
Orbital Mechanics with MATLAB

page 1

A MATLAB Script for Optimal Single Impulse De-orbit from Earth Orbits

This document describes a MATLAB script named deorbit_snopt that can be used to compute the

optimal impulsive maneuver required to de-orbit a spacecraft in a circular or elliptical Earth orbit. The

user provides the classical orbital elements of the initial orbit along with geodetic altitude and relative

flight path angle targets at the entry interface (EI).

This script solves this maneuver optimization problem using a simple shooting method. During the

solution process, the script numerically integrates the spacecraft equations of motion subject to the

Earth’s 2J gravity coefficient. The numerical integration is performed using MATLAB’s ode45

function. The entry interface targets are computed with respect to an oblate, rotating Earth.

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control

variables. The scalar magnitude of the de-orbit V is the objective function or performance index,

and the geodetic altitude and relative flight path angle at the entry interface are treated as nonlinear

equality constraints. The algorithm uses an initial guess determined from the analytic de-orbit solution

relative to a spherical, non-rotating Earth.

The deorbit_snopt script uses the SNOPT nonlinear programming algorithm to solve this orbital

mechanics problem. MATLAB versions of SNOPT for several computer platforms can be requested

or purchased at Professor Philip Gill’s web site which is located at http://scicomp.ucsd.edu/~peg/.

Professor Gill’s web site also includes a PDF version of the software user’s guide.

Interacting with the script

This MATLAB script is “data driven” by a text file created by the user. When the deorbit_snopt

script is started, the software will display the following screen which allows the user to select a data

file for processing.

The file type defaults to names with a *.in filename extension. However, you can select any

deorbit_snopt compatible ASCII data file. The next section describes the format and typical

contents of compatible input files.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 2

Input data file

This section describes a typical input data file for the software. In the following discussion the actual

input file contents are in courier font and all explanations are in times italic font. Typical user-

provided values are in bold font.

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input.

The first five lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with five and only five initial text lines.

** impulsive de-orbit delta-v trajectory optimization

** de-orbit from initial circular orbit

** file ==> deorbit3.in April 18, 2020

The first input is the calendar date of the impulsive maneuver. Be sure to include all four digits of the

calendar year.

calendar date at time of impulsive maneuver (month, day, year)

3, 18, 2010

The next input is the UTC time of the de-orbit maneuver.

UTC at time of impulsive maneuver (hours, minutes, seconds)

12, 30, 45.875

The next series of inputs define the classical orbital elements of the initial Earth orbit. Notice that the

true anomaly is an initial guess for the location of the maneuver. The true anomaly initial guess for

elliptical Earth orbits should be 180 degrees.

**

orbital elements at time of impulsive maneuver

**

semimajor axis (kilometers)7378.14

6878.14

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5

argument of perigee (degrees)

100.0

right ascension of the ascending node (degrees)

220.0

initial guess for true anomaly (degrees)

180.0

Orbital Mechanics with MATLAB

page 3

The software allows the user to specify lower and upper bounds for the optimal true anomaly of the

maneuver. The algorithm enforces an inequality constraint on the true anomaly according to

 L U   

where and L U  are the user-defined lower and upper bounds, respectively.

The numerical values of these bounds are defined in the next two data items.

lower bound for true anomaly (degrees)

170.0

upper bound for true anomaly (degrees)

190.0

The final two items in the simulation file define the geodetic altitude and relative flight path angle

targets at the entry interface.

entry interface mission constraints

geodetic altitude (kilometers)

121.92

relative flight path angle (degrees)

-2.0

Script examples

The following is the deorbit_snopt numerical solution for this example.

**

single impulse deorbit from Earth orbits

**

time and conditions prior to deorbit maneuver

calendar date 18-Mar-2010

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.87814000000000e+03 +0.00000000000000e+00 +2.85000000000000e+01 +1.00000000000000e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20000000000000e+02 +1.90000000000000e+02 +2.90000000000000e+02 +9.46163624134673e+01

 rx (km) ry (km) rz (km) rmag (km)

 -5.45318321844679e+03 +2.83906883966968e+03 -3.08403806222734e+03 +6.87814000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -4.00911535387506e+00 -6.35100857948859e+00 +1.24236145363939e+00 +7.61260651018449e+00

deorbit delta-v vector and magnitude

x-component of delta-v 80.301516 meters/second

y-component of delta-v 117.688815 meters/second

z-component of delta-v -21.001409 meters/second

total delta-v 144.014061 meters/second

Orbital Mechanics with MATLAB

page 4

deorbit delta-v pointing angles

pitch angle -2.256618 degrees

yaw angle -179.973071 degrees

time and conditions after deorbit maneuver

--

calendar date 18-Mar-2010

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.62986196765162e+03 +3.74561317348360e-02 +2.84998225494152e+01 +1.08881122818562e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20001021787282e+02 +1.81117979216534e+02 +2.89999102035096e+02 +8.95398701301721e+01

 rx (km) ry (km) rz (km) rmag (km)

 -5.45318321844679e+03 +2.83906883966968e+03 -3.08403806222734e+03 +6.87814000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -3.92881383778096e+00 -6.23331976439964e+00 +1.22136004444855e+00 +7.46870630131950e+00

time and conditions at entry interface

calendar date 18-Mar-2010

UTC time 13:00:49.638

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.63194303419306e+03 +3.87915541331080e-02 +2.85109989908368e+01 +1.07810489094078e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.19909866252810e+02 +2.99617139359573e+02 +4.74276284536510e+01 +8.95820323314157e+01

 rx (km) ry (km) rz (km) rmag (km)

 -5.45318321844679e+03 +2.83906883966968e+03 -3.08403806222734e+03 +6.87814000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +7.50958358577267e+00 +3.73745768234497e-01 +2.46143688225353e+00 +7.91152343460458e+00

relative flight path coordinates at entry interface

east longitude 252.44489639 degrees

geocentric declination 20.58001385 degrees

flight path angle -2.00000000 degrees

relative azimuth 68.65207490 degrees

position magnitude 6497.40258326 kilometers

velocity magnitude 7.49698673 kilometers/second

geodetic coordinates at entry interface

geodetic latitude 20.70458617 degrees

geodetic altitude 121.92000000 kilometers

flight time from maneuver to EI 30.06271094 minutes

The following is a brief description of the information provided in the script output.

Orbital Mechanics with MATLAB

page 5

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum

of true anomaly and argument of perigee.

period (mins) = orbital period in minutes

rx (km) = x-component of the position vector in kilometers

ry (km) = y-component of the position vector in kilometers

rz (km) = z-component of the position vector in kilometers

rmag (km) = scalar magnitude of the position vector in kilometers

vx (kps) = x-component of the velocity vector in kilometers per second

vy (kps) = y-component of the velocity vector in kilometers per second

vz (ksp) = z-component of the velocity vector in kilometers per second

vmag (kps) = scalar magnitude of the velocity vector in kilometers per second

The components of the de-orbit delta-v vector are displayed in the ECI coordinate system. The relative

flight path coordinates are with respect to a rotating Earth. The UTC time is given in hours, minutes

and seconds.

The deorbit_snopt script will also create a three-dimensional graphics display of the initial orbit

and re-entry trajectory. The following is the graphic image for this example. The initial orbit trace is

red and the re-entry trajectory is blue. The dimensions are Earth radii (ER) and the plot is labeled with

an Earth-centered-inertial (ECI) coordinate system where green is the x-axis, red is the y-axis and blue

is the z-axis. The impulse location is marked with a blue asterisk and entry interface is marked with a

small blue circle.

Trajectory image files are saved to disk in both tif format and MATLAB fig format with a file name

indicating the solution number. The disk file names are deorbit_snopt.tif and

deorbit_snopt.fig. The interactive features of MATLAB graphics allow the user to manipulate

the fig version of the trajectory display. These capabilities allow the user to interactively find the best

viewpoint as well as verify basic three-dimensional geometry of the orbital maneuver and entry.

Orbital Mechanics with MATLAB

page 6

The following is the output created by this MATLAB script for the optimal de-orbit from a typical

highly elliptical orbit (HEO).

**

single impulse deorbit from Earth orbits

**

time and conditions prior to deorbit maneuver

calendar date 18-Mar-2010

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.44140000000000e+04 +7.27044000000000e-01 +2.85000000000000e+01 +2.70000000000000e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20000000000000e+02 +1.80010875055299e+02 +9.00108750552986e+01 +6.32729583646570e+02

 rx (km) ry (km) rz (km) rmag (km)

 +2.38242965164960e+04 -2.83802405542600e+04 +2.01189455552070e+04 +4.21640501929899e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.22991535564376e+00 +1.03330298046443e+00 -5.32994999257885e-04 +1.60636456496297e+00

deorbit delta-v vector and magnitude

x-component of delta-v -16.099990 meters/second

y-component of delta-v -13.510509 meters/second

z-component of delta-v 0.004894 meters/second

total delta-v 21.017696 meters/second

deorbit delta-v pointing angles

pitch angle -0.002649 degrees

yaw angle 179.989285 degrees

time and conditions after deorbit maneuver

--

calendar date 18-Mar-2010

Orbital Mechanics with MATLAB

page 7

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43140994191278e+04 +7.34139993195612e-01 +2.84999999733610e+01 +2.69999971672997e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20000297715537e+02 +1.80010641744793e+02 +9.00106134177898e+01 +6.28849923664669e+02

 rx (km) ry (km) rz (km) rmag (km)

 +2.38242965164960e+04 -2.83802405542600e+04 +2.01189455552070e+04 +4.21640501929899e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.21381536549559e+00 +1.01979247133070e+00 -5.28100846447572e-04 +1.58534687213445e+00

time and conditions at entry interface

calendar date 18-Mar-2010

UTC time 17:43:27.044

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43457651117266e+04 +7.34618508714193e-01 +2.84881736895298e+01 +2.70116511603440e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.19931376435734e+02 +3.50932531329709e+02 +2.61049042933149e+02 +6.30078806344008e+02

 rx (km) ry (km) rz (km) rmag (km)

 +2.38242965164960e+04 -2.83802405542600e+04 +2.01189455552070e+04 +4.21640501929899e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -8.39531350465642e+00 -5.97405295708906e+00 -4.38335404240751e-01 +1.03132310893426e+01

relative flight path coordinates at entry interface

east longitude 37.72990551 degrees

geocentric declination -28.11018407 degrees

flight path angle -4.00000004 degrees

relative azimuth 95.03036771 degrees

position magnitude 6495.29077143 kilometers

velocity magnitude 9.89797352 kilometers/second

geodetic coordinates at entry interface

geodetic latitude -28.26740378 degrees

geodetic altitude 121.92000146 kilometers

flight time from maneuver to EI 312.68615417 minutes

Here’s the trajectory graphics display for this example.

Orbital Mechanics with MATLAB

page 8

Technical discussion

This section is a brief explanantion of the algorithms implemented in this MATLAB script.

Nonlinear programming problem

A trajectory optimization problem can be described by a system of dynamic variables

()

()

t

t

 
=  
 

y
z

u

consisting of the state variables y and the control variables u for any time t. In this discussion

vectors are denoted in bold.

The system dynamics are defined by a vector system of ordinary differential equations called the state

equations that can be represented as follows

 () (), , ,
d

t t t
dt

= =   
y

y f y u p

where p is a vector of problem parameters that is not time dependent.

The initial dynamic variables at time 0t are defined by () ()0 0 0 0, ,t t t   ψ ψ y u and the terminal

conditions at the final time ft are defined by () (), ,f f f ft t t   ψ ψ y u . These conditions are called

the boundary values of the trajectory problem. The problem may also be subject to path constraints of

the form () (), , 0t t t =  g y u .

Orbital Mechanics with MATLAB

page 9

The basic nonlinear programming problem (NLP) is to determine the control vector history and

problem parameters that minimize the scalar performance index or objective function given by

 () ()0 0, , , ,f fJ t t t t  =  y y p

while satisfying all the user-defined mission constraints.

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control

variables. The scalar magnitude of the de-orbit V is the objective function, and the geodetic altitude

and relative flight path angle at the entry interface are the nonlinear equality constraints.

Initial guess

An initial guess for the scalar magnitude of the de-orbit delta-v and time-of-flight from the maneuver

location to the entry interface is determined using analytic solutions for these values relative to a non-

rotating, spherical Earth model and two-body or Keplerian motion. The analytic solution for circular

orbits in discussed in Appendix B and Appendix C contains the equations for elliptical orbits. Please

note the elliptical orbit analytic solution assumes the de-orbit maneuver occurs at apogee (true anomaly

= 180). This is the typical true anomaly initial guess for de-orbit from elliptical orbits.

The initial guess for the de-orbit delta-v vector is aligned opposite (retrograde) to the unit velocity

vector on the initial Earth orbit at the maneuver location. This creates an impulsive velocity increment

in the Earth-centered-inertial (ECI) Cartesian coordinate system.

Spacecraft equations of motion

During the solution process, the deorbit_snopt script numerically propagates the spacecraft

trajectory from the maneuver time to the current estimate of the time at the entry interface. The system

of six first-order differential equations subject to Earth gravity, defined in the ECI coordinate system
(, ,)x y z , is given by the following expressions

 1 4 2 5 2 6x y zy v y y v y y v y= = = = = =

2 2 22 2 2

2 2 2

4 5 63 2 2 3 2 2 3 2 2

5 5 53 3 3
1 1 1 1 1 3

2 2 2

eq y eq eqx z z z z
J r r J r J rr r r r r

y y y
r r r r r r r r r

  
               

= − + − = − + − = − + −          
               

where 2 2 2 2 2 2

1 2 3x y zr r r r y y y= + + = + + . In these equations  and eqr are the gravitational constant

and equatorial radius of the Earth, and 2J is the first order oblateness gravity coefficient.

At the entry interface, the algorithm computes the errors in the target constraints according to

h p t

p t

h h





  

= −

= −

Orbital Mechanics with MATLAB

page 10

where h is the geodetic altitude and  is the flight path angle relative to a rotating Earth. In these

equations, the p subscript indicates the value predicted by the software, and the t subscript is the target

value provided by the user. During the solution process, the SNOPT algorithm attempts to drive these

two errors to zero.

The equations for calculating the relative flight path coordinates from an ECI position and velocity

vectors is summarized in Appendix D. The algorithm used to calculate geodetic coordinates can be

found in Appendix E and Appendix F discusses the coordinate system used to define the pitch and yaw

orientation angles of the maneuver.

SNOPT algorithm implementation

This section provides details about the MATLAB source code that solve this nonlinear programming

(NLP) problem using the SNOPT algorithm. MATLAB versions of SNOPT for several computer

platforms can be found at Professor Philip Gill’s University of California, San Diego web site which is

located at http://scicomp.ucsd.edu/~peg/. Professor Gill’s web site also includes a PDF version of the

SNOPT software user’s guide.

The SNOPT algorithm requires an initial guess for the control variables. For this problem they are

given by

xg(1) = oevpo(6);

xg(2) = dvg(1);

xg(3) = dvg(2);

xg(4) = dvg(3);

xg(5) = dtof;

where xg(1) is the user’s initial guess for the true anomaly on the initial orbit at the time of the

impulsive maneuver. xg(2), xg(2) and xg(3) are the initial guesses for the ECI components of the

de-orbit impulse, and dtof is the initial guess for the transfer time from the de-orbit maneuver to the

entry interface.

The algorithm also requires lower and upper bounds for the control variables. These are determined

from the initial guesses and user-defined true anomaly boundaries as follows:

% lower and upper bounds for deorbit true anomaly (radians)

xlwr(1) = ta_lower;

xupr(1) = ta_upper;

% lower and upper bounds for components of

% deorbit delta-v vector (kilometers/second)

dvm = norm(dvg);

xlwr(2:4) = -(dvm + 0.1 * dvm);

xupr(2:4) = +(dvm + 0.1 * dvm);

% lower and upper bounds for flight time

% from maneuver to entry interface (seconds)

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 11

xlwr(5) = dtof - 30.0;

xupr(5) = dtof + 30.0;

The algorithm also requires lower and upper bounds on the objective function. For this problem these

bounds are given by

% bounds on objective function

flow(1) = 0.0;

fupp(1) = +Inf;

The following MATLAB code sets the lower and upper bounds for the two equality constraints

(geodetic altitude and relative flight path angle) at the entry interface.

% geodetic altitude at entry interface equality constraint

flow(2) = 0.0;

fupp(2) = 0.0;

% relative flight path angle at entry interface equality constraint

flow(3) = 0.0;

fupp(3) = 0.0;

The actual call to the SNOPT MATLAB interface function is as follows

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, xmul, xstate, ...

flow, fupp, fmul, fstate, 'deorbit_shoot');

where deorbit_shoot is the name of the MATLAB function that integrates the spacecraft equations

of motion and computes the current value of the objective function and the equality constraints at the

entry interface. The solution for the control variables is returned in the x vector and f is the converged

value of the objective function. Please consult the SNOPT documentation for additional information

about the syntax of this function.

Orbital Mechanics with MATLAB

page 12

Algorithm Resources

“User’s Guide for SNOPT Version 7, A Fortran Package for Large-Scale Nonlinear Programming”,

Philip E. Gill, Walter Murray and Michael A. Saunders, March 20, 2006.

“Optimum Deboost Altitude for Specified Atmospheric Entry Angle”, Jerome M. Baker, Bruce E.

Baxter, and Paul D. Arthur, AIAA Journal, Vol. 1, No. 7, July 1963.

“Deboost from Circular Orbits”, A. H. Milstead, The Journal of the Astronautical Sciences, Vol. XIII,

No. 4, pp. 170-171, Jul-Aug., 1966.

Hypersonic and Planetary Entry Flight Mechanics, Vinh, Busemann and Culp, The University of

Michigan Press, 1980.

“On Autonomous Optimal Deorbit Guidance”, Morgan C. Baldwin, Binfeng Pan and Ping Lu, AIAA

2009-5667, AIAA Guidance, Navigation, and Control Conference, August 10-13, 2009.

“Autonomous Optimal Deorbit Targeting”, Donald J. Jezewski, AAS 91-136, AAS/AIAA Spaceflight

Mechanics Meeting, February 11-13, 1991.

“Analysis of the Accuracy of Ballistic Descent from a Circular Circumterrestrial Orbit”, Yu. G.

Sikharulidze and A. N. Korchagin, Cosmic Research, Vol. 40, No. 1, 2002, pp.75-87.

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA

Education Series, 1987.

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002.

Orbital Mechanics with MATLAB

page 13

APPENDIX A

Optimization Toolbox Implementation

There is a version of this MATLAB script named deorbit_otb that uses the Mathworks

Optimization Toolbox to solve this orbital mechanics problem. This appendix describes the source

code implementation using the fmincon/interior-point algorithm. Unlike SNOPT, this version

requires the mission constraints and objective algorithms reside in two different MATLAB functions.

The following MATLAB source code solves the deorbit trajectory optimization problem.

% load initial guesses for control variables

xg(1) = oevpo(6);

xg(2) = dvg(1);

xg(3) = dvg(2);

xg(4) = dvg(3);

xg(5) = dtof;

% lower and upper bounds for deorbit true anomaly (radians)

xlwr(1) = ta_lower;

xupr(1) = ta_upper;

% lower and upper bounds for components of

% deorbit delta-v vector (kilometers/second)

dvm = norm(dvg);

xlwr(2:4) = -(dvm + 0.1 * dvm);

xupr(2:4) = +(dvm + 0.1 * dvm);

% lower and upper bounds for flight time

% from maneuver to entry interface (seconds)

xlwr(5) = dtof - 30.0;

xupr(5) = dtof + 30.0;

% solve trajectory optimization problem

options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point', ...

 'MaxFunctionEvaluations', 5000, 'FiniteDifferenceType', 'forward');

% optimize with user-defined mission constraints

[x, fval] = fmincon('deorbit_objective', xg, [], [], [], [], xlwr, xupr,

'deorbit_constraints', options);

The MATLAB function that evaluates the objective function is named deorbit_objective and

deorbit_constraints calculates the current mission constraints.

Feel free to experiment with other fmincon non-linear programming algorithms such as sqp, etc.

Orbital Mechanics with MATLAB

page 14

APPENDIX B

De-orbit from a Circular Earth Orbit

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial

circular orbit can be determined from the following expression

() ()

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

− −   
 = − = −   

      
− −      

      

where

()

()

radius ratio

 local circular velocity at entry interface

 local circular velocity of initial circular orbit

 flight path angle at entry interface

e

i

i eq i

e eq e

c

ee eq

c

ii eq

e

i

h r r
r

h r r

V
rh r

V
rh r

h

 

 



+
= = =

+

= = =
+

= = =
+

=

 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radius

 Earth gravitational constant

e

i

e

eq

h

r

r

r



=

=

=

=

=

=

This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead,

The Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966. Additional

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh,

Busemann and Culp, The University of Michigan Press.

The true anomaly on the de-orbit trajectory at the entry interface e can be determined from the

following two equations

() ()2 21 1 1

sin cos
d d d d

e e

d d e d

a e a er

e e r e
 



− −
= = −

Orbital Mechanics with MATLAB

page 15

and the following four quadrant inverse tangent operation

 ()1tan sin ,cose e e  −=

where

()2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r



=

=

 − − −
 

= −

The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e is

given by

 ()
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 

−
   −− 

= −  
+ +    

In this equation  is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  .

Therefore, the flight time between the de-orbit impulse and entry interface is given by

 () () ()180
2

e et t t t


  = − = −

Finally, the orbital speed at the entry interface eV can be determined from

2

e

e d

V
r a

 
= −

Orbital Mechanics with MATLAB

page 16

APPENDIX C

De-orbit from an Elliptical Earth Orbit

The scalar magnitude of the impulsive delta-v for de-orbit from an initial elliptical orbit is given by

()

()

()2 2

2 2 1
cos

cos

p a

e

e a a p a a e

r r
V

r r r r r r






 −
  = −
 + −
 

where

 geocentric radius at the entry altitude

 flight path angle at entry

 apogee radius of the initial elliptical orbit

 perigee radius of the initial elliptical orbit

 gravitati

e

a a e

p p e

e

a

p

r

r r r

r r r

r

r





=

=

=

=

=

=

= onal constant of the Earth

The true anomaly at entry can be determined from the following series of equations.

() ()

()
2 2

1
1 1 1

sin cos tan sin ,cos
d d d d

e e e e e

d d e d

a e a er

e e r e
    



−
− −

= = − =

where

()2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r



=

=

 − − −
 

= −

The time-of-flight between perigee and the entry true anomaly e is given by

 ()
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
tof

e e

 


 

−
   −− 

= −  
+ +    

In this equation,  is the orbital period of the de-orbit trajectory.

Therefore, the flight time between the de-orbit impulse time and entry is given by

 () () ()180
2

e et tof tof tof


  = − = −

Orbital Mechanics with MATLAB

page 17

Finally, the speed at reentry eV can be determined from

2

e

e d

V
r a

 
= −

Orbital Mechanics with MATLAB

page 18

APPENDIX D

Flight Path Coordinates

Relative flight path coordinates are defined with respect to a rotating Earth. This set of coordinates

consists of the following trajectory elements

()

()

 geocentric radius

 speed

 flight path angle

 geocentric declination

 geographic longitude east

 flight azimuth clockwise from north

r

V









=

=

=

=

= +

= +

Please note the sign and direction convention.

The following are several useful equations that summarize the relationships between inertial and

relative flight path coordinates.

sin sin

cos cos cos cos

cos sin cos cos sin

r r i i

r r r i i i

r r r e i i i

v v

v v

v r v

 

   

     

=

=

+ =

where the r subscript denotes relative coordinates and the i subscript inertial coordinates.

The inertial speed can also be computed from the following expression

2 2 2 22 cos sin cos cosiv v v r r     = + +

The inertial flight path angle can be computed from

2 2 2 2 2

2 2 2 2

cos 2 cos cos cos cos
cos

2 cos cos cos cos
i

v vr r

v vr r

      


     

+ +
=

+ +

The inertial azimuth can be computed from

2 2 2 2 2

cos cos cos
cos

cos 2 cos cos cos cos
i

v r

v vr r

   


      

+
=

+ +

where all coordinates on the right-hand-side of these equations are relative to a rotating Earth.

The transformation of an Earth-centered inertial (ECI) position vector ECIr to an Earth-centered fixed

(ECF) position vector ECFr is given by the following vector-matrix operation

  ECF ECI=r T r

Orbital Mechanics with MATLAB

page 19

where the elements of the transformation matrix  T are given by

  

cos sin 0

sin cos 0

0 0 1

 

 

 
 = −
 
  

T

and  is the Greenwich apparent sidereal time at the moment of interest. Greenwich sidereal time is

given by the following expression:

 0g et  = +

where 0g is the Greenwich sidereal time at 0 hours UTC, e is the inertial rotation rate of the Earth,

and t is the elapsed time since 0 hours UTC.

Finally, the flight path coordinates are determined from the following set of equations

 ()

2 2 2 2 2 2

1 1

1 1

tan , sin

sin tan ,

y y z

z

y x

z

y x

ECF ECF ECF ECF ECF ECF

ECF

ECF ECF

ECF

R

R R

R

r r r r v v v v

r
r r

v
v v

 

 

− −

− −

= + + = + +

 
= =   

 

 
 = − =    

 

r

v

where

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

R ECF

    

 

    

− − 
 

= −
 
 − − − 

v v

Please note the two-argument inverse tangent calculation for  and  is a four-quadrant operation.

Orbital Mechanics with MATLAB

page 20

APPENDIX E

Geodetic Coordinates

The following diagram illustrates the geometric relationship between geocentric and geodetic

coordinates.

In this diagram,  is the geocentric declination,  is the geodetic latitude, r is the geocentric distance,

and h is the geodetic altitude. The exact mathematical relationship between geocentric and geodetic

coordinates is given by the following system of two nonlinear equations

()

()

cos cos 0

sin sin 0

c h r

s h r

 

 

+ − =

+ − =

where the geodetic constants c and s are given by

()
()

2

2 2
1

1 2 sin

eqr
c s c f

f f 
= = −

− −

and eqr is the Earth equatorial radius (6378.14 kilometers) and f is the flattening factor for the Earth

(1/298.257).

In this MATLAB script, the geodetic latitude is determined using the following expression

 2

2

sin 2 1 1
sin 4

4
f f


  

  

    
= + + −    

    

which is a series expansion in flattening factor (NASA TN D-7522).

Orbital Mechanics with MATLAB

page 21

The geodetic altitude is calculated from

 () () 21 cos2 1 1ˆ ˆ 1 1 cos4
2 4 16

h r f f





   −  
= − + + − −     

      

In these equations,  is the geocentric distance of the satellite, ˆ / eqh h r= and ˆ / eqr r= .

Orbital Mechanics with MATLAB

page 22

APPENDIX F

Pitch and Yaw Angles

The pitch and yaw angles for the de-orbit impulsive maneuver are computed and displayed in the local-

vertical-local horizontal (LVLH; also called the radial-tangential-normal RTN) coordinate system.

The following diagram illustrates the geometry of the pitch and yaw angles in this system. In this

figure, the radial direction is along the geocentric radius vector directed away from the Earth, the

tangential direction is tangent to the orbit in the direction of the orbital motion, and the normal

direction is along the angular momentum vector of the orbit.

The pitch angle is positive above the local horizontal plane formed by the tangential and normal

directions, and the yaw angle is positive in the direction of the angular momentum vector which is

perpendicular to the orbit plane. The pitch angle varies between 90 degrees and the yaw angle can

have a value between 180 degrees.

The following is the MATLAB source code for the function that computes the orientation angles using

the Earth-centered-inertial (ECI) position and velocity vectors (reci, veci) at the impulse location

and the unit pointing vector of the impulsive delta-v (ueci).

function [pitch, yaw] = ueci2angles(reci, veci, ueci)

% convect eci unit vector to rtn angles

% input

% reci = eci position vector (kilometers)

% veci = eci velocity vector (kilometers/second)

% ueci = eci unit vector

% output

Tu

Ru

Nu





 pitch

= yaw





=

Orbital Mechanics with MATLAB

page 23

% pitch = pitch angle (radians)

% positive above the local horizon

% yaw = yaw angle (radians)

% positive in the direction of the angular momentum vector

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute radial frame unit vectors

rmag = norm(reci);

xrdl = reci / rmag;

zrdl = cross(reci, veci);

hmag = norm(zrdl);

zrdl = zrdl / hmag;

yrdl = cross(zrdl, xrdl);

% unit vector in radial-tangential-normal frame

umee(1) = dot(ueci, xrdl);

umee(2) = dot(ueci, yrdl);

umee(3) = dot(ueci, zrdl);

% pitch angle (radians)

pitch = asin(umee(1));

% yaw angle (radians)

yaw = atan2(umee(3), umee(2));

