881915957810D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.642165842152D+04    0.123266976185D+04    -.563591195034D+03    0.656314000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.986248713166D+00    0.681033027729D+01    0.365785673126D+01    0.779315089527D+01 

   

 ------------------ 

 end of finite burn 

 ------------------ 

 

 mission elapsed time     00:04:19.701 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672939043691D+04    0.346714306486D-03    0.516042165183D+02    0.315662746264D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200014039317D+02    0.513704955945D+02    0.703324185873D+01    0.915636904293D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.609955227473D+04    0.276472241466D+04    0.645646678312D+03    0.672793338370D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.250687876646D+01    0.413739153123D+01    0.598798676484D+01    0.769795007313D+01 

   

   

 final mass             4162.16070871686      kilograms 

   

 propellant mass        5837.83929128314      kilograms 

   

 thrust duration        259.701018232233      seconds 

   

 delta-v                3868.21300678244      meters/second 

   

 --------------------------- 

 beginning of coast maneuver 

 --------------------------- 

 

 mission elapsed time     00:04:19.701 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672939043691D+04    0.346714306485D-03    0.516042165183D+02    0.315662746264D+03 
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     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200014039317D+02    0.513704955945D+02    0.703324185873D+01    0.915636904293D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.609955227473D+04    0.276472241466D+04    0.645646678312D+03    0.672793338370D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.250687876646D+01    0.413739153123D+01    0.598798676484D+01    0.769795007313D+01 

   

 --------------------- 

 end of coast maneuver 

 --------------------- 

 

 mission elapsed time     00:07:39.701 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672814000000D+04    0.351002915346D-15    0.516000000000D+02    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200000000000D+02    0.201443655965D+02    0.201443655965D+02    0.915381704433D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.544337714471D+04    0.351284568192D+04    0.181588224703D+04    0.672814000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.402604621147D+01    0.331121293169D+01    0.566309181054D+01    0.769699863782D+01 

   

   

 coast duration         200.000000000023      seconds 

                        3.33333333333372      minutes 

   

   

 ======================================== 

 verification of optimal control solution 

 ======================================== 

   

 ------------------ 

 end of finite burn 

 ------------------ 

 

 mission elapsed time     00:04:19.701 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672939043691D+04    0.346714306486D-03    0.516042165183D+02    0.315662746264D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.200014039317D+02    0.513704955945D+02    0.703324185873D+01    0.915636904293D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.609955227473D+04    0.276472241466D+04    0.645646678312D+03    0.672793338370D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.250687876646D+01    0.413739153123D+01    0.598798676484D+01    0.769795007313D+01 

   

   

 final mass             4162.16070871692      kilograms 

   

 propellant mass        5837.83929128308      kilograms 

   

 thrust duration        259.701018232233      seconds 

   

 delta-v                3868.21189633888      meters/second 

   

   

 



page 33 

 final mission orbit 

 ------------------- 

 

 mission elapsed time     00:07:39.701 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672814024373D+04    0.364896455298D-07    0.515999998019D+02    0.490431457999D+01 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.199999999785D+02    0.152400513000D+02    0.201443658800D+02    0.915381754174D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.544337713202D+04    0.351284570367D+04    0.181588226839D+04    0.672814000686D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.402604625682D+01    0.331121302687D+01    0.566309190148D+01    0.769699876939D+01 
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APPENDIX C 
 

Typical Sparse Optimization Suite Configuration File 
 

The oneburn_ocs computer progran can read and use a user-defined configuration file.  A description 

of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms for 

Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization  of the Sparse 

Optimization Suite user’s manual.  Please note that the oneburn_ocs software can read and use a 

subset of the information in this file.  For example, a subset configuration file might contain only the 

following information; 

 
ODETOL=0.1D-06 

INSNLP:IOFLAG=5 

SOCOUT=I4K4 

 

The following is a typical “full version” configuration file created during the execution of the 

oneburn_ocs software. 

 
AEQTOL=0.1000000000000000D-02     

DTAUX=0.0000000000000000D+00      

OBJCTL=0.1000000000000000D-04     

ODETOL=0.1000000011686097D-06     

PGDCTL=0.1000000000000000D-02     

PRTMSD=0.1490116119384766D-07     

PRTMXD=0.1000000000000000D-02     

PRTSFD=0.1000000000000000D-04     

QDRTOL=0.1000000000000000D-02     

RESTOL=0.1000000000000000D-04     

SMLTOL=0.1490116119384766D-10     

TOLJSD=0.1000000000000000D-05     

TOLM5A=0.1490116119384766D-07     

TOLM5R=0.1490116119384766D-07     

IDSCPH=0                 

IDSCND=0                 

IDSCVR=0                 

IDSCFN=0                 

IDTSFD=-1                

IPFAUX=0                 

IPFSFD=0                 

IPRSFD=1                 

IPGRD=0                  

IPNLP=10                 

IPODE=0                  

IPUAUX=0                 

IPUOCP=6                 

IRSTRT=2                 

ISCALE=0                 

ISFHES=41                

ISFINP=42                

ISFRST=43                

ISFSCL=44                

ITSWCH=2                 

M5DTYP=0                 

MITODE=20                

MTSWCH=-1                

MXDATA=0                 

MXPARM=10                

MXPCON=20                

MXSTAT=20                

MXTERM=50                

NPTAUX=100               

NSSWCH=-1                

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0                      

SPRTHS=SPARSE                                                                    

NLPALG=SNLPMN                                                                    

NLPOMR=M                                                                         

KEYDPL=.lueiLUE                                                                  
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RHSTMP=RHSTMPLT                                                                  

RSTFIL=tlto1.rsbin                                                              

SCLFIL=scalewgt.fil                                                              

INSNLP:ALFLWR=0.0000000000000000D+00     

INSNLP:ALFUPR=0.1000000000000000D+01     

INSNLP:CONTOL=0.1490116119384766D-07     

INSNLP:EPSRLF=0.1490116119384766D-07     

INSNLP:OBJTOL=0.9999999747378752D-05     

INSNLP:PGDTOL=0.1000000000000000D-04     

INSNLP:SLPTOL=0.9000000000000000D+00     

INSNLP:SFZTOL=0.1000000000000000D-01     

INSNLP:TOLFIL=0.2000000000000000D+01     

INSNLP:TOLKTC=0.1110953834938985D+26     

INSNLP:TOLPVT=0.1000000000000000D-02     

INSNLP:IHESHN=0                 

INSNLP:IOFLAG=5                 

INSNLP:IOFLIN=-1                

INSNLP:IOFMFR=0                 

INSNLP:IOFPAT=0                 

INSNLP:IOFSHR=0                 

INSNLP:IOFSRC=0                 

INSNLP:IPUDRF=0                 

INSNLP:IPUFZF=0                 

INSNLP:IPUMF1=11                

INSNLP:IPUMF2=12                

INSNLP:IPUMF3=13                

INSNLP:IPUMF4=14                

INSNLP:IPUMF5=15                

INSNLP:IPUMF6=16                

INSNLP:IPUMF7=17                

INSNLP:IPUNLP=6                 

INSNLP:IPUSTF=0                 

INSNLP:IRELAX=1                 

INSNLP:ITDRQP=-1                

INSNLP:ITFZQP=-1                

INSNLP:IT1MAX=20                

INSNLP:JACPRM=0                 

INSNLP:LYNFNC=0                 

INSNLP:LYNOUT=0                 

INSNLP:LYNPLT=0                 

INSNLP:LYNPNT=101               

INSNLP:LYNVAR=0                 

INSNLP:MAXLYN=5                 

INSNLP:MAXNFE=50000             

INSNLP:MNSAME=2                 

INSNLP:NEWTON=0                 

INSNLP:NITMAX=1000              

INSNLP:NITMIN=0                 

INSNLP:NORMAL=0                 

INSNLP:ALGOPT=FM     

INSNLP:KTOPTN=SMALL  

INSNLP:QPOPTN=SPARSE 

INSNLP:BIGCON=-0.1000000000000000D+01    

INSNLP:FEATOL=0.1000000000000000D-01     

INSNLP:PMULWR=0.1000000000000000D+00     

INSNLP:PTHTOL=0.1000000000000000D+02     

INSNLP:RHOLWR=0.1000000000000000D+03     

INSNLP:IMAXMU=10                

INSNLP:MUCALC=3                 

INSNLP:MXQPIT=1                 
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Program twoburn_ocs 
 

Two Maneuver, Finite-Burn Trajectory Optimization 
 

This document is the user’s manual for a Fortran computer program called twoburn_ocs that uses the 

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the classic orbit 

transfer trajectory optimization problem.  The software models the trajectory as a three phase mission in 

the sequence burn-coast-burn.  The two burns are simulated as constant-thrust, finite-burn propulsive 

maneuvers.  This computer program attempts to maximize the spacecraft mass at the end of the final 

propulsive maneuver. 

 

The important features of this scientific simulation are as follows: 
 

 two finite-burn, continuous thrust orbital maneuvers 
 

 variable attitude steering 
 

 constant propulsive thrust magnitude and specific impulse 
 

 modified equinoctial equations of motion with oblate Earth gravity model 
 

 user-specified initial and final orbit constraints 

 

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of 

trajectory optimization problems using the following combination of numerical methods: 
 

 collocation and implicit integration 
 

 adaptive mesh refinement 
 

 sparse nonlinear programming 

 

Additional information about the mathematical techniques and numerical methods used in the Sparse 

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation 

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org). 

 

The twoburn_ocs software consists of Fortran routines that perform the following tasks: 
 

 set algorithm control parameters and call the transcription/optimal control subroutine 
 

 define the problem structure and perform initialization related to scaling, lower and upper 

bounds, initial conditions, etc. 
 

 compute the right-hand-side differential equations 
 

 evaluate any point and path constraints 
 

 display the optimal solution results and create an output file 

 

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal 

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.  

The twoburn_ocs software allows the user to select the type of initial guess, collocation method, and 

other important algorithm control parameters. 

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/
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Program execution 
 

An input file created by the user can be run from the command line or a simple batch file with a 

statement similar to the following: 

 
twoburn_ocs leo2geo.in 

 

If the software is executed without an input file on the command line, the computer program will display 

the following information screen and file name prompt: 

 
*********************************** 

*       program twoburn_ocs       * 

*                                 * 

*    two-maneuver, finite-burn    * 

*     trajectory optimization     * 

*                                 * 

*         April 15, 2012          * 

*********************************** 

 

please input the name of the simulation definition file 

 

The user should respond to this prompt with the name of a compatible input data file including the 

filename extension. 

 

The screen output created by the twoburn_ocs computer program can be re-directed to a text file with 

a command line similar to 

 
twoburn_ocs leo2geo.in >leo2geo.txt 

 

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories 

and finally Command Prompt.  The size, font and other characteristics of the screen can be controlled 

by the user with the c:\ icon in the upper left corner of the window.  To log into the subdirectory created 

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory 

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is 

the name of the subdirectory created by the user. 

 

The DOS command line prompt looks similar to C:\twoburn_ocs>_. 

 

Input file format and contents 
 

The twoburn_ocs software is “data-driven” by a user-created text file.  The following is a typical input 

file used by this computer program.  In the following discussion the actual input file contents are in 

courier font and all explanations are in times italic font.  This example attempts to optimize the 

maneuvers required to transfer a spacecraft from a near circular low Earth orbit (LEO) to a typical 

geosynchronous Earth orbit (GEO). 

 

Each data item within an input file is preceded by one or more lines of annotation text.  Do not delete 

any of these annotation lines or increase or decrease the number of lines reserved for each comment.  

However, you may change them to reflect your own explanation.  The annotation line also includes the 

correct units and when appropriate, the valid range of the input.  ASCII text input is not case sensitive 

but must be spelled correctly. 
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The first six lines of any input file are reserved for user comments.  These lines are ignored by the 

software.  However the input file must begin with six and only six initial text lines. 

 
**************************************** 

** two maneuver, finite-burn earth-orbit 

** trajectory optimization 

** program twoburn_ocs 

** leo2geo.in - April 15, 2012 

**************************************** 

 

The first input is the initial mass of the entire spacecraft in kilograms. 
 

initial spacecraft mass (kilograms) 

15000.0 

 

This next integer input defines the type of initial guess for the propulsive maneuver. 
 

******************************** 

type of propulsive initial guess 

******************************** 

1 = thrust duration 

2 = delta-v magnitude 

--------------------- 

2 

 

The next four inputs define the thrust magnitude and the specific impulse of the upper stage or 

spacecraft propulsion system, and the user’s initial guess for either the delta-v or thrust duration for the 

first maneuver. 
 

------------------------- 

first propulsive maneuver 

------------------------- 

thrust magnitude (newtons) 

25000.0 

 

specific impulse (seconds) 

400.0 

 

initial guess for delta-v (meters/second) 

2480.0 

 

initial guess for thrust duration (seconds) 

170.0 

 

The next four inputs define the thrust magnitude and the specific impulse of the upper stage or 

spacecraft propulsion system, and the user’s initial guess for either the delta-v or thrust duration for the 

second maneuver. 
 

-------------------------- 

second propulsive maneuver 

-------------------------- 

 

thrust magnitude (newtons) 

5000.0 

 

specific impulse (seconds) 

350.0 

 

initial guess for delta-v (meters/second) 

1790.0 

 

initial guess for thrust duration (seconds) 

170.0 
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The next three inputs define the user’s initial guess for the duration of the coast phase along with a 

lower and upper bound for the coast duration. 
 

----------- 

coast phase 

----------- 

 

initial guess for coast duration (minutes) 

315.0 

 

lower bound for coast duration (minutes) 

200.0 

 

upper bound for coast duration (minutes) 

400.0 

 

The next six inputs define the classical orbital elements of the initial park orbit.  These elements are 

defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

6563.14 

 

orbital eccentricity (non-dimensional) 

0.015 

 

orbital inclination (degrees) 

28.5 

 

argument of perigee (degrees) 

120.0 

 

right ascension of the ascending node (degrees) 

100.0 

 

true anomaly (degrees) 

0.0 

 

This next integer input allows the user to define the type of initial orbit constraints to use during the 

simulation.  Please see the “Problem setup” section later in this document for information about this 

program option. 
 

******************************** 

initial orbit constraint options 

******************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all initial orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

1 

 

The next six inputs define the classical orbital elements of the final mission orbit.  These elements are 

also defined with respect to an Earth-centered-inertial (ECI) coordinate system. 
 

*************** 

* FINAL ORBIT * 

*************** 

 

semimajor axis (kilometers) 

42166.263 
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orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

2.5 

 

argument of perigee (degrees) 

300.0 

 

right ascension of the ascending node (degrees) 

120.0 

 

true anomaly (degrees) 

0.0 

 

This next integer input allows the user to define the type of final orbit constraints to use during the 

simulation.  Please see the “Problem setup” section later in this document for information about this 

program option. 
 

****************************** 

final orbit constraint options 

****************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all final orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

This integer input specifies the type of gravity model to use during the simulation.  Option 2 will use a 

2J  gravity model in the spacecraft equations of motion. 
 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 

 

This next input defines the type of initial guess to use.  Please see the technical discussion section for 

information about how the first option is modeled.  Option 2 requires either a binary restart file created 

from a previous run using either initial guess option 1 or an updated binary restart file.  This feature is 

described in the next two sections. 
 

************************* 

* initial guess options * 

************************* 

 1 = numerical integration 

 2 = binary data file 

--------------------- 

1 

 

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input 

specifies the name of the file to use. 
 

name of binary initial guess data file 

leo2geo.rsbin 

 

The following input can be used to create or update an initial guess binary file.  The creation or update 

process uses the filename defined above.  For initial guess option 1, the software will create a binary 
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restart file.  For initial guess option 2, an input of yes to this item will update the binary file used to 

initialize the simulation. 
 

****************************** 

* binary restart file option * 

****************************** 

 

create/update binary data file (yes or no) 

no 

 

This next input specifies the type of solution data file to create. 
 

********************************************** 

* type of comma-delimited solution data file * 

********************************************** 

 1 = OC-defined nodes 

 2 = user-defined nodes 

 3 = user-defined step size 

--------------------------- 

1 

 

For options 2 or 3, this input defines either the number of data points or the time step size of the data 

output in the solution file. 
 

number of user-defined nodes or print step size in solution data file 

25 

 

The name of the comma-separated-variable solution data file is defined in this next line. 
 

name of solution output file 

leo2geo.csv 

 

The next series of program inputs are algorithm control options and parameters for the Sparse 

Optimization Suite.  The first input is an integer that specifies the type of collocation method to use 

during the solution process.  For most simulations, the trapezoidal method is recommended. 
 

******************************** 

* algorithm control parameters * 

******************************** 

 

discretization/collocation method 

--------------------------------- 

 1 = trapezoidal 

 2 = separated Hermite-Simpson 

 3 = compressed Hermite-Simpson 

------------------------------- 

1 

 

The next input defines the relative error in the objective function. 
 

relative error in the objective function (performance index) 

1.0d-5 

 

The next input defines the relative error in the solution of the differential equations. 
 

relative error in the solution of the differential equations 

1.0d-7 

 

The next input is an integer that defines the maximum number of mesh refinement iterations. 
 

maximum number of mesh refinement iterations 

20 
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The next input is an integer that defines the maximum number of function evaluations. 
 

maximum number of function evaluations 

10000 

 

The next input is an integer that defines the maximum number of algorithm iterations. 
 

maximum number of algorithm iterations 

10000 

 

The level of output from the Sparse Optimization Suite NLP algorithm is controlled with the following 

integer input. 
 

*************************** 

sparse NLP iteration output 

--------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

2 

 

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the 

following integer input.  Please note that option 4 will create lots of information. 
 

********************** 

optimal control output 

---------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

----------------- 

1 

 

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled 

with the following integer input.  Please note that option 5 will create lots of information. 
 

**************************** 

differential equation output 

---------------------------- 

 1 = none 

 2 = terse 

 3 = standard 

 4 = interpretive 

 5 = diagnostic 

--------------- 

1 

 

The level of output can be further controlled by the user with this final text input.  This program option 

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s 

manual.  To ignore this special output control, input the simple character string no. 
 

******************* 

user-defined output 

------------------- 

input no to ignore 

------------------ 

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0 



page 8 

The last series of inputs allow the reading and writing of configuration input files.  The user should 

create a configuration file before attempting to read one.  These configuration files are simple text files 

which can be edited external to the rendezvous_ocs software.  Please consult Appendix C. 
 

*************************************** 

* optimal control configuration options 

*************************************** 

 

read an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2geo_config.txt 

 

create an optimal control configuration file (yes or no) 

no 

 

name of optimal control configuration file 

leo2geo_config1.txt 

 

Optimal control solution 
 

The following is the twoburn_ocs solution for this example.  The output includes the time and orbital 

characteristics at the beginning and end of each mission phase. 

 
 program twoburn_ocs 

 =================== 

   

 input file ==> leo2geo.in 

   

 numerical integration initial guess 

   

 oblate earth gravity model 

   

   

 -------------------------------------- 

 beginning of first propulsive maneuver 

 -------------------------------------- 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.656314000000D+04    0.150000000004D-01    0.285000000000D+02    0.179196327908D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.119947466863D+03    0.318037646103D+03    0.137233974011D+03    0.881916022527D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.977069953510D+03    -.606099670550D+04    0.210248702383D+04    0.648928335362D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.708880451413D+01    -.202549730354D+01    -.278600998827D+01    0.788134762721D+01 

   

   

 -------------------------------- 

 end of first propulsive maneuver 

 -------------------------------- 

 

 mission elapsed time     00:18:38.659 
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      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.244711724047D+05    0.725948454612D+00    0.264721389995D+02    0.179895113440D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.119828797416D+03    0.407077273961D+02    0.220602840836D+03    0.634953461869D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.659297946572D+04    -.275407175855D+04    -.216599500646D+04    0.746617866480D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.487228379563D+01    0.718704821378D+01    -.388504453231D+01    0.951243304473D+01 

 

The following program output is the spacecraft mass, the propellant mass consumed, the actual thrust 

duration for the maneuver, and the accumulated delta-v for the first maneuver. 

 
 spacecraft mass           7870.53129355029      kilograms 

   

 propellant mass           7129.46870644971      kilograms 

   

 thrust duration           1118.65926864158      seconds 

                           18.6443211440263      minutes 

   

 delta-v                   2529.82034928729      meters/second 

 

This section of the numeric results summarizes the time and orbital conditions at the beginning and end 

of the transfer orbit coast. 

 
 ------------------------ 

 beginning of coast phase 

 ------------------------ 

 

 mission elapsed time     00:18:38.659 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.244711724047D+05    0.725948454612D+00    0.264721389995D+02    0.179895113440D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.119828797416D+03    0.407077273961D+02    0.220602840836D+03    0.634953461869D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.659297946572D+04    -.275407175855D+04    -.216599500646D+04    0.746617866480D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.487228379563D+01    0.718704821379D+01    -.388504453231D+01    0.951243304473D+01 

   

   

 ------------------ 

 end of coast phase 

 ------------------ 

 

 mission elapsed time     05:07:30.284 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.244242477038D+05    0.725339679047D+00    0.264690756581D+02    0.179961581757D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.119758219971D+03    0.177464376454D+03    0.357425958210D+03    0.633128004987D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.193739413380D+05    0.372905472704D+05    -.841352842717D+03    0.420314452916D+05 
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      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.137738985018D+01    -.487203868378D+00    0.715777169774D+00    0.162693188718D+01 

   

   

 coast duration            17331.6249596538      seconds 

                           288.860415994230      minutes 

                           4.81434026657050      hours 

   

   

 --------------------------------------- 

 beginning of second propulsive maneuver 

 --------------------------------------- 

 

 mission elapsed time     05:07:30.284 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.244242477038D+05    0.725339679047D+00    0.264690756581D+02    0.179961581757D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.119758219971D+03    0.177464376454D+03    0.357425958210D+03    0.633128004987D+03 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.193739413380D+05    0.372905472704D+05    -.841352842717D+03    0.420314452916D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.137738985018D+01    -.487203868378D+00    0.715777169774D+00    0.162693188718D+01 

   

   

 --------------------------------- 

 end of second propulsive maneuver 

 --------------------------------- 

 

 mission elapsed time     05:43:11.886 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.421662630000D+05    0.157018823694D-15    0.250000000000D+01    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.120000000000D+03    0.383296455222D+01    0.383296455222D+01    0.143617512421D+04 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.234747395985D+05    0.350273495880D+05    0.122951225622D+03    0.421662630000D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.255141829470D+01    -.171038725638D+01    0.133811476571D+00    0.307458377550D+01 

 

The following program output is the propellant mass consumed, the actual thrust duration for the 

maneuver, and the accumulated delta-v for the second maneuver. 

 
 propellant mass           3119.75087432484      kilograms 

   

 thrust duration           2141.60134383684      seconds 

                           35.6933557306139      minutes 

   

 delta-v                   1732.69627276496      meters/second 

 

After the simulation is complete, the software will display a simulation summary similar to the 

following; 

 
 SIMULATION SUMMARY 

 ------------------ 
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 initial spacecraft mass   15000.0000000000      kilograms 

   

 total propellant mass     10249.2195807745      kilograms 

   

 final spacecraft mass     4750.78041922545      kilograms 

   

   

 total delta-v             4262.51662205225      meters/second 

   

 total thrust duration     3260.26061247841      seconds 

                           54.3376768746402      minutes 

 

The following two plots illustrate the evolution of the pitch and yaw steering angles during the first and 

second finite-burn maneuver. 

 

         
 

The next pair of plots illustrate the behavior of the semimajor axis and orbital eccentricity during the 

first and second maneuvers. 

 

        
 

The next pair of plots illustrate the behavior of the orbital inclination and right ascension of the 

ascending node (RAAN) during the first and second maneuvers. 
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The following two plots illustrate the evolution of the geocentric radius and velocity during the each 

finite-burn maneuver. 

 

        
 

All of these plots were created using the Grapher scientific plotting program (www.goldensoftware.com) 

and the contents of the simulation summary data file described in Appendix A. 

 

The twoburn_ocs computer program will also create three output files named orbit1.csv, 

orbit2.csv and orbit3.csv.  This file contains the Earth-centered inertial position vectors of the 

park, transfer and final mission orbit.  The twoburn_ocs software package includes a MATLAB script 

called oplot.m that can be used to create trajectory graphic displays using these data files.  The 

interactive graphic features of MATLAB allow the user to rotate and zoom the displays.  These 

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer. 

 

The following is the graphics display for this example.  The initial orbit trace is red, the transfer orbit is 

blue and the final mission orbit is black.  The dimensions are Earth radii (ER) and the plot is labeled 

with an ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. 

http://www.goldensoftware.com/
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Verification of the optimal control solution 
 

The optimal control solution determined by the Sparse Optimization Suite software can be verified by 

numerically integrating the orbital equations of motion with the optimal control solution and the initial 

park orbit conditions determined by the software.  This is equivalent to solving an initial value problem 

(IVP) that uses the optimal unit thrust vector solution.   

 

This part of the twoburn_ocs computer program uses a Runge-Kutta-Fehlberg 7(8) variable step size 

method to integrate the orbital equations of motion. 

 

The following is a display of the final solution computed using this explicit numerical integration 

method. 

 
 ======================================== 

 verification of optimal control solution 

 ======================================== 

   

 ------------------- 

 final mission orbit 

 ------------------- 

 

 mission elapsed time     05:43:11.886 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.421662635019D+05    0.160175963159D-07    0.250000121139D+01    0.127337790391D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.119999993671D+03    0.351099192462D+03    0.383297150142D+01    0.143617514985D+04 
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      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.234747398791D+05    0.350273491999D+05    0.122951507257D+03    0.421662628346D+05 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.255141829452D+01    -.171038730613D+01    0.133811541581D+00    0.307458380586D+01 

   

   

 right ascension          123.829327888839      degrees 

   

 declination             0.167067507520765      degrees 

   

   

 final spacecraft mass    4750.78041919988      kilograms 

   

 first delta-v            2529.82005790686      meters/second 

   

 second delta-v           1732.69612356106      meters/second 

   

 total delta-v            4262.51618146792      meters/second 

 

Creating an initial guess 
 

The software allows the user to input either a delta-v or thrust duration initial guess.  For a delta-v initial 

guess, the software estimates the thrust duration using the rocket equation.  An estimate of the thrust 

duration can be determined from the following expression: 

 

 
sp p p ex

d

I m g m V
t

F F
   

 

The propellant mass required for a given V  is a function of the initial (or final) mass of the spacecraft 

and the exhaust velocity as follows: 

 

 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

 

 

In these equations 

 

 initial mass

 final mass

 propellant mass

 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i

f

p

ex sp

sp

m

m

m

V g I

I

V

F

g







 



 





 

 

For the thrust duration initial guess option, the software requires an initial guess for the thrust duration 

for each propulsive maneuver.  All of these inputs should be in seconds.  If the twoburn_ocs computer 

program cannot find a feasible solution, try increasing the guess for thrust duration. 
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The software uses a tangential thrusting steering method to generate an initial guess for the optimal 

trajectory.  For tangential thrusting, the unit thrust vector in the modified equinoctial frame at all times is 

simply  0 1 0
T

T u .  Please note that this type of steering method creates a coplanar initial guess. 

 

The dynamic variables and control variables at each grid point are determined by the Sparse 

Optimization Suite by setting the initial guess option INIT(1) = 6 with INIT(2) = 4.  These 

program options create an initial guess from the numerical integration of the equations programmed in 

the oderhs subroutine.  The number and location of the initial collocation nodes are determined from 

the variable step-size numerical integration. 

 

Problem setup 
 

This section provides additional details about the software implementation.  It explains such things as 

point and path constraints, the performance index and the numerical technique used to create an initial 

guess for the software. 

 

(1) Point functions – initial orbit constraints 

 

The software allows the user to select one of the following initial orbit constraint options: 

 

1) constrain semimajor axis, eccentricity and inclination 

2) constrain all initial orbital elements 

3) option 2 with unconstrained true longitude 
 

For option 1, the initial orbit inclination is constrained by enforcing 

 

 2 2 tan
2

i
h k

 
   

 
 

 

where i is the park orbit inclination. 

 

If the park orbit is circular, the software enforces the following two equality constraints: 

 

 0  and  0f g   

 

Otherwise, for an elliptical park orbit, the single equality constraint 

 

 2 2f g e   

 

is enforced, where e is the user-defined park orbit eccentricity. 

 

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal 

to the initial modified equinoctial orbital elements as follows: 
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L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

 

 

Option 3 is identical to option 2 with the initial true longitude unbounded. 

 

In optimal control terminology, these derived constraints or boundary conditions are called point 

functions. 

 

(2) Performance index – maximize final spacecraft mass 

 

The objective function or performance index J for this simulation is the mass of the spacecraft at 

burnout or termination of the propulsive maneuver.  This is simply 

 

 fJ m  

 

The value of the maxmin indicator in the Sparse Optimization Suite algorithm tells the software whether 

the user is minimizing or maximizing the performance index.  The spacecraft mass at the initial time is 

fixed to the user-defined initial value. 

 

(3) Path constraint – unit thrust vector scalar magnitude 

 

For the variable steering program option, the scalar magnitude of the components of the unit thrust 

vector at any time during the simulation is constrained as follows: 

 

 2 2 2 1
r t nT T T Tu u u   u  

 

(4) Point functions – final mission orbit constraints 

 

The software allows the user to select one of the following final orbit constraint options: 

 

4) constrain semimajor axis, eccentricity and inclination 

5) constrain all final orbital elements 

6) option 2 with unconstrained true longitude 
 

For option 1, the final orbit inclination is constrained by enforcing 

 

 2 2 tan
2

i
h k

 
   

 
 

 

where i is the mission orbit inclination. 
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If the final orbit is circular, the software enforces the following two equality constraints: 

 

 0  and  0f g   

 

Otherwise, for an elliptical mission orbit, the single equality constraint 

 

 2 2f g e   

 

is enforced, where e is the user-defined mission orbit eccentricity. 

 

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal 

to the user-defined final modified equinoctial orbital elements as follows: 

 

 

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

 

 

Option 3 is identical to option 2 with the final true longitude unbounded. 

 

Bounds on the dynamic variables 

 

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial 

dynamic variables during the orbital transfer. 

 

 

0.05 1.05

100 0.8

1 1

1 1

1 1

1 1

i isc sc sc

f i

m m m

p p p

f

g

h

k

 

 

   

   

   

   

 

 

where 
iscm  is the initial spacecraft mass. 

 

Finally, the three components of the unit thrust vector are constrained as follows: 

 



page 18 

 

1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

 

 

Technical Discussion 
 

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 

analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These equations 

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.  However, 

two components of the orbital element set are singular for an orbital inclination of 180 degrees. 

 

The relationship between direct modified equinoctial and classical orbital elements is defined by the 

following definitions 

 

 
     

   

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

     

     
 

 

 where 

 

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





 

 

The relationship between classical and modified equinoctial orbital elements is summarized as follows: 

 

semimajor axis    
2 21

p
a

f g


 
 

 

orbital eccentricity    2 2e f g   

 

orbital inclination     1 2 22 tani h k   

 

argument of periapsis     1 1tan tang f k h     

 

right ascension of the ascending node  1tan k h   

 

true anomaly        1tanL L g f        
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The mathematical relationships between an inertial state vector and the corresponding modified 

equinoctial elements are summarized as follows: 

 

position vector 

 

 

 
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velocity vector 
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where 

 

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     
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The system of first-order modified equinoctial equations of orbital motion are given by 

 

 
2
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dp p p
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    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

 

 

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

 

 

 
2

cos
2

ndh p s
h L

dt w


   

 

 
2

sin
2

ndk p s
k L

dt w


   
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  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
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 
 

 

where , ,r t n    are non-two-body perturbations in the radial, tangential and normal directions, 

respectively.  The radial direction is along the radius vector of the spacecraft measured positive in a 

direction away from the gravitational center, the tangential direction is perpendicular to this radius 

vector measured positive in the direction of orbital motion, and the normal direction is positive along the 

angular momentum vector of the spacecraft’s orbit. 

 

The equations of orbital motion can also be expressed in vector form as follows: 
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and 

 

2
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T
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p

p
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   
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The total non-two-body acceleration vector is given by 

 

 ˆ ˆ ˆ
r r t t n n     P i i i  

 

where ˆ ˆ ˆ,  and r t ni i i  are unit vectors in the radial, tangential and normal directions.  These unit vectors can 

be computed from the inertial position vector r and velocity vector v according to 
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For unperturbed two-body motion, 0P  and the first five equations of motion are simply 

0p f g h k     .  Therefore, for two-body motion these modified equinoctial orbital elements are 

constant.  The true longitude is often called the fast variable of this orbital element set. 

 

Non-spherical Earth Gravity 

 

The non-spherical gravitational acceleration vector can be expressed as 
 

 ˆ ˆ
N N r rg g g i i  

 

 where 
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and 

  ˆ 0 0 1
T

N e  

 

In these equations the north direction component is indicated by subscript N and the radial direction 

component is subscript r. 

 

The contributions due to the zonal gravity effects of 2 3 4, ,J J J  are as follows: 
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 where 

 

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k  order Legendre polynomial

e
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For a zonal only Earth gravity model, the east component is identically zero. 

 

Finally, the zonal gravity perturbation contribution is T

g a Q g  where ˆ ˆ ˆ      r t n
 
 

Q i i i . 
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For 
2J  effects only, the three components are as follows: 
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Propulsive Thrust 

 

The acceleration due to propulsive thrust can be expressed as 

 

 
 

ˆ
T T

T

m t
a u  

where T is the thrust magnitude, m is the spacecraft mass and ˆ       
r t n

T

T T T Tu u u   u  is the unit pointing 

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system.  The 

components of this unit vector are the control variables. 

 

The propellant mass flow rate is determined from 
 

 
sp

dm T
m

dt g I
   

 

where g is the acceleration of gravity and spI  is the specific impulse of the propulsive system.  The 

product spg I  is also called the exhaust velocity. 

 

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt   where 

iscm  is the initial 

mass of the spacecraft and m  is the propellant flow rate. 

 

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle   and 

the out-of-plane yaw angle   as follows: 

 

 sin cos cos cos sin
r t nT T Tu u u        

 

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector 

according to 
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Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located 

at the spacecraft.  The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane 

yaw angle is positive in the direction of the angular momentum vector.  The inverse tangent calculation 

in the second equation is a four quadrant operation. 

 

The twoburn_ocs software provides the steering angles and the components of the unit thrust vector in 

both the inertial and modified equinoctial coordinate systems.  The following section summarizes the 

inertial-to/from-modified equinoctial coordinate transformations and the calculation of the inertial unit 

thrust vector in terms of right ascension and declination angles. 

 

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu  and the corresponding 

unit thrust vector in the modified equinoctial system ˆ
MEETu  is given by 
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This relationship can also be expressed as 
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In these equations, r  is the inertial position vector and v  is the inertial velocity vector of the spacecraft. 

 

In the twoburn_ocs computer program, the components of the inertial unit thrust vector are defined in 

terms of the right ascension   and the declination angle   as follows: 

 

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u        

 

Finally, the right ascension and declination angles can be determined from the components of the ECI 

unit thrust vector according to 

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u     

 

where the calculation for right ascension is a four quadrant inverse tangent operation. 
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APPENDIX A 
 

Contents of the Simulation Summary and CSV Files 
 

This appendix is a brief summary of the information contained in the simulation summary screen 

displays and the CSV data files produced by the twoburn_ocs software. 

 

The simulation summary screen display contains the following information: 

 
mission elapsed time = simulation time since the beginning of the simulation 

 

sma (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argper (deg) = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of 

true anomaly and argument of perigee. 

 

period (min) = orbital period in minutes 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers 

 

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second 

 

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second 

 

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second 

 

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per 

second 

 

spacecraft mass = current spacecraft mass in kilograms 

 

propellant mass = expended propellant mass in kilograms 

 

thrust duration = maneuver duration in seconds 

 

delta-v = scalar magnitude of the maneuver in meters/seconds 

 

The delta-v is determined using a cubic spline integration of the thrust acceleration data at each 

collocation node. 

 

The comma-separated-variable disk file is created by the odeprt subroutine and contains the following 

information: 

 
time (sec) = mission elapsed time in seconds 
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time (min) = mission elapsed time in minutes 

 

semimajor axis (km) = semimajor axis in kilometers 

 

eccentricity = orbital eccentricity (non-dimensional) 

 

inclination (deg) = orbital inclination in degrees 

 

argument of perigee = argument of perigee in degrees 

 

raan (deg) = right ascension of the ascending node in degrees 

 

true anomaly (deg) = true anomaly in degrees 

 

period (min) = orbital period in minutes 

 

mass (kg) = spacecraft mass in kilograms 

 

thracc (mps/s) = thrust acceleration in meters/second**2 

 

yaw (deg) = thrust vector yaw angle in degrees 

 

pitch (deg) = thrust vector pitch angle in degrees 

 

rasc (deg) = inertial right ascension in degrees 

 

decl (deg) = inertial declination in degrees 

 

perigee altitude = perigee altitude in kilometers 

 

apogee altitude = apogee altitude in kilometers 

 

ut-radial = radial component of unit thrust vector 

 

ut-tangential = tangential component of unit thrust vector 

 

ut-normal = normal component of unit thrust vector 

 

semi-parameter = orbital semiparameter in kilometers 

 

f equinoctial element = modified equinoctial orbital element 

 

g equinoctial element = modified equinoctial orbital element 

 

h equinoctial element = modified equinoctial orbital element 

 

k equinoctial element = modified equinoctial orbital element 

 

true longitude = true longitude in degrees 

 

rx (km) = x-component of the spacecraft’s position vector in kilometers 

 

ry (km) = y-component of the spacecraft’s position vector in kilometers 

 

rz (km) = z-component of the spacecraft’s position vector in kilometers 

 

fpa (deg) = flight path angle in degrees 

 

rmag (km) = geocentric radius in kilometers 

 

vmag (kps) = velocity in kilometers per second 

 

deltav1 (mps) = first maneuver accumulative delta-v in meters per second 

 

deltav2 (mps) = second maneuver accumulative delta-v in meters per second 

 

dvacc (mps) = total accumulative delta-v in meters per second 
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APPENDIX B 
 

Example LEO-to-ISS Orbit Transfer 
 

This appendix illustrates the twoburn_ocs solution and trajectory graphics for a variable attitude, 

medium-thrust LEO-to-ISS (International Space Station) orbit transfer.  For this example, the impulsive 

delta-v’s were determined using the hohmann.exe computer program which can be found at The 

Celestial and Orbital Mechanics Website (www.cdeagle.com).  The hohmann.exe software 

computes a Hohmann transfer solution for this problem. 

 

The following is the first part of the input data file for this example. 

 
**************************************** 

** two maneuver, finite-burn earth-orbit 

** trajectory optimization 

** program twoburn_ocs 

** leo2iss.in - April 16, 2012 

**************************************** 

 

initial spacecraft mass (kilograms) 

8000.0 

 

***************************************** 

type of propulsive maneuver initial guess 

***************************************** 

1 = thrust duration 

2 = delta-v magnitude 

--------------------- 

2 

 

------------------------- 

first propulsive maneuver 

------------------------- 

 

thrust magnitude (newtons) 

5000.0 

 

specific impulse (seconds) 

300.0 

 

initial guess for delta-v (meters/second) 

180.0 

 

initial guess for thrust duration (seconds) 

170.0 

 

-------------------------- 

second propulsive maneuver 

-------------------------- 

 

thrust magnitude (newtons) 

10000.0 

 

specific impulse (seconds) 

350.0 

 

initial guess for delta-v (meters/second) 

2905.0 

 

initial guess for thrust duration (seconds) 

80.0 

 

http://www.cdeagle.com/
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----------- 

coast phase 

----------- 

 

initial guess for coast duration (minutes) 

45.0 

 

lower bound for coast duration (minutes) 

20.0 

 

upper bound for coast duration (minutes) 

60.0 

 

***************** 

* INITIAL ORBIT * 

***************** 

 

semimajor axis (kilometers) 

6563.14 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

28.5 

 

argument of perigee (degrees) 

0.0 

 

right ascension of the ascending node (degrees) 

100.0 

 

true anomaly (degrees) 

0.0 

 

******************************** 

initial orbit constraint options 

******************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all initial orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

1 

 

*************** 

* FINAL ORBIT * 

*************** 

 

semimajor axis (kilometers) 

6728.14 

 

orbital eccentricity (non-dimensional) 

0.0 

 

orbital inclination (degrees) 

51.6 

 

argument of perigee (degrees) 

0.0 

 

right ascension of the ascending node (degrees) 

100.0 

 

true anomaly (degrees) 

0.0 
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****************************** 

final orbit constraint options 

****************************** 

1 = constrain semimajor axis, eccentricity and inclination 

2 = constrain all final orbital elements 

3 = option 2 with unconstrained true longitude 

---------------------------------------------- 

3 

 

************************* 

* type of gravity model * 

------------------------- 

1 = spherical Earth 

2 = oblate gravity model 

------------------------ 

2 

 

The following are plots of the trajectory characteristics for this example. 
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Here’s the main program output and verification for this example. 

 
 program twoburn_ocs 

 =================== 

   

 input file ==> leo2iss.in 

   

 numerical integration initial guess 

   

 oblate earth gravity model 

   

   

 -------------------------------------- 

 beginning of first propulsive maneuver 

 -------------------------------------- 

 

 mission elapsed time     00:00:00.000 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.656314000000D+04    0.110612553947D-15    0.285000000000D+02    0.000000000000D+00 
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     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.100363294121D+03    0.326736552541D+03    0.326736552541D+03    0.881916022527D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.212477171977D+04    0.596738793323D+04    -.171768246564D+04    0.656314000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.640214595143D+01    0.317457253705D+01    0.310930995346D+01    0.779315032339D+01 

   

   

 -------------------------------- 

 end of first propulsive maneuver 

 -------------------------------- 

 

 mission elapsed time     00:15:23.359 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.667754855184D+04    0.165328254596D-01    0.329474801412D+02    0.355233433521D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.100255885100D+03    0.345888894857D+02    0.298223230068D+02    0.905076548286D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.372197737672D+04    0.513323822355D+04    0.178135829385D+04    0.658608287403D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.495861875658D+01    -.479160585935D+01    0.371527030388D+01    0.783266366668D+01 

   

   

 spacecraft mass           6430.72714842286      kilograms 

   

 propellant mass           1569.27285157714      kilograms 

   

 thrust duration           923.358576595192      seconds 

                           15.3893096099199      minutes 

   

 delta-v                   642.396161808662      meters/second 

   

   

 ------------------------ 

 beginning of coast phase 

 ------------------------ 

 

 mission elapsed time     00:15:23.359 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.667754855184D+04    0.165328254596D-01    0.329474801412D+02    0.355233433521D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.100255885100D+03    0.345888894857D+02    0.298223230068D+02    0.905076548286D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.372197737672D+04    0.513323822355D+04    0.178135829385D+04    0.658608287403D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  -.495861875657D+01    -.479160585935D+01    0.371527030388D+01    0.783266366668D+01 

   

   

 ------------------ 

 end of coast phase 

 ------------------ 

 

 mission elapsed time     00:42:01.551 
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      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.667584555215D+04    0.152066565657D-01    0.329380649128D+02    0.355274673206D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.100057403600D+03    0.140887797298D+03    0.136162470504D+03    0.904730332878D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.301488941672D+04    -.548245175517D+04    0.254353639062D+04    0.675399236106D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.544260814774D+01    -.446092094692D+01    -.296721491969D+01    0.763715676965D+01 

   

   

 coast duration            1598.19246759981      seconds 

                           26.6365411266635      minutes 

                          0.443942352111059      hours 

   

   

 --------------------------------------- 

 beginning of second propulsive maneuver 

 --------------------------------------- 

 

 mission elapsed time     00:42:01.551 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.667584555215D+04    0.152066565657D-01    0.329380649128D+02    0.355274673206D+03 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.100057403600D+03    0.140887797298D+03    0.136162470504D+03    0.904730332878D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  -.301488941672D+04    -.548245175517D+04    0.254353639062D+04    0.675399236106D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.544260814774D+01    -.446092094692D+01    -.296721491969D+01    0.763715676965D+01 

   

   

 --------------------------------- 

 end of second propulsive maneuver 

 --------------------------------- 

 

 mission elapsed time     01:02:59.702 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672814000000D+04    0.135806524537D-15    0.516000000000D+02    0.000000000000D+00 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.100000000000D+03    0.213965850265D+03    0.213965850265D+03    0.915381771606D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.326840206482D+04    -.508989721860D+04    -.294590599076D+04    0.672814000000D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.315821923111D+01    0.492352099988D+01    -.500283635428D+01    0.769699807300D+01 

   

   

 propellant mass           3490.78368184216      kilograms 

   

 thrust duration           1198.15128277386      seconds 

                           19.9691880462309      minutes 

   

 delta-v                   2686.47371008881      meters/second 
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 SIMULATION SUMMARY 

 ------------------ 

   

 initial spacecraft mass   8000.00000000000      kilograms 

   

 total propellant mass     5060.05653341929      kilograms 

   

 final spacecraft mass     2939.94346658071      kilograms 

   

   

 total delta-v             3328.86987189747      meters/second 

   

 total thrust duration     2121.50985936905      seconds 

                           35.3584976561508      minutes 

   

   

 ======================================== 

 verification of optimal control solution 

 ======================================== 

   

 ------------------- 

 final mission orbit 

 ------------------- 

 

 mission elapsed time     01:02:59.702 

 

 

      sma (km)             eccentricity       inclination (deg)       argper (deg) 

  0.672813998828D+04    0.600936604302D-08    0.516000000807D+02    0.204587101726D+02 

 

     raan (deg)         true anomaly (deg)       arglat (deg)          period (min) 

  0.999999996116D+02    0.193507139109D+03    0.213965849282D+03    0.915381769214D+02 

 

      rx (km)                 ry (km)              rz (km)              rmag (km) 

  0.326840199228D+04    -.508989733617D+04    -.294590593112D+04    0.672814002759D+04 

 

      vx (kps)               vy (kps)              vz (kps)             vmag (kps) 

  0.315821930073D+01    0.492352086106D+01    -.500283638807D+01    0.769699803473D+01 

   

   

 right ascension          302.705946066975      degrees 

   

 declination             -25.9666865187013      degrees 

   

   

 final spacecraft mass    2939.94346658047      kilograms 

   

 first delta-v            642.396149630716      meters/second 

   

 second delta-v           2686.47335229412      meters/second 

   

 total delta-v            3328.86950192484      meters/second 
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APPENDIX C 
 

Typical Sparse Optimization Suite Configuration File 
 

The twoburn_ocs computer progran can read and use a user-defined configuration file.  A description 

of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms for 

Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization  of the Sparse 

Optimization Suite user’s manual.  Please note that the twoburn_ocs software can read and use a 

subset of the information in this file.  For example, a subset configuration file might contain only the 

following information; 

 
ODETOL=0.1D-06 

INSNLP:IOFLAG=5 

SOCOUT=I4K4 

 

The following is a typical “full version” configuration file created during the execution of the 

twoburn_ocs software. 

 
AEQTOL=0.1000000000000000D-02     

DTAUX=0.0000000000000000D+00      

OBJCTL=0.1000000000000000D-04     

ODETOL=0.1000000011686097D-06     

PGDCTL=0.1000000000000000D-02     

PRTMSD=0.1490116119384766D-07     

PRTMXD=0.1000000000000000D-02     

PRTSFD=0.1000000000000000D-04     

QDRTOL=0.1000000000000000D-02     

RESTOL=0.1000000000000000D-04     

SMLTOL=0.1490116119384766D-10     

TOLJSD=0.1000000000000000D-05     

TOLM5A=0.1490116119384766D-07     

TOLM5R=0.1490116119384766D-07     

IDSCPH=0                 

IDSCND=0                 

IDSCVR=0                 

IDSCFN=0                 

IDTSFD=-1                

IPFAUX=0                 

IPFSFD=0                 

IPRSFD=1                 

IPGRD=0                  

IPNLP=10                 

IPODE=0                  

IPUAUX=0                 

IPUOCP=6                 

IRSTRT=2                 

ISCALE=0                 

ISFHES=41                

ISFINP=42                

ISFRST=43                

ISFSCL=44                

ITSWCH=2                 

M5DTYP=0                 

MITODE=20                

MTSWCH=-1                

MXDATA=0                 

MXPARM=10                

MXPCON=20                

MXSTAT=20                

MXTERM=50                

NPTAUX=100               

NSSWCH=-1                

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0                      

SPRTHS=SPARSE                                                                    

NLPALG=SNLPMN                                                                    

NLPOMR=M                                                                         

KEYDPL=.lueiLUE                                                                  
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RHSTMP=RHSTMPLT                                                                  

RSTFIL=tlto1.rsbin                                                              

SCLFIL=scalewgt.fil                                                              

INSNLP:ALFLWR=0.0000000000000000D+00     

INSNLP:ALFUPR=0.1000000000000000D+01     

INSNLP:CONTOL=0.1490116119384766D-07     

INSNLP:EPSRLF=0.1490116119384766D-07     

INSNLP:OBJTOL=0.9999999747378752D-05     

INSNLP:PGDTOL=0.1000000000000000D-04     

INSNLP:SLPTOL=0.9000000000000000D+00     

INSNLP:SFZTOL=0.1000000000000000D-01     

INSNLP:TOLFIL=0.2000000000000000D+01     

INSNLP:TOLKTC=0.1110953834938985D+26     

INSNLP:TOLPVT=0.1000000000000000D-02     

INSNLP:IHESHN=0                 

INSNLP:IOFLAG=5                 

INSNLP:IOFLIN=-1                

INSNLP:IOFMFR=0                 

INSNLP:IOFPAT=0                 

INSNLP:IOFSHR=0                 

INSNLP:IOFSRC=0                 

INSNLP:IPUDRF=0                 

INSNLP:IPUFZF=0                 

INSNLP:IPUMF1=11                

INSNLP:IPUMF2=12                

INSNLP:IPUMF3=13                

INSNLP:IPUMF4=14                

INSNLP:IPUMF5=15                

INSNLP:IPUMF6=16                

INSNLP:IPUMF7=17                

INSNLP:IPUNLP=6                 

INSNLP:IPUSTF=0                 

INSNLP:IRELAX=1                 

INSNLP:ITDRQP=-1                

INSNLP:ITFZQP=-1                

INSNLP:IT1MAX=20                

INSNLP:JACPRM=0                 

INSNLP:LYNFNC=0                 

INSNLP:LYNOUT=0                 

INSNLP:LYNPLT=0                 

INSNLP:LYNPNT=101               

INSNLP:LYNVAR=0                 

INSNLP:MAXLYN=5                 

INSNLP:MAXNFE=50000             

INSNLP:MNSAME=2                 

INSNLP:NEWTON=0                 

INSNLP:NITMAX=1000              

INSNLP:NITMIN=0                 

INSNLP:NORMAL=0                 

INSNLP:ALGOPT=FM     

INSNLP:KTOPTN=SMALL  

INSNLP:QPOPTN=SPARSE 

INSNLP:BIGCON=-0.1000000000000000D+01    

INSNLP:FEATOL=0.1000000000000000D-01     

INSNLP:PMULWR=0.1000000000000000D+00     

INSNLP:PTHTOL=0.1000000000000000D+02     

INSNLP:RHOLWR=0.1000000000000000D+03     

INSNLP:IMAXMU=10                

INSNLP:MUCALC=3                 

INSNLP:MXQPIT=1                 
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Relative Motion Between Two Earth Satellites 
 

This document describes a MATLAB script that can be used to design and analyze relative 

motion trajectories between two Earth satellites in circular orbits.  The algorithms in this section 

are based on the techniques described in the classic paper, “Terminal Guidance System for 

Satellite Rendezvous”, by W. H. Clohessy and R. S. Wiltshire, Journal of the Aerospace 

Sciences, Vol. 27, 1960. 

 

In the following discussion the passive satellite is called the target and the active or maneuvering 

satellite is called the chaser.  The state vector of the chaser satellite is defined with respect to a 

local vertical-local horizontal (LVLH) coordinate system centered at the target satellite. 

 

The relationship between the chaser vehicle state vector , , , ,  and x y z x y z  at any time t to the 

initial state vector 0 0 0 0 0 0, , , ,  and x y z x y z  at time t0  is given by the following state transition 

matrix for unperturbed relative motion: 
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where  
3

/ / er r   is the orbital rate of the target’s circular orbit with r equal to the radius 

of the target’s orbit and re  equal to the radius of the Earth.  In this equation,   is the 

gravitational constant of the Earth. 

 

The x, y and z position components of the chaser satellite as a function of time are given by the 

following three expressions: 
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grmotion.m – relative motion of two Earth satellites in circular orbits 

 

This MATLAB script calculates and graphically displays the relative Keplerian motion between 

two satellites in circular Earth orbits.  This script provides the following user options: 
 

 user input of initial conditions 

 calculate and display synchronous orbit 

 calculate and display two impulse rendezvous orbit 

 

This MATLAB script displays two-dimensional motion in the x-y or orbit plane. 

 

User input of initial conditions 

 

This program option allows the user to input the initials conditions of the chaser vehicle relative 

to the target.  The user can graphically display the relative trajectory for either one orbital period 

or a user-defined duration. 

 

The following is a typical user interaction with this script and this option. 

 
   graphics display of relative motion 

 

 

        relative motion menu 

 

 <1> user input of initial conditions 

 

 <2> calculate and display synchronous orbit 

 

 <3> calculate and display rendezvous orbit 

 

 selection (1, 2 or 3) 

 

? 1 

 

 

please input the altitude of the target satellite (kilometers) 

? 350 

 

please input the initial x-position of the chaser satellite (kilometers) 

? 10 

 

please input the initial y-position of the chaser satellite (kilometers) 

? 10 

 

 

please input delta-vx of the chaser satellite (meters/second) 

? -3 

 

please input delta-vy of the chaser satellite (meters/second) 

? 5 
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           user-defined orbit 

 

target altitude        350.0000  kilometers 

chaser x distance       10.0000  kilometers 

chaser y distance       10.0000  kilometers 

 

vx prior to maneuver   -17.1600  meters/second 

vy prior to maneuver     0.0255  meters/second 

 

maneuver delta-vx       -3.0000  meters/second 

maneuver delta-vy        5.0000  meters/second 

total delta-v            5.8310  meters/second 

 

 

the orbital period is    91.5382  minutes  

 

     simulation time menu 

 

 <1> user input of simulation time 

 

 <2> simulate for one orbital period 

 

selection (1 or 2) 

? 2 

 

please input the plot step size (minutes) 

? 1 

 

The following is the companion graphics display for this example.  The orbital motion of the 

target satellite is to the right.  The target satellite is labeled with the letter T and the chaser 

satellite is labeled with the letter C.  The chaser trajectory is displayed at the time interval input 

by the user. 

 



Orbital Mechanics with MATLAB 

page 4 

The relative motion trajectory of the chaser spacecraft is a “drifting” ellipse with its center 

located at  ,c d  where 

 0
0 0 0

0
0

2 3 6

2
4

y
c x x y t

x
d y






   

 

 

 

The semimajor axis of this dynamic ellipse is given by 

 
2 2

0 0
02 2 3

x y
a y

 

     
       

     

 

 

and the semiminor axis is equal to 2a . 

 

Synchronous orbit 

 

The initial velocity components required for a chaser vehicle to be synchronous or “co-orbital” 

with a target vehicle located in a user-defined circular orbit are given by 

 

0 0

0

2

0

s

s

x y

y

 



 

 
The initial velocity components for any initial 0x  and 0y  position components are given by the 

following two expressions: 

0 0

0 0

0

0

3

2

3

2

eq

x y

x y
y

r
y

r





 





 

 

Therefore, the components of the initial velocity increment for a synchronous orbit are given by 

 

0 0

0 0

s

s

x

y

V x x

V y y

  

  
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The relative motion trajectory is an ellipse with its center located at  ,0c  where 

 

0
0 2

y
c x


   

 

The semimajor axis of this ellipse is given by 

 
2

2 0
02

y
a y



 
    

 

 

and the semiminor axis is equal to 2a . 

 

The following is a typical user interaction and data output for this program option. 

 
graphics display of relative motion 

 

 

        relative motion menu 

 

 <1> user input of initial conditions 

 

 <2> calculate and display synchronous orbit 

 

 <3> calculate and display rendezvous orbit 

 

 selection (1, 2 or 3) 

 

? 2 

 

please input the altitude of the target satellite (kilometers) 

? 350 

 

please input the initial x-position of the chaser satellite (kilometers) 

? 10 

 

please input the initial y-position of the chaser satellite (kilometers) 

? 10 

 

           synchronous orbit 

 

target altitude        350.0000  kilometers 

chaser x distance       10.0000  kilometers 

chaser y distance       10.0000  kilometers 

 

vx prior to maneuver   -17.1600  meters/second 

vy prior to maneuver     0.0255  meters/second 

 

maneuver delta-vx       -5.7200  meters/second 

maneuver delta-vy       -0.0255  meters/second 

total delta-v            5.7201  meters/second 
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the orbital period is    91.5382  minutes  

 

 

     simulation time menu 

 

 <1> user input of simulation time 

 

 <2> simulate for one orbital period 

 

selection (1 or 2) 

? 2 

 

please input the plot step size (minutes) 

? 1 

 

The following is the companion graphics display of a synchronous orbit. The orbital motion of 

the target satellite is to the right. The target satellite is labeled with the letter T and the chaser 

satellite is labeled with the letter C. The chaser trajectory is displayed at the time interval input 

by the user. 

 

 
 

Two impulse rendezvous orbit 

 

Orbital rendezvous is the process of bringing a chaser vehicle from some initial location to a 

final location with zero relative velocity in a specified transfer time.  This type of orbit transfer 

involves an initial maneuver that starts the transfer and a second maneuver that stops the chaser 

spacecraft at the final location.  This program option of the grmotion script calculates the 
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magnitude and direction of these two impulsive maneuvers and graphically displays the transfer 

trajectory. 

 

The initial velocity components required for a rendezvous orbit are given by 

 

   

 

0 0 0

0

14 1 cos 6 sin

8
3sin 1 cos

tpi

r r r

r r r

r
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t t t
t

  

 


  


 
  

 

 

   

 

0 0

0

3 cos 4sin 2 1 cos

8
3sin 1 cos

tpi

r r r r

r r r

r
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y

t t t
t

   

 


   


 
  

 

 

 

where tr  is the transfer time. 

 

The components of the terminal phase initiation V  required to start the orbital rendezvous are 

determined from the following equations 

 

0 0

0 0

tpi

tpi

x

y

V x x

V y y

  

  
 

 

where 0x  and 0y  are the x and y velocity components of the chaser vehicle prior to this 

impulsive maneuver. 

 

The components of the V  required to brake the vehicle at the target are given by 

 

       

     

0 0

0

3 6 2 sin 4 6 cos

2 3 sin cos

b r tpi tpi r tpi r

b r tpi r tpi r

x t x y y t x y t

y t x y t y t

   

  

      

  

 

 

The following is a typical user interaction with this MATLAB script and this program option. 

 
        relative motion menu 

 

 <1> user input of initial conditions 

 

 <2> calculate and display synchronous orbit 

 

 <3> calculate and display rendezvous orbit 

 

 selection (1, 2 or 3) 

 

? 3 

 

please input the altitude of the target satellite (kilometers) 

? 300 
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please input the initial x-position of the chaser satellite (kilometers) 

? 50 

 

please input the initial y-position of the chaser satellite (kilometers) 

? -100 

 

please input the rendezvous time (minutes) 

? 120 

 

           rendezvous orbit 

 

target altitude       300.0000  kilometers 

chaser x distance      50.0000  kilometers 

chaser y distance    -100.0000  kilometers 

 

time to rendezvous    120.0000  minutes 

 

vx prior to tpi       173.5309  meters/second 

vy prior to tpi        -1.3190  meters/second 

 

tpi delta-vx           94.6752  meters/second 

tpi delta-vy         -179.0340  meters/second 

tpi delta-v           202.5255  meters/second 

 

braking delta-vx       36.8316  meters/second 

braking delta-vy      250.9074  meters/second 

braking delta-v       253.5964  meters/second 

 

total delta-v         456.1219  meters/second 

 

please input the plot step size (minutes) 

? 1 
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Circular Orbit Plane Change 
 

This document presents the geometry and equations associated with the single impulse maneuver that 

modifies the inclination and/or right ascension of the ascending node (RAAN) of circular orbits.  It also 

describes a MATLAB script that solves this classic astrodynamic problem. 

 

The following diagram illustrates the geometry of this type of orbital maneuver. 

 
In this picture the orbital inclinations of the initial and final orbits are ii  and i f , respectively.  The 

RAAN of the initial orbit is i and  f  is the RAAN of the final orbit.  The right ascension of the 

ascending node of an orbit is measured from the inertial x-axis along the equator in the direction of the 

Earth's rotation.  From spherical trigonometry relationships,   is the angle between the two orbit planes. 

 

The next diagram illustrates the possible points of intersection.  From this ground track schematic we 

can see that there are two pairs of orbit intersections on both the initial and final orbits which depend on 

the relative RAAN between these two orbits. 

 

 
 

The total plane change angle due to the modification of inclination and RAAN can be expressed as 

 

  1cos sin sin cos cos cosi f f i i fi i i i         

 

We can define an index imp that depends on the sign of the RAAN change    f i as follows 

final orbit 

imp=1 imp=2 

imp=3 
imp=4 

equator 

initial orbits 



Orbital Mechanics with MATLAB 
 

page 2 

 

If  0 then imp = 1 and 3 

 

or 

 

If  0 then imp = 2 and 4. 

 

It is convenient to define the location of impulses by their argument of latitude.  The argument of 

latitude is the angle from the ascending node, measured along the orbital plane, to the point of interest.  

The argument of latitude is equal to the sum of the argument of perigee and true anomaly.  Since for 

circular orbits there is no argument of perigee, the argument of latitude and true anomaly are identical. 

 

The two possible arguments of latitude on the initial orbit depend on the values of imp as follows 

 

    integer / 2 1
imp

iu imp u    

 

where u is the impulse argument of latitude on the initial orbit given by 

 

 1
cos sin cos

cos
sin sin

i f

i

i i
u

i 


 

  
 

 

 

We can determine the argument of latitude of an impulse on the final orbit by forming the unit position 

vectors from the ascending node to the impulse.  The argument of latitude of the first opportunity on the 

final orbit is given by 

  1

1 2cosu  U U  

 

where U1 is the unit position vector of the impulse on the initial orbit and U2  is the unit position vector 

to the ascending node of the final orbit.  The argument of latitude of the second impulse opportunity on 

the final orbit is equal to 180 degrees plus this value. 

 

The maneuver V  vector is given by the vector difference between the velocity vectors of the initial and 

final orbits as follows 

 f i  V V V  

 

These velocity vectors are evaluated at the points of orbital intersection.  The scalar magnitude of the 

V  is determined from the components of this vector according to 

 

 2 2 2

x y zV V V V        

 

For the case where there is no RAAN change, the two impulse locations occur at the common ascending 

and descending nodes of both the initial and final orbits.  The arguments of latitude of these two orbital 

points are 0 and 180 degrees, respectively. 

 

The required V  can also be determined using vector manipulation.  Unit vectors normal to each orbit 

plane can be defined as follows 
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sin sin sin sin

sin cos sin cos

cos cos

i i f f

i i i f f f

i f

i i

i i

i i

   
         
     

n n  

 

A unit vector along the intersection of the initial and final orbit planes is given by 

 

 
f i

f i






n n
m

n n
 

 

The velocity vector prior to the maneuver is calculated from 

 

 i
i lc

i

V





n m
V

n m
 

 

The velocity vector after the maneuver is given by 

 

 
f

f lc

f

V





n m
V

n m
 

 

where 
lcV r  is the local circular velocity at the maneuver altitude.  In this equation,   is the 

gravitational constant of the Earth and r is the geocentric radius of the circular orbit. 

 

Finally, the maneuver V  vector is determined from 

 

 f i  V V V  

 

The equations described here have been implemented in an interactive MATLAB script called 

maneuver1.m.  This script will prompt you for the altitude, inclination and RAAN of both the initial 

and final orbits.  A typical user interaction with this script along with the output is as follows. 

 
                 program maneuver1  

 

 < one impulse transfer between circular orbits >  

 

initial orbit 

 

please input the circular orbit altitude (kilometers) 

(altitude > 0) 

? 300 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 28.5 

 

please input the right ascension of the ascending node (degrees) 

(0 <= raan <= 360) 

? 100 
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final orbit 

 

please input the orbital inclination (degrees) 

(0 <= inclination <= 180) 

? 30 

 

please input the right ascension of the ascending node (degrees) 

(0 <= raan <= 360) 

? 120 

 

 

solution # 1  

 

initial orbit true anomaly       90.1081 degrees  

final orbit true anomaly         72.6145 degrees  

 

delta-V required               1326.0778 meters/second  

 

pitch angle                       0.0000 degrees 

yaw angle                        94.9233 degrees 

 

solution # 2  

 

initial orbit true anomaly      270.1081 degrees  

final orbit true anomaly        252.6145 degrees  

 

delta-V required               1326.0778 meters/second  

 

pitch angle                      -0.0000 degrees 

yaw angle                       -94.9233 degrees 

 

The pitch and yaw angles for each impulsive maneuver are computed and displayed in the local-vertical-

local horizontal (LVLH; also called the radial-tangential-normal RTN) coordinate system.  The 

following diagram illustrates the geometry of the pitch and yaw angles in this system.  In this figure, the 

radial direction is along the geocentric radius vector directed away from the Earth, the tangential 

direction is tangent to the orbit in the direction of the orbital motion, and the normal direction is along 

the angular momentum vector of the orbit.  The pitch angle is positive above the local horizontal plane 

formed by the tangential and normal directions, and the yaw angle is positive in the direction of the 

angular momentum vector which is perpendicular to the orbit plane. 

 

 

Tu

Ru

Nu





 pitch

= yaw






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The maneuver1 script will also create a graphics display of the initial and final orbits for each solution.  

The following is one of the graphic images for this example.  The initial orbit trace is red and the final 

mission orbit is blue.  The dimensions are Earth radii (ER) and the plot is labeled with an Earth-

centered-inertial (ECI) coordinate system where green is the x-axis, red is the y-axis and blue is the z-

axis.  The impulse location is marked with a small blue circle. 

 

Trajectory image files are saved to disk in both encapsulated, color Postscript format and MATLAB fig 

format with a file name indicating the solution number.  For the first solution, the file names are 

plane_change1.eps and plane_change1.fig.  The interactive features of MATLAB graphics 

allow the user to manipulate the fig version of the trajectory display.  These capabilities allow the user 

to interactively find the best viewpoint as well as verify basic three-dimensional geometry of the orbital 

maneuver. 
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Targeting with Modified Equinoctial Orbital Elements 
 
The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory 
analysis and optimization.  They are valid for circular, elliptic, and hyperbolic orbits.  These direct 
modified equinoctial equations exhibit no singularity for zero eccentricity and orbital inclinations equal 
to 0 and 90 degrees.  However, please note that two of the components are singular for an orbital 
inclination of 180 degrees. 
 
The modified equinoctial elements are defined in terms of the classical orbital elements as follows: 
 

 

( )
( )
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where 

 

 semiparameter
 semimajor axis
 orbital eccentricity
 orbital inclination
 argument of perigee
 right ascension of the ascending node
 true anomaly
 true longitude

p
a
e
i

L

ω

θ

=
=
=
=
=

Ω =
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=

 

 
The classical orbital elements can be recovered from the modified equinoctial orbital elements with 
 

semimajor axis 

 2 21
pa

f g
=

− −
 

 
orbital eccentricity 

 2 2e f g= +  
 
orbital inclination 

 ( )1 2 22 tani h k−= +  
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argument of periapsis 
 

 ( ) ( )1 1tan , tan ,g f k hω − −= −  
 

 
( )

sin
tan 2

g h f k
e i

ω −
=  

 

 
( )

cos
tan 2
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right ascension of the ascending node 
 

 ( )1tan ,k h−Ω =  
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sin
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( )

cos
tan 2

h
i

Ω =  

 
true anomaly 

 ( ) ( )1tan ,L L g fθ ω −= − +Ω = −  
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In these expressions, an inverse tangent expression of the form ( )1tan ,a bθ −=  denotes a four quadrant 
evaluation where sina θ=  and cosb θ= . 
 
Constraint formulations that enforce both the sine and cosine of a desired orbital element should be used 
whenever possible.  This approach involves a combination of equality and inequality constraints and 
ensures that the “targeted” orbital element is in the correct quadrant. 
 
To illustrate this technique, here are several examples for different values of argument of perigee and the 
corresponding mission constraints: 
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sin 0 0
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 ( )tan 2 sin
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f h gk
ω

ω
ω
− =⎧

= → ⎨
≤ → + ≤⎩

 

 
The following is a sign table of the sine and cosine for each quadrant. 
 

quadrant sine cosine 
1 +  +  
2 +  −  
3 −  −  
4 −  +  

 
 
orbital eccentricity constraint 
 
 2 2e f g= +  
 
For a circular orbit, 0f g= = . 
 
orbital inclination constraint 
 

 2 2tan
2
i h k⎛ ⎞ = +⎜ ⎟

⎝ ⎠
 

 
For an equatorial orbit, 0h k= = . 
 
argument of perigee constraints 
 

 ( ) ( )
sin tan 2 sin

tan 2
g h f kg h f k e i
e i

ω ω −
− = → =  

 

 ( ) ( )
cos tan 2 cos

tan 2
f h g kf h g k e i

e i
ω ω +
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right ascension of the ascending node constraints 
 

 ( ) ( )
tan 2 sin sin

tan 2
kk i
i

= Ω→ Ω =  

 

 ( ) ( )
tan 2 cos cos

tan 2
hh i
i

= Ω→ Ω =  
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true anomaly constraints 
 
 ( ) ( )1tan ,L L g fθ ω −= − +Ω = −  

 
 In general, 

 
( )

( )

1sin sin cos

1cos cos sin

f L g L
e
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θ
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For a circular orbit, 

 

 
sin sin cos cos sin

cos cos cos sin sin

L L

L L

θ

θ

= Ω − Ω

= Ω + Ω
 

 
For a circular, equatorial orbit, 
 

 Lθ = , sin sin Lθ =  and cos cos Lθ = . 
 
Targeting Example 
 
For a user-defined semimajor axis, eccentricity and inclination, the set of modified equinoctial 
constraints are as follows: 
 p p=  
 
 2 2f g e+ =  
 
 ( )2 2 tan 2h k i+ =  

 
where the tilde indicates the value of the user-defined classical orbital element. 
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