

Computer Methods for Orbital

Transfer Design, Analysis and

Optimization

Written by C. David Eagle Jr.

cdeaglejr@yahoo.com

http://celestialandorbitalmechanicswebsite.yolasite.com/

mailto:cdeaglejr@yahoo.com
http://celestialandorbitalmechanicswebsite.yolasite.com/

page 1

Program leo2geo_ocs

Continuous Low-Thrust LEO-to-GEO Trajectory Optimization

This document is the user’s manual for a Fortran computer program called leo2geo_ocs that uses the

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the continuous, single-

maneuver, finite-burn low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) orbit transfer

optimization problem. The software attempts to maximize the final spacecraft mass. Since this

simulation involves a single continuous propulsive maneuver, this is equivalent to minimizing the

propellant mass required for the orbital maneuver.

The important features of this scientific simulation are as follows:

 single, continuous thrust transfer trajectory

 constant propulsive thrust magnitude

 modified equinoctial equations of motion

 near-circular initial and final orbits

 two types of initial guess algorithms

 numerical verification of the optimal control solution

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of

trajectory optimization problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in the Sparse

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org).

The leo2geo_ocs software consists of Fortran routines that perform the following tasks:

 set algorithm control parameters and call the transcription/optimal control subroutine

 define the problem structure and perform initialization related to scaling, lower and upper

bounds, initial conditions, etc.

 compute the right-hand-side differential equations

 evaluate any point and path constraints

 display the optimal solution results and create an output file

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.

The leo2geo_ocs software allows the user to select the type of initial guess, collocation method, and

other important algorithm control parameters.

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/

page 2

Program execution

An input file created by the user can be run from the command line or a simple batch file with a

statement similar to the following:

leo2geo_ocs leo2geo_jk.in

If the software is executed without an input file on the command line, the computer program will display

the following title screen and file name prompt:

* program leo2geo_ocs *

* *

* low-thrust LEO-to-GEO *

* trajectory optimization *

* *

* March 20, 2012 *

please input the name of the simulation definition file

The user should respond to this prompt with the name of a compatible input data file including the

filename extension.

The screen output created by the leo2geo_ocs computer program can be re-directed to a text file with

a command line similar to

leo2geo_ocs leo2geo_ij.in >leo2geo_jk.txt

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories

and finally Command Prompt. The size, font and other characteristics of the screen can be controlled

by the user with the c:\ icon in the upper left corner of the window. To log into the subdirectory created

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is

the name of the subdirectory created by the user.

The DOS command line prompt looks similar to C:\leo2geo_ocs>_.

Input file format and contents

The leo2geo_ocs software is “data-driven” by a user-created text file. Each data item within an input

file is preceded by one or more lines of annotation text. Do not delete any of these annotation lines or

increase or decrease the number of lines reserved for each comment. However, you may change them to

reflect your own explanation. The annotation line also includes the correct units and when appropriate,

the valid range of the input. ASCII text input is not case sensitive but must be spelled correctly. In the

following discussion the actual input file contents are in courier font and all explanations are in times

italic font.

The following is a typical input file used by the leo2geo_ocs computer program. This is a classic

LEO-to-GEO example taken from the paper, “Minimum-Time Low-Thrust Rendezvous and Transfer

Using Epoch Mean Longitude Formulation”, Jean A. Kechichian, Journal of Guidance, Control, and

page 3

Dynamics, Vol. 22, No. 3, May-June 1999. For this example the initial true longitude is free. However,

the optimal control solution includes the effect of propellant mass depletion due to thrusting while the

example in Dr. Kechichian’s technical paper assumes constant mass and therefore constant thrust

acceleration. This example also includes the effect of the Earth’s
2J gravity term.

The first six lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with six and only six initial text lines.

 ** leo-to-geo low-thrust trajectory optimization

 ** single phase continous-thrust maneuver

 ** program leo2geo_ocs - leo-to-geo orbit transfer

 ** J. Kechichian example - leo2geo_jk.in

 **

The first three program inputs are the initial spacecraft mass, thrust magnitude and specific impulse.

Please note the proper units for each data item.

initial spacecraft mass (kilograms)

1000.0

thrust magnitude (newtons)

98.0

specific impulse (seconds)

3300.0

The next six numerical inputs are the classical orbital elements of the initial orbit.

* INITIAL ORBIT *

semimajor axis (kilometers)

7000.0

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5

argument of perigee (degrees)

0.0

right ascension of the ascending node (degrees)

0.0

true anomaly (degrees)

0.0

The following input determines if the software will constrain or free the initial true longitude.

constrain initial true longitude (1 = yes, 2 = no)

2

The following five inputs are the user-defined classical orbital elements of the final mission orbit.

* FINAL ORBIT *

page 4

semimajor axis (kilometers)

42000.0

orbital eccentricity (non-dimensional)

0.001

orbital inclination (degrees)

1.0

argument of perigee (degrees)

0.0

right ascension of the ascending node (degrees)

0.0

The next integer input defines the type of final orbit point constraints. Please see the “Problem setup”

section for additional information about this program item.

* type of final orbit point constraints *

1 = modified equinoctial orbital elements (semimajor axis, ecc = 0, inc = 0)

2 = eci components of final state vector (hx, hy, hz, |r|, sin(gamma))

3 = all components of final classical orbital elements

--

2

The next program input tells the software what type of gravity model to use during the simulation.

Option 2 will include the oblateness gravity coefficient  2J in the equations of motion.

* type of gravity model *

1 = spherical Earth

2 = j2 gravity model

2

The next integer input defines the type of initial guess used to estimate the transfer or thrust duration

time. Please see the “Creating an initial guess” section later in this document for additional

information about this program item.

* type of initial guess for transfer time *

1 = numerical integration (coplanar orbits)

2 = Edelbaum algorithm (non-coplanar orbits)

3 = user-defined

2

The following data item is the user’s initial guess for the transfer time, in hours. This input

corresponds to option 3 of the previous item.

**

* user-defined initial guess for transfer time (hours) *

**

4

The next integer input defines the type of initial guess to use for the simulation Please see the “Initial

guess” technical discussion for additional information about this program item.

page 5

* initial guess options*

 1 = linear guess with tangential thrusting

 2 = numerical integration with Edelbaum steering

 3 = binary data file

2

If the user elects to use a binary data file (option 3 above) for the initial guess, the following text input

specifies the name of the file to use.

name of binary initial guess data file

leo2geo_jk.rsbin

The following input can be used to create or update an initial guess binary file. The creation or update

process uses the filename defined above. For initial guess option 1, the software will create a binary

restart file. For initial guess option 3, an input of yes to this item will update the binary file used to

initialize the simulation.

* binary restart file option *

create/update binary data file (yes or no)

no

This next input specifies the type of comma-delimited or comma-separated-variable (CSV) solution data

file to create. Option 1 will create a solution file at each collocation point or node determined by the

Sparse Optimization Suite software. Options 2 and 3 allow the user to specify either the number of

nodes or time step size of the data file.

**

* type of comma-delimited solution data file *

**

 1 = OCS-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

1

For options 2 or 3, this next input defines either the number of data points or the time step size of the

data output in the solution file.

number of user-defined nodes or print step size in solution data file

50

The name of the solution data file is defined in this next line. Please consult Appendix A for a

description of the information written to this file.

name of solution output file

leo2geo_jk.csv

The next series of program inputs are algorithm control options and parameters for the Sparse

Optimization Suite. The first input is an integer that specifies the type of collocation method to use

during the solution process.

* algorithm control parameters *

page 6

discretization/collocation method

 1 = trapezoidal

 2 = separated Hermite-Simpson

 3 = compressed Hermite-Simpson

1

The next input is an integer that defines the number of grid points to use for the initial guess.

number of grid points

100

The next input defines the relative error in the objective function.

relative error in the objective function (performance index)

1.0d-5

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations

1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations

20

The next input is an integer that defines the maximum number of function evaluations.

maximum number of function evaluations

500000

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations

1000

The level of output from the NLP algorithm is controlled with the following integer input.

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the

following integer input. Please note that option 4 will create lots of information.

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

page 7

The level of output from the differential equations algorithm is controlled with the following integer

input. Please note that option 5 will create lots of information.

differential equation output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program option

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s

manual. To ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0

The last series of inputs allow the reading and writing of configuration input files. The user should

always create a configuration file before attempting to read one. These configuration files are simple

text files which can be edited external to the leo2geo_ocs software. Please consult Appendix B for

additional information about this program option.

* optimal control configuration options

read an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2geo_config.txt

create an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2geo_config1.txt

Optimal control solution and graphics

The following is the program output for this example. It includes the orbital elements of the initial LEO

and the final GEO mission orbit. It also summarizes the total thrust duration, final spacecraft mass,

propellant mass required for the orbit transfer and the accumulated delta-v.

The leo2geo_ocs software will also create a comma-separated-variable (csv) output file. This file

contains the state vector, orbital elements and steering angles during the transfer trajectory. It has the

file name specified by the user in the simulation definition (input) data file. Please consult Appendix A

for additional information about the contents of this file.

page 8

 ===================

 program leo2geo_ocs

 ===================

 transfer time algorithm

 Edelbaum algorithm (non-coplanar orbits)

 initial guess type

 linear guess with tangential thrusting

 gravity model type

 j2 earth gravity model

 beginning of finite burn

 sma (km) eccentricity inclination (deg) argper (deg)

 0.700000000000D+04 0.615067684519D-16 0.285000000000D+02 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.206748308333D-14 0.285866456178D+03 0.285866456178D+03 0.971419368695D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.191377284137D+04 -.591734870255D+04 -.321285820480D+04 0.700000000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.725856076669D+01 0.181305405204D+01 0.984408031306D+00 0.754605384101D+01

 end of finite burn

 sma (km) eccentricity inclination (deg) argper (deg)

 0.420000000000D+05 0.999999999999D-03 0.100000000000D+01 0.360000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.000000000000D+00 0.423922295262D+02 0.423922295262D+02 0.142768906774D+04

 rx (km) ry (km) rz (km) rmag (km)

 0.309960418384D+05 0.282912582669D+05 0.493825749949D+03 0.419689619582D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.207699129982D+01 0.227794898386D+01 0.397617474165D-01 0.308294103563D+01

 transfer time 15.0823889600487 hours

 spacecraft mass 835.576420850925 kilograms

 propellant mass 164.423579149075 kilograms

 delta-v 5813.28840908474 meters/second

The following are typical transfer trajectory, optimal control and orbital element plots for this example.

They were created with the Grapher plotting program (www.goldensoftware.com).

The first plot is a view of the transfer trajectory from a north pole viewpoint looking down on the

equatorial plane. The unit of each trajectory coordinate is Earth radii.

http://www.goldensoftware.com/

page 9

This next plot illustrates the behavior of the pitch and yaw steering angles during the transfer.

page 10

This plot summarizes the inertial right ascension and declination angles for this maneuver.

The next three plots illustrate the behavior of the semimajor axis, orbital eccentricity and orbital

inclination of the transfer orbit during the continuous low-thrust maneuver.

page 11

page 12

Verification of the optimal control solution

The optimal control solution determined by the software can be verified by numerically integrating the

orbital equations of motion with the optimal control-computed initial park orbit conditions and the

optimal control solution. This is equivalent to solving an initial value problem (IVP) that uses the

optimal unit thrust vector solution. This part of the leo2geo_ocs computer program uses a Runge-

Kutta-Fehlberg 7(8) variable step size method to integrate the orbital equations of motion.

The following is a summary of the final optimal solution computed using this explicit numerical

integration method.

 ==

 verification of optimal control solution

 ==

 mission orbit state vector and orbital elements

 sma (km) eccentricity inclination (deg) argper (deg)

 0.419999999440D+05 0.100000252738D-02 0.999999595528D+00 0.359999478450D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.359999985471D+03 0.423927660632D+02 0.423922445128D+02 0.142768906488D+04

 rx (km) ry (km) rz (km) rmag (km)

 0.309960417074D+05 0.282912586047D+05 0.493825693260D+03 0.419689620884D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.207699129066D+01 0.227794897693D+01 0.397617220168D-01 0.308294102401D+01

 transfer time 15.0823889600487 hours

 spacecraft mass 835.576420851553 kilograms

 propellant mass 164.423579148447 kilograms

 delta-v 5813.28840906505 meters/second

Creating an initial guess

The solution to this classic orbit transfer problem requires a good initial guess for the transfer time along

with a reasonable guess for the dynamic variables during the orbit transfer.

Transfer time initial guess

The leo2geo_ocs software implements three options for specifying the transfer time initial guess. The

first technique simply integrates the coplanar transfer orbit trajectory using tangential thrusting until the

final orbit radius is reached. The second method uses Edelbaum’s algorithm. The first method is best

for coplanar orbit transfers and the second method should be used for non-coplanar orbit transfers. The

third initial guess option is a user-specified transfer time.

For the first technique, the unit thrust vector for tangential steering during the numerical integration is

simply  0 1 0
T

T u .

page 13

The Edelbaum algorithm is described in Chapter 14 of the book Orbital Mechanics by V. Chobotov and

the technical paper, “The Reformulation of Edelbaum's Low-thrust Transfer Problem Using Optimal

Control Theory” by J. A. Kechichian, AIAA-92-4576-CP. The original Edelbaum algorithm is

described in “Propulsion Requirements for Controllable Satellites”, ARS Journal, Aug. 1961, pp. 1079-

1089. This algorithm is valid for total inclination changes i given by 0 114.6i   and assumes that

the thrust acceleration magnitude and spacecraft mass are both constant during the orbit transfer.

The initial thrust vector yaw angle  0 is given by the following expression

0

0

sin
2

tan

cos
2f

i

V
i

V






 
 

 
 

  
 

where the speed on the initial circular orbit is 0 0V r and the speed on the final circular orbit is

f fV r . In these equations 0 0er r h  is the geocentric radius of the initial orbit, f e fr r h  is the

geocentric radius of the final orbit, re is the radius of the Earth and  is the gravitational constant of the

Earth. The initial altitude is h0 and the final altitude is h f .

The total velocity change required for a low-thrust orbit transfer is given by

0 0

0 0

0

sin
cos

tan
2

V
V V

i







  
 

  
 

The total transfer time is given by t V f  where f is the thrust acceleration. This is the transfer time

used for the Edelbaum guess option in the leo2geo_ocs software.

Dynamic variables initial guess

The dynamic variables at each grid point of the initial guess are determined by setting the initial guess

option INIT(1) = 6 with INIT(2) = 2 within the odeinp subroutine for this aerospace trajectory

optimization problem. These program options create an initial guess from the numerical integration of

the equations of motion coded in the oderhs subroutine. The INIT(1) = 6 program option tells the

Sparse Optimization Suite to construct an initial guess by solving an initial value problem (IVP) with a

linear control approximation. The INIT(2) = 2 program option tells the program to use the Dormand-

Prince variable step size numerical method to solve the initial value problem.

Binary restart file initial guess

Binary restart data files can also be used to initialize a leo2geo_ocs simulation. A typical scenario is

1. Create a binary restart file from a converged and optimized simulation

2. Modify the original input file with slightly different spacecraft characteristics, propulsive

parameters or perhaps final mission targets and/or constraints

page 14

3. Use the previously created binary restart file as the initial guess for the new simulation

This techniques works well provided the two simulations are not dramatically different. Sometimes it is

necessary to make successive small changes in the mission definition and run multiples simulations to

eventually reach the final desired solution.

Problem setup

This part of the user’s manual provides details about the software implementation within the

leo2geo_ocs computer program. It defines such things as point and path constraints (boundary

conditions), bounds on the dynamic variables, and the performance index or objective function.

(1) Performance index – maximize final spacecraft mass

The objective function or performance index J for this simulation is the mass of the spacecraft when it

reaches the final mission orbit. This is simply

 fJ m

The value of the maxmin indicator in the software tells the program whether the user is minimizing or

maximizing the performance index. The spacecraft mass at the initial time is fixed to the initial value

provided by the user.

(2) Path constraint – unit thrust vector scalar magnitude

At any point during the transfer trajectory, the scalar magnitude of the components of the unit thrust

vector is constrained as follows:

 2 2 2 1
r t nT T T Tu u u   u

(3) Initial true longitude

The software allows the use to either fix or free the initial true longitude. For an unconstrained initial

true longitude, the true longitude bounds are 0 2L   . Otherwise, the initial true longitude is fixed to

the value  iL     .

(4) Mission constraint “matching” at the final orbit

The leo2geo_ocs software implements three techniques for “targeting” the final mission orbit. The

correct option to use depends on the characteristics of the final mission orbit.

For final orbits that are circular and equatorial, the set of final constraints are specified in terms of the

final modified equinoctial elements or dynamic variables according to

0

f

f f f f

p p

f g h k



   

page 15

The f subscript indicates values on the user-specified final orbit. This set of constraints or boundary

conditions follows from the orbital element definitions

   

   

 

21 cos

sin tan 2 cos

tan 2 sin

p a e f e

g e h i

k i





   

   

 

These boundary conditions are enforced using lower and upper bounds on the dynamic variables at the

final time.

For final orbits that may be near-circular and/or inclined, the final mission constraints are enforced using

point functions. This set of point functions is given by

sin sin

f f fx x y y z z

f

f

h h h h h h

r r

 

  





where , ,x y zh h h are the inertial components of the angular momentum vector, r is the geocentric radius

and  is the flight path angle. As noted previously, the f subscript indicates mission values on the user-

specified final orbit.

A third program option allows the user to constrain a classical orbital element set consisting of the

semimajor axis, orbital eccentricity and inclination using point functions. This set of mission constraints

is

 f f fa a e e i i  

As before the f subscript indicates values on the user-specified final orbit.

Bounds on the dynamic variables

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial

dynamic variables during the orbital transfer.

0.05 1.05

1.1 0.9

1 1 1 1

1 1 1 1

0 200 2

i isc sc sc

f i

m m m

p p p

f g

h k

L 

 

 

       

       

  

page 16

where
iscm is the initial spacecraft mass, and

ip is the semiparameter of the initial orbit and fp is the

semiparameter of the final orbit. The upper bound on true longitude L allows for a maximum of 200

complete orbits during the transfer.

Finally, the components of the unit thrust vector are constrained as follows:

1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

Technical discussion

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These equations

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees. However,

two components of the orbital element set are singular for an orbital inclination of 180 degrees.

The relationship between direct modified equinoctial and classical orbital elements is defined by the

following definitions

   

   

 

21 cos

sin tan 2 cos

tan 2 sin

p a e f e

g e h i

k i L





 

   

   

    

 where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





The relationship between classical and modified equinoctial orbital elements is:

semimajor axis
2 21

p
a

f g


 

orbital eccentricity
2 2e f g 

orbital inclination  1 2 22 tani h k 

page 17

argument of periapsis    1 1tan tang f k h   

right ascension of the ascending node  1tan k h 

true anomaly    1tanL L g f      

The mathematical relationships between an inertial state vector and the corresponding modified

equinoctial elements are summarized as follows:

position vector

 

 

 

2

2

2

2

2

cos cos 2 sin

sin sin 2 cos

2
sin cos

r
L L hk L

s

r
L L hk L

s

r
h L k L

s





 
  

 
   
 
 
 
  

r

velocity vector

 

 

 

2 2

2

2 2

2

2

1
sin sin 2 cos 2

1
cos cos 2 sin 2

2
cos sin

L L hk L g f hk g
s p

L L hk L f ghk f
s p

h L k L f h gk
s p


 


 



 
      

 
 
        
 
 
   
  

v

where

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     

   

The system of first-order modified equinoctial equations of orbital motion are given by

2

t

dp p p
p

dt w 
  

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

page 18

2

cos
2

ndh p s
h L

dt w


 

2

sin
2

ndk p s
k L

dt w


 

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 

where , ,r t n   are non-two-body perturbations in the radial, tangential and normal directions,

respectively. The radial direction is along the geocentric radius vector of the spacecraft measured

positive in a direction away from the gravitational center, the tangential direction is perpendicular to this

radius vector measured positive in the direction of orbital motion, and the normal direction is positive in

the direction of the angular momentum vector of the spacecraft’s orbit.

The equations of orbital motion can also be expressed in vector form as follows:

  
d

dt
  

y
y A y P b

where

    

    

 

2

2

2
0 0

1
sin 1 cos sin cos

1
cos 1 sin sin cos

cos
0 0

2

sin
0 0

2

1
0 0 sin cos

p p

w

p p p g
L w L f h L k L

w w

p p p f
L w L g h L k L

w w

p s L

w

p s L

w

p
h L k L

w



  

  







 
 
 
 
    
 
 
    
  

  
 
 
 
 
 
 
 
 
  

A

and

2

0 0 0 0 0

T

w
p

p


  
   

   

b

The total non-two-body acceleration vector is given by

page 19

 ˆ ˆ ˆ
r r t t n n     P i i i

where ˆ ˆ ˆ, and r t ni i i are unit vectors in the radial, tangential and normal directions. These unit vectors can

be computed from the inertial position vector r and velocity vector v according to

 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r

For unperturbed two-body motion, 0P and the first five equations of motion are simply

0p f g h k     . Therefore, for two-body motion these modified equinoctial orbital elements are

constant. The true longitude is often called the fast variable of this orbital element set.

Propulsive thrust

The acceleration due to propulsive thrust can be expressed as

 ˆ
T T

T

m
a u

where T is the thrust magnitude, m is the spacecraft mass and ˆ
r t n

T

T T T Tu u u   u is the unit pointing

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system. The

components of this unit vector are the control variables.

The propellant mass flow rate is determined from

sp

dm T
m

dt g I
 

where g is the acceleration of gravity and spI is the specific impulse of the propulsive system. The

product spg I is also called the exhaust velocity. This differential equation and the modified equinoctial

differential equations are included in the right-hand-side subroutine required by the software.

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt  where

iscm is the initial

mass of the spacecraft.

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle  and

the out-of-plane yaw angle  as follows:

 sin cos cos cos sin
r t nT T Tu u u      

The pitch and yaw angles can be determined from the components of the unit thrust vector according to

page 20

 

 

1

1

sin

tan ,

r

n t

T

T T

u

u u













The pitch angle is positive above the “local horizontal” and the yaw angle is positive in the direction of

the angular momentum vector of the transfer orbit.

The relationship between a unit thrust vector in the Earth-centered-inertial (ECI) coordinate system ˆ
ECITu

and the corresponding unit thrust vector in the modified equinoctial (MEE) system ˆ
MEETu is given by

 ˆ ˆ ˆˆ ˆ
ECI MEET r t n T

 
 

u i i i u

where

 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r

This relationship can also be expressed as

  

 

 

 

ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ECI MEE MEE

x x
x

T T y y T
y

z z
z

 
 
 

  
 
 

  

r h r h

u Q u r h r h u

r h r h

Finally, the transformation of the unit thrust vector in the ECI system to the modified equinoctial

coordinate system is given by

  ˆ ˆ
MEE ECI

T

T Tu Q u

For the case of tangential steering

      ˆ ˆ ˆˆ ˆ ˆˆ
ECI

T

T
x y z

    
  

u h r h r h r

In the leo2geo_ocs computer program, the components of the inertial unit thrust vector are defined in

terms of the right ascension  and the declination angle  as follows:

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u      

Finally, the right ascension and declination angles can be determined from the components of the ECI

unit thrust vector according to

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u   

where the calculation for right ascension is a four quadrant inverse tangent operation.

page 21

Gravitational acceleration

The non-spherical gravitational acceleration vector can be expressed as

 ˆ ˆ
N N r rg g g i i

 where

 
 

ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ

T

N N r r

N
T

N N r r






e e i i
i

e e i i

and

  ˆ 0 0 1
T

N e

In these equations the north direction component is indicated by subscript N and the radial direction

component is subscript r.

The contributions due to a zonal gravity model of order n are as follows:

'

2
2

cos
kn

e
N k k

k

R
g P J

r r

 



 
   

 


  
2

2

1

kn
e

r k k

k

R
g k P J

r r





 
    

 


 where

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k order Legendre polynomial

e

k

k

r

R

J

P

















For a zonal only Earth gravity model, the east component is identically zero.

Finally, the zonal gravity perturbation contribution is

 T

g a Q g

where ˆ ˆ ˆ r t n
 
 

Q i i i .

For 2J effects only, the three components are as follows:

page 22

 

 
2

22

2

24 2 2

12 sin cos3
1

2 1
r

e
J

h L k LJ R

r h k


 
    
  
 

   

 
2

2

2

24 2 2

sin cos cos sin12

1
t

e
J

h L k L h L k LJ R

r h k


  
   
  
 

  

 
2

2 22

2

24 2 2

1 sin cos6

1
n

e
J

h k h L k LJ R

r h k


   
   
  
 

These are the equations implemented in this computer program.

page 23

Algorithm resources

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA Education

Series, 1987.

Analytical Mechanics of Space Systems, Hanspeter Schaub and John L. Junkins, AIAA Education

Series, 2003.

Spacecraft Mission Design, Charles D. Brown, AIAA Education Series, 1992.

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002.

“Optimal Low Thrust Trajectories to the Moon”, John T. Betts and Sven O. Erb, SIAM Journal on

Applied Dynamical Systems, Vol. 2, No. 2, pp. 144-170, 2003.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“Optimal Interplanetary Orbit Transfers by Direct Transcription”, John T. Betts, The Journal of the

Astronautical Sciences, Vol. 42, No. 3, July-September 1994, pp. 247-268.

“Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, 20-22 August 1990.

page 24

APPENDIX A

Contents of the Simulation Summary and CSV Files

This appendix is a brief summary of the information contained in the simulation summary screen

displays and the CSV data files produced by the leo2geo_ocs software.

The simulation summary screen display contains the following information:

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per

second

transfer time = total thrust duration in hours

final mass = final spacecraft mass in kilograms

propellant mass = expended propellant mass in kilograms

thrust duration = maneuver duration in seconds

delta-v = scalar magnitude of the accumulated delta-v in meters/seconds

The delta-v is determined using a cubic spline integration of the thrust acceleration data at each

collocation node.

The comma-separated-variable disk file is created by the odeprt subroutine and contains the following

information:

time (hrs) = simulation time since ignition in hours

page 25

time (days) = simulation time since ignition in days

semimajor axis (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argument of perigee (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly = true anomaly in degrees

period (min) = orbital period in minutes

mass (kg) = spacecraft mass in kilograms

T/W = thrust-to-weight ratio

yaw = thrust vector yaw angle in degrees

pitch = thrust vector pitch angle in degrees

perigee altitude = perigee altitude in kilometers

apogee altitude = apogee altitude in kilometers

ut-radial = radial component of unit thrust vector

ut-tangential = tangential component of unit thrust vector

ut-normal = normal component of unit thrust vector

semi-parameter = orbital semiparameter in kilometers

f equinoctial element = modified equinoctial orbital element

g equinoctial element = modified equinoctial orbital element

h equinoctial element = modified equinoctial orbital element

k equinoctial element = modified equinoctial orbital element

true longitude = true longitude in degrees

rx (er) = x-component of the spacecraft’s position vector in Earth radii

ry (er) = y-component of the spacecraft’s position vector in Earth radii

rz (er) = z-component of the spacecraft’s position vector in Earth radii

fpa (deg) = flight path angle in degrees

dvacc (mps) = accumulative delta-v in meters per second

page 26

APPENDIX B

Typical Sparse Optimization Suite Configuration File

The leo2geo_ocs computer progran can read and use a user-defined configuration file. A description

of each element in this file can be found in the INOCS routine in section 6.2, Subprograms for Optimal

Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization of the Sparse

Optimization Suite user’s manual. Please note that the leo2geo_ocs software can read and use a

subset of the information in this file. For example, a subset configuration file might contain only the

following information;

ODETOL=0.1D-06

INSNLP:IOFLAG=5

SOCOUT=I4K4

The following is a typical “full version” configuration file created during the execution of the

leo2geo_ocs software.

AEQTOL=0.1000000000000000D-02

DTAUX=0.0000000000000000D+00

OBJCTL=0.1000000000000000D-04

ODETOL=0.1000000011686097D-06

PGDCTL=0.1000000000000000D-02

PRTMSD=0.1490116119384766D-07

PRTMXD=0.1000000000000000D-02

PRTSFD=0.1000000000000000D-04

QDRTOL=0.1000000000000000D-02

RESTOL=0.1000000000000000D-04

SMLTOL=0.1490116119384766D-10

TOLJSD=0.1000000000000000D-05

TOLM5A=0.1490116119384766D-07

TOLM5R=0.1490116119384766D-07

IDSCPH=0

IDSCND=0

IDSCVR=0

IDSCFN=0

IDTSFD=-1

IPFAUX=0

IPFSFD=0

IPRSFD=1

IPGRD=0

IPNLP=10

IPODE=0

IPUAUX=0

IPUOCP=6

IRSTRT=2

ISCALE=0

ISFHES=41

ISFINP=42

ISFRST=43

ISFSCL=44

ITSWCH=2

M5DTYP=0

MITODE=20

MTSWCH=-1

MXDATA=0

MXPARM=10

MXPCON=20

MXSTAT=20

MXTERM=50

NPTAUX=100

NSSWCH=-1

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0

SPRTHS=SPARSE

NLPALG=SNLPMN

NLPOMR=M

KEYDPL=.lueiLUE

page 27

RHSTMP=RHSTMPLT

RSTFIL=hyper1.rsbin

SCLFIL=scalewgt.fil

INSNLP:ALFLWR=0.0000000000000000D+00

INSNLP:ALFUPR=0.1000000000000000D+01

INSNLP:CONTOL=0.1490116119384766D-07

INSNLP:EPSRLF=0.1490116119384766D-07

INSNLP:OBJTOL=0.9999999747378752D-05

INSNLP:PGDTOL=0.1000000000000000D-04

INSNLP:SLPTOL=0.9000000000000000D+00

INSNLP:SFZTOL=0.1000000000000000D-01

INSNLP:TOLFIL=0.2000000000000000D+01

INSNLP:TOLKTC=0.1110953834938985D+26

INSNLP:TOLPVT=0.1000000000000000D-02

INSNLP:IHESHN=0

INSNLP:IOFLAG=5

INSNLP:IOFLIN=-1

INSNLP:IOFMFR=0

INSNLP:IOFPAT=0

INSNLP:IOFSHR=0

INSNLP:IOFSRC=0

INSNLP:IPUDRF=0

INSNLP:IPUFZF=0

INSNLP:IPUMF1=11

INSNLP:IPUMF2=12

INSNLP:IPUMF3=13

INSNLP:IPUMF4=14

INSNLP:IPUMF5=15

INSNLP:IPUMF6=16

INSNLP:IPUMF7=17

INSNLP:IPUNLP=6

INSNLP:IPUSTF=0

INSNLP:IRELAX=1

INSNLP:ITDRQP=-1

INSNLP:ITFZQP=-1

INSNLP:IT1MAX=20

INSNLP:JACPRM=0

INSNLP:LYNFNC=0

INSNLP:LYNOUT=0

INSNLP:LYNPLT=0

INSNLP:LYNPNT=101

INSNLP:LYNVAR=0

INSNLP:MAXLYN=5

INSNLP:MAXNFE=50000

INSNLP:MNSAME=2

INSNLP:NEWTON=0

INSNLP:NITMAX=1000

INSNLP:NITMIN=0

INSNLP:NORMAL=0

INSNLP:ALGOPT=FM

INSNLP:KTOPTN=SMALL

INSNLP:QPOPTN=SPARSE

INSNLP:BIGCON=-0.1000000000000000D+01

INSNLP:FEATOL=0.1000000000000000D-01

INSNLP:PMULWR=0.1000000000000000D+00

INSNLP:PTHTOL=0.1000000000000000D+02

INSNLP:RHOLWR=0.1000000000000000D+03

INSNLP:IMAXMU=10

INSNLP:MUCALC=3

INSNLP:MXQPIT=1

page 1

Program aeroassist_ocs

Aero-assist Trajectory Optimization

This document is the user’s manual for a Fortran computer program called aeroassist_ocs that uses

the Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the aero-assist

trajectory optimization problem. The trajectory is modeled as a single phase with several types of user-

defined initial and final boundary conditions. The software attempts to maximize the speed of the

vehicle at atmospheric exit or maximize the orbital plane change during the atmospheric phase of the

mission. The type of optimization is selected by the user.

The important features of this scientific simulation are as follows:

 Normalized lift coefficient and bank angle control variables

 3-DOF flight path equations of motion relative to a spherical, rotating Earth

 U.S. Standard 1976 atmosphere model and fourth-order zonal gravity model

 User-defined aerodynamic characteristics and point-mass vehicle properties

 User-defined path constraints such as heat rate and dynamic pressure

The Sparse Optimization Suite software suite is a direct transcription method that can be used to solve a

variety of trajectory optimization problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in the Sparse

Optimization Suite software can be found in the book, Practical Methods for Optimal Control and

Estimation Using Nonlinear Programming by John. T. Betts, SIAM, 2010.

The aeroassist_ocs software consists of Fortran routines that perform the following tasks:

 set algorithm control parameters and call the transcription/optimal control subroutine

 define the problem structure and perform initialization related to scaling, lower and upper

bounds, initial conditions, etc.

 compute the right-hand-side differential equations

 evaluate any point and path constraints

 display the optimal solution results and create an output file

The Sparse Optimization Suite software will use this information to automatically transcribe the user’s

problem and perform the optimization using a sparse nonlinear programming method. The software

allows the user to select the type of collocation method and other important algorithm control

parameters.

http://www.appliedmathematicalanalysis.com/

page 2

Program execution

An input file created by the user can be run from the command line or a simple batch file with a

statement similar to the following:

Aeroassist_ocs geo2leo_max_speed.in

If the software is executed without an input file on the command line, the computer program will display

the following information screen and file name prompt:

* Program aeroassist_ocs *

* *

* aeroassist trajectory *

* optimization *

* *

* June 9, 2011 *

please input the name of the simulation definition file

The user should respond to this prompt with the name of a compatible input data file including the

filename extension.

Input file format and contents

The aeroassist_ocs software is “data-driven” by a user-created text file. The following is a typical

input file used by this computer program. In the following discussion the actual input file contents are

in courier font and all explanations are in times italic font.

This data file defines a simulation that maximizes the speed at atmospheric exit while enforcing a heat

rate path constraint. The simulation starts in a geosynchronous equatorial orbit (GEO) and finishes in an

elliptical low Earth orbit (LEO) with a final orbital inclination of 28.5 degrees. The heat rate path

constraint enforces a value <= 600 2BTU/foot -second .

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

The first six lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with six and only six initial text lines.

**

aeroassist trajectory optimization

simulation definition data file ==> geo2leo_max_speed.in

geo-to-leo w/ plane change and aeroheating constraints

maximize speed at atmospheric exit - June 9, 2011

**

page 3

The first program input is an integer that defines the type of entry interface conditions to use. Please

consult the “Problem setup” section later in this document for an explanation of these three program

options.

initial conditions type

 1 = user input of flight path coordinates at entry interface

 2 = derived from deorbit maneuver; fixed entry conditions

 3 = derived from deorbit maneuver; bounded entry conditions

--

3

The next program input is an integer that defines the type of mission to simulate. Please note that

program option 0 (no optimization) will solve the two-point boundary value problem (TPBVP).

simulation type

 0 = no optimization

 1 = maximize final speed

 2 = maximize inclination change

1

This section allows the user to define the vehicle weight, aerodynamic reference area, the nose radius

used in the aero-heating calculations, and other vehicle aerodynamic properties.

vehicle weight and aerodynamics characteristics

vehicle weight (pounds)

5000.0

aerodynamic reference area (square feet)

125.84

nose radius (feet)

1.0

drag coefficient at zero angle-of-attack; cd0 (nondimensional)

0.032

drag polar constant k (non-dimensional)

1.4

The next set of inputs defines the conditions at the deorbit point in the initial circular orbit. The

calendar date and universal time are required in order to transform coordinates.

deorbit conditions

calendar date at deorbit maneuver (month, day, year)

1,1,2001

universal time at deorbit maneuver (hours, minutes, seconds)

0,0,0

altitude at deorbit maneuver (nautical miles)

19323.0

page 4

orbital inclination at deorbit maneuver (degrees)

0.0

right ascension of the ascending node at deorbit maneuver (degrees)

0.0

true anomaly at deorbit maneuver (degrees)

30.0

The following series of data items are reserved for the initial conditions at the entry interface (EI) or

point of atmospheric entry. To constrain one or more initial conditions, the user should input identical

lower and upper bounds. To free or un-constrain one or more initial states, set the lower and/or upper

bounds to 1.0d99. Please note the units and valid data range for each item.

flight conditions and bounds at atmospheric entry

NOTE 1: set upper and lower bounds to

the initial value to constrain or

"fix" a flight condition.

NOTE 2: set bound to 1.0d99 to ignore

calendar date at entry interface (month, day, year)

1,1,2001

universal time at entry interface (hours, minutes, seconds)

0,0,0

initial time (seconds)

0.0

upper bound for initial time (seconds)

0.0

lower bound for initial time (seconds)

0.0

initial altitude (feet)

400000.0

upper bound for initial altitude (feet)

400000.0

lower bound for initial altitude (feet)

400000.0

initial velocity (feet/second)

32268.637

upper bound for initial velocity (feet/second)

35000.0

lower bound for initial velocity (feet/second)

20000.0

initial flight path angle (-90 <= fpa <= +90; degrees)

-4.0

upper bound for initial flight path angle (-90 <= fpa <= +90; degrees)

-0.5

page 5

lower bound for initial flight path angle (-90 <= fpa <= +90; degrees)

-10.0

initial flight azimuth (0 <= azimuth <= 360; degrees)

94.0

upper bound for initial flight azimuth (0 <= azimuth <= 360; degrees)

1.0d99

lower bound for initial flight azimuth (0 <= azimuth <= 360; degrees)

1.0d99

initial declination (-90 <= declination <= +90; degrees)

0.0

upper bound for initial declination (-90 <= declination <= +90; degrees)

1.0d99

lower bound for initial declination (-90 <= declination <= +90; degrees)

1.0d99

initial east longitude (0 <= longitude <= 360; degrees)

18.0

upper bound for initial east longitude (0 <= longitude <= 360; degrees)

0.0

lower bound for initial east longitude (0 <= longitude <= 360; degrees)

0.0

The following series of data items allow the user to define the flight conditions at atmospheric exit. To

constrain one or more conditions, the user should input identical lower and upper bounds. To free or

un-constrain one or more final states, set the lower and/or upper bounds to 1.0d99. Please note the

units and valid data range for each item.

**

flight conditions and bounds at atmospheric exit

**

NOTE 1: set upper and lower bounds

to the final value to constrain or

"fix" a flight condition.

NOTE 2: set bound to 1.0d99 to ignore

final time (seconds)

750.0

upper bound for final time (seconds)

10000.0

lower bound for final time (seconds)

100.0

final altitude (feet)

400000.0

upper bound for final altitude (feet)

400000.0

page 6

lower bound for final altitude (feet)

400000.0

final velocity (feet/second)

24314.43

upper bound for final velocity (feet/second)

35000.0

lower bound for final velocity (feet/second)

1000.0

final flight path angle (-90 <= fpa <= +90; degrees)

1.25

upper bound for final flight path angle (-90 <= fpa <= +90; degrees)

+20.0

lower bound for final flight path angle (-90 <= fpa <= +90; degrees)

-20.0

final flight azimuth (0 <= azimuth <= 360; degrees)

90.0

upper bound for final flight azimuth (0 <= azimuth <= 360; degrees)

1.0d99

lower bound for final flight azimuth (0 <= azimuth <= 360; degrees)

1.0d99

final declination (-90 <= declination <= +90; degrees)

+10.0

upper bound for final declination (-90 <= declination <= +90; degrees)

1.0d99

lower bound for final declination (-90 <= declination <= +90; degrees)

1.0d99

final east longitude (0 <= longitude <= 360; degrees)

30.0

upper bound for final east longitude (0 <= longitude <= 360; degrees)

1.0d99

lower bound for final east longitude (0 <= longitude <= 360; degrees)

1.0d99

The next series of data inputs define lower and upper bounds on the state variables during the aero-

assist phase. To free or un-constrain one or more states, set the lower and/or upper bounds to 1.0d99.

**

upper and lower bounds on the flight conditions during phase

**

NOTE: set bound to 1.0d99 to ignore

upper bound for altitude (feet)

450000.0d0

page 7

lower bound for altitude (feet)

10000.0

upper bound for velocity (feet/second)

35000.0d0

lower bound for velocity (feet/second)

1000.0

upper bound for flight path angle (-90 <= fpa <= +90; degrees)

+20.0

lower bound for flight path angle (-90 <= fpa <= +90; degrees)

-20.0

upper bound for flight azimuth (0 <= azimuth <= 360; degrees)

1.0d99

lower bound for flight azimuth (0 <= azimuth <= 360; degrees)

1.0d99

upper bound for declination (-90 <= declination <= +90; degrees)

1.0d99

lower bound for declination (-90 <= declination <= +90; degrees)

1.0d99

upper bound for east longitude (0 <= longitude <= 360; degrees)

1.0d99

lower bound for east longitude (0 <= longitude <= 360; degrees)

1.0d99

This section of the input file defines the initial guesses and bounds for the control variables. To free or

un-constrain one or more control variables, set the lower and/or upper bounds to 1.0d99.

initial flight controls and bounds

NOTE 1: set upper and lower bounds

to the initial value to constrain

or "fix" a flight control.

NOTE 2: set bound to 1.0d99 to ignore

initial normalized lift coefficient

0.5

upper bound for initial normalized lift coefficient

+2.0

lower bound for initial normalized lift coefficient

+0.0d0

initial bank angle (degrees)

-90.0d0

upper bound for initial bank angle (degrees)

+0.0d0

page 8

lower bound for initial bank angle (degrees)

-180.0d0

This section of the input file defines the final guesses and bounds for the control variables. To free one

or more control variables, set the lower and/or upper bounds to 1.0d99.

final flight controls and bounds

NOTE 1: set upper and lower bounds

to the final value to constrain

or "fix" a flight control.

NOTE 2: set bound to 1.0d99 to ignore

final normalized lift coefficient

0.5

upper bound for final normalized lift coefficient

+2.0

lower bound for final normalized lift coefficient

+0.0

final bank angle (degrees)

-90.0d0

upper bound for final bank angle (degrees)

+0.0d0

lower bound for final bank angle (degrees)

-180.0d0

This section of the input file defines the bounds for the control variables during the aero-assist phase.

To free or un-constrain one or more control variables, set the lower and/or upper bounds to 1.0d99.

**

upper and lower bounds on the flight controls during phase

**

NOTE: set bound to 1.0d99 to ignore

upper bound for normalized lift coefficient

+2.0d0

lower bound for normalized lift coefficient

+0.0d0

upper bound for bank angle (degrees)

+0.0d0

lower bound for bank angle (degrees)

-180.0d0

This next section allows the user to define and enforce one or more point and path constraints during

the atmospheric phase. Path constraints are enforced at all points along the trajectory and point

constraints are enforced at atmospheric exit only. The user should be careful not to enforce constraints

that are inconsistent with either the initial and/or final boundary conditions. For example, while

maximizing the final orbital inclination do not enforce an orbital inclination point constraint.

page 9

flight constraints

enforce an orbital inclination constraint (yes or no)

yes

orbital inclination constraint value (degrees)

28.5d0

enforce a heating rate constraint (yes or no)

yes

heating rate upper bound constraint value (BTU/foot**2-second)

600.0d0

enforce a dynamic pressure constraint (yes or no)

no

dynamic pressure upper bound constraint value (pounds per square foot)

700.0d0

The type of trajectory initial guess or restart is specified by the next integer input. Program option 1

will use a simple linear initial guess created from the initial and final values provided by the user.

Option 2 will read and use a binary file to initialize the simulation. Be sure to create a binary file first.

initial guess/restart option

 1 = linear guess

 2 = binary data file

1

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input

specifies the name of the file to use.

name of binary restart file

geo2leo_max_speed.rsbin

The following input can be used to create or update an initial guess binary file. The creation or update

process uses the filename defined above. For initial guess options 1, the software will create a binary

restart file. For initial guess option 2, an input of yes to this item will update the binary file used to

initialize the simulation.

binary restart file option

create/update binary restart file (yes or no)

no

This next input specifies the type of comma-delimited or comma-separated-variable (CSV) solution data

file to create. Option 1 will create a solution file at each collocation point or node determined by the

Sparse Optimization Suite. Options 2 and 3 allow the user to specify either the number of nodes (option

2) or time step size of the data file (option 3).

page 10

**

type of comma-delimited solution data file

**

 1 = OC-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

1

For options 2 or 3, this next input defines either the number of data points (option 2) or the time step

size of the data output in the solution file (option 3).

number of user-defined nodes or print step size in solution data file

10.0

The software also creates a comma-separated-variable (csv) ASCII data file that contains the optimal

control solution and many other flight parameters. The name of this output file is specified in the next

line of information. Please consult Appendix A for additional information about the contents of this file.

name of solution output file

geo2leo_max_speed.csv

The next series of program inputs are algorithm control options and parameters for the Sparse

Optimization Suite. The first input is an integer that specifies the type of collocation method to use

during the solution process. For most simulations, the trapezoidal method is recommended.

discretization/collocation method

 1 = trapezoidal

 2 = separated Hermite-Simpson

 3 = compressed Hermite-Simpson

1

This input defines the relative error in the objective function.

relative error in the objective function (performance index)

1.0d-5

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations

1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations

20

The next input is an integer that defines the maximum number of function evaluations.

maximum number of function evaluations

100000

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations

10000

The level of output from the NLP algorithm is controlled with the following integer input.

page 11

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

The level of output from the optimal control algorithm is controlled with the following integer input.

Please note that option 4 will create lots of information.

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

The level of output from the differential equations algorithm is controlled with the following integer

input. Please note that option 5 will create lots of information.

differential equation output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program option

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite software

user’s manual. To ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j1k0l0m0n0o0p0q0r0

The last series of inputs allow the reading and writing of configuration input files. The user should

create a configuration file before attempting to read one. These configuration files are simple text files

which can be edited external to the aeroassist_ocs software. Please consult Appendix F.

* optimal control configuration options

read an optimal control configuration file (yes or no)

no

page 12

name of optimal control configuration file

aeroassist_config1.txt

create an optimal control configuration file (yes or no)

no

name of optimal control configuration file

aeroassist_config1.txt

Atmosphere model and constants data file

The aeroassist_ocs software also requires a user-created ASCII data file with the name

tutility.dat that defines the fundamental constants that will be used during the simulation. The

following is the companion data file for this example. If the user provides a value of zero for the Earth’s

rotation rate, the simulation results will be with respect to a non-rotating, spherical Earth.

simulation environment and

planet/utility constants

radius of the earth (feet)

20925656.8d0

gravitational constant of the earth (feet**3/second**2)

1.407644381252d16

surface gravity (feet/second**2)

32.174d0

earth rotation rate (radians/second)

7.2921151467d-5

atmospheric surface density (slugs/feet**3)

0.0023765d0

j2 gravity coefficient (non-dimensional)

1.08262668355d-3

j3 gravity coefficient (non-dimensional)

0.0d0

j4 gravity coefficient (non-dimensional)

0.0d0

The user’s input for j2, j3 and j4 control the type of gravity model used during the simulation.

Optimal control solution and graphics

After the aeroassist_ocs scientific simulation has converged, it will display a complete summary of

the initial conditions and the optimized trajectory. It also provides a summary of the relative flight path

coordinates and the aerodynamic characteristics of the vehicle. The classical orbital elements at

atmospheric exit are determined from the inertial state vector which is computed using the relative flight

path coordinates at exit.

The following is a summary of the solution for this example.

page 13

 program aeroassist_ocs

 ======================

 input file ==> geo2leo_max_speed.in

 bounded entry conditions derived from deorbit maneuver

 maximize speed at atmospheric exit

 orbital elements and state vector prior to deorbit impulse

 --

 calendar date January 1, 2001

 universal time 00:00:00.000

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.227669201902D+05 0.111022302463D-15 0.000000000000D+00 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.000000000000D+00 0.300000000000D+02 0.300000000000D+02 0.143607658003D+04

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.227669201902D+05 0.193230000000D+05 0.227669201902D+05 0.193230000000D+05

 rx (ft) ry (ft) rz (ft) rmag (ft)

 0.119801136085D+09 0.691672181680D+08 0.000000000000D+00 0.138334436336D+09

 vx (fps) vy (fps) vz (fps) vmag (fps)

 -.504372416457D+04 0.873598651240D+04 0.000000000000D+00 0.100874483291D+05

 orbital elements and state vector after deorbit impulse

 calendar date January 1, 2001

 universal time 00:00:00.000

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.131213107012D+05 0.735110211827D+00 0.000000000000D+00 0.210000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.000000000000D+00 0.180000000000D+03 0.300000000000D+02 0.628328849946D+03

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.347570121219D+04 0.317810220239D+02 0.227669201902D+05 0.193230000000D+05

 rx (ft) ry (ft) rz (ft) rmag (ft)

 0.119801136085D+09 0.691672181680D+08 0.000000000000D+00 0.138334436336D+09

 vx (fps) vy (fps) vz (fps) vmag (fps)

 -.259587595393D+04 0.449618904236D+04 0.000000000000D+00 0.519175190787D+04

 flight path coordinates at atmospheric entry

 --

 altitude 400000.000000000 feet

 velocity 32268.5194754447 feet/second

 declination 2.637383834618052E-013 degrees

 longitude 18.8080427045337 degrees

 azimuth 90.0000000000005 degrees

 flight path angle -5.45162080704044 degrees

page 14

 inertial fpa -5.20130119814137 degrees

 orbital elements and state vector at atmospheric entry

 --

 calendar date January 1, 2001

 universal time 05:11:55.842

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.131213104261D+05 0.735110206972D+00 0.581675704578D-12 0.210000003999D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.000000000000D+00 0.347714838486D+03 0.197714842485D+03 0.628328830184D+03

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.347570120302D+04 0.317810128543D+02 0.227669196491D+05 0.193229994589D+05

 rx (ft) ry (ft) rz (ft) rmag (ft)

 -.203144515089D+08 -.648896739412D+07 0.981641981048D-07 0.213256568000D+08

 vx (fps) vy (fps) vz (fps) vmag (fps)

 0.131677427163D+05 -.311479253279D+05 -.318848277882D-09 0.338168996284D+05

 flight path coordinates at atmospheric exit

 altitude 400000.000000000 feet

 velocity 25600.1592225824 feet/second

 declination 11.8749410000429 degrees

 longitude 59.7589681113454 degrees

 azimuth 62.4006932817757 degrees

 flight path angle 2.85290494398532 degrees

 orbital elements and state vector at atmospheric exit

 calendar date January 1, 2001

 universal time 05:21:20.255

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.390347950906D+04 0.111289864741D+00 0.285000000002D+02 0.357704478388D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.218238520146D+03 0.278426340657D+02 0.255471124534D+02 0.101952769539D+03

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.346906180248D+04 0.251416123121D+02 0.433789721564D+04 0.893977025480D+03

 rx (ft) ry (ft) rz (ft) rmag (ft)

 -.101099984601D+08 -.182568968034D+08 0.438831268249D+07 0.213256568000D+08

 vx (fps) vy (fps) vz (fps) vmag (fps)

 0.217306749776D+05 -.106726700692D+05 0.118541683058D+05 0.269564357364D+05

aerodynamic characteristics

 drag coefficient at aoa = 0 degrees 3.200000000000000E-002

 drag coefficient at max L/D 6.400000000000000E-002

page 15

 lift coefficient at max L/D 0.151185789203691

 maximum lift-to-drag ratio 2.36227795630767

The following are plots created from the trajectory summary file. The first plot illustrates the behavior

of the normalized lift coefficient and bank angle during the atmospheric pass.

This next plot summarizes the altitude and relative velocity of the vehicle as a function of time since the

entry interface (EI).

The next plot illustrates the behavior of the relative flight path and azimuth angles during the aero-assist

pass through the atmosphere.

page 16

This plot illustrates the behavior of the heat rate and heat load during the atmospheric portion of the

trajectory. It confirms that the solution has satisfied the maximum heat rate path constraint.

This final plot summarizes the behavior of the orbital eccentricity and inclination during the atmospheric

phase of the mission.

page 17

Problem setup

This section provides additional details about the Sparse Optimization Suite implementation. It briefly

explains such things as initial conditions, path constraints and the performance index options.

(1) Entry interface initial conditions

The aeroassist_ocs computer program includes three options for specifying initial conditions at the

entry interface (EI). This section summarizes these options and describes how the user invokes each.

(a) user input of flight path coordinates at entry interface

For this option, all Earth relative coordinates at the entry interface are defined by the user. The user can

provide initial guesses and lower and upper bounds for these coordinates in the flight conditions

and bounds at atmospheric entry part of the input data file.

(b) derived from deorbit maneuver; fixed entry conditions

For this program option, the software uses the flight path angle and entry altitude provided in the input

data file to constrain the entry altitude and inertial flight path angle. The software then uses the deorbit

algorithm described later in this section to compute the Earth relative flight path angle, speed and other

flight path coordinates at the entry interface. This option is valid for initial circular orbits.

(c) derived from deorbit maneuver; bounded entry conditions

For this program option, the software will use the entry altitude provided in the input data file to

constrain the entry altitude. The flight path angle provided in the data file is used for an inertial flight

path angle initial guess. During the trajectory optimization, the software will change the inertial flight

path angle between the lower and upper bounds provided by the user (the inertial flight path angle is

page 18

treated as a problem parameter). The software then uses the deorbit algorithm described later in this

section to compute the Earth relative flight path angle, speed and other coordinates at the entry interface.

This option is valid for initial circular orbits.

For the second and third initial conditions options, the aeroassist_ocs computer program calculates

the single impulsive maneuver required to establish an entry interface altitude and flight path angle

relative to the user-defined initial circular orbit. The algorithm uses a tangential V applied opposite to

the velocity vector to establish the deorbit trajectory. The entry altitude and flight path angle initial

guesses are provided by the user.

The algorithm used to compute the scalar magnitude of the deorbit maneuver along with other important

flight characteristics is described in Appendix E.

(2) Performance index

This section describes the two types of trajectory optimization performed by the aeroassist_ocs

software.

(a) maximize final speed

The performance index for this type of optimization is simply

 fJ v

where fv is the relative speed of the vehicle as it exits from the atmosphere. For this program option,

the optimization indicator is set to maxmin = +1. This option minimizes the energy loss during the

aero-assist maneuver.

(b) maximize inclination change

The performance index for this program option is given by

 1cos zh
J

h

  
  

 

where zh is the z-component of the ECI angular momentum vector and h is the angular momentum

magnitude of the vehicle at exit from the atmosphere at the user-defined altitude. For this program

option, the optimization indicator is also set to maxmin = +1.

(3) Path and point constraints

This section summarizes how the software computes the heat rate and dynamic pressure path

constraints, and the orbital inclination point constraint.

(a) Dynamic pressure

To enforce this path constraint, the software ensures that

page 19

maxq q

where
maxq is the user-defined value of the maximum dynamic pressure. The dynamic pressure at any

simulation time is given by

 21

2
q v

where  is the atmospheric density and v is the relative speed at the current flight condition.

(b) Heat rate

To enforce this path constraint, the software ensures that

maxQ Q

where maxq is the user-defined value of the maximum heat rate. The heat rate at any simulation time is

computed from Chapman’s stagnation point equation given by

3.15

2

0 0

17,600 BTU

ft sec
N

dQ V
Q

dt VR





   
     

  

 where

0

 nose radius (feet)

 relative velocity at the spacecraft location (feet/second)

 "local circular velocity" at the Earth's surface (feet/second)

 atmospheric density at the spacecraft locat

N

e

R

V

V r







 

 3

3

0

3 2

ion (slugs/feet)

 atmospheric density at the Earth's surface (slugs/feet)

 gravitational constant of the Earth (feet /second)

 radius of the Earth (feet)er











(c) Orbital inclination

A final orbital inclination point constraint is enforced as follows

 cos zh
i

h


where zh is the z-component of the angular momentum vector and h is the angular momentum

magnitude at the atmospheric exit. In this equation, i is the user-defined final orbit inclination.

page 20

Technical Discussion

This section describes the numerical algorithms implemented in the aeroassist_ocs computer

program. It summarizes the equations of motion, Earth gravity model, vehicle aerodynamics, coordinate

conversions and other important software features.

Flight path equations of motion

The first-order flight path equations of motion of an aerospace vehicle relative to a rotating spherical

Earth and a zonal gravity model are summarized as follows:

geocentric radius

 sin
dr

r V
dt

 

geographic longitude

cos sin

cos

d
V

dt r

  



 

geocentric declination

cos cosd

V
dt r

  
  

speed

 

 2

cos
sin cos cos

cos sin cos sin cos cos

r

e

T DdV
V g g

dt m

r




  

      


   

 

flight path angle

 2

sin coscossin
cos cos

2 sin cos cos cos sin sin cos cos

r

e e

ggd V T L

dt r mV V V

r

V

   
  

         

 
     

 

  

flight azimuth

  2

sin sin
tan sin cos sin

cos cos

2 sin cos cos tan sin cos sin
cos

e e

d V T L
g

dt r mV V

r

V



  
    

 

        


 
    

 

  

page 21

where

 

 

 

 geocentric radius

 speed

 flight path angle

 geocentric declination

 longitude east

 flight azimuth clockwise from north

 bank angle for a right turn

 angle of attack

 aerodynamic lif

r

V

L





















 

 

 



 2

2

1
t force

2

1
 aerodynamic drag force

2

 propulsive thrust

 spacecraft mass

 lift coefficient (non-dimensional)

 drag coefficient (non-dimensional)

 aerodynamic reference area

 at

L

D

L

D

V C S

D V C S

T

m

C

C

S









 











  mospheric density

 altitude

f h

h





 and

 Earth equatorial radius

 Earth inertial rotation rate

 radial component of gravity

g latitudinal component of gravity

e

e

r

r

g













The bank angle is the angle between the instantaneous orbit plane and the aerodynamic lift vector. The

bank angle is positive for a right turn as viewed from the rear of the vehicle.

Earth gravity model

The components of the gravity vector can be determined from the gradient of the potential function

according to

1

0 0G

r

U

gr

U

U g

r



 
   
    

      
      

  

F

page 22

where

  0

1

1 sin

j

e
j j

j

r
U J P

r r








  
   

   


    02
2

1 1 sin

l

e
l l

l

rU
l J P

r r r








   
     

    


 0

2
2

1
l

e l
l

l

r PU
J

r r r



 





  
   

  


   2

0

0

sin sin
k

j t

j jt

t

P T 





        1 2 2 !/ 2 ! ! 2 !
t

jtT j t lt j t j t    

For a zonal-only gravity model of order four, the Legendre functions and their partial derivatives are

given by

      2 3 4 2

20 30 40

1 1 1
3sin 1 5sin 3sin 35sin 30sin 3

2 2 8
P P P          

    2 220 30 403 5
3sin cos 5sin 1 cos 7sin 3 sin cos

2 2

P P P
      

  

  
    

  

This is the Earth gravity model implemented in the aeroassist_ocs computer program.

Coordinate systems and transformations

This section describes the relationship between flight path coordinates and inertial position and velocity.

Flight path coordinates are used during the aero-assist pass and inertial coordinates are used to model the

deorbit-to-entry portion of the flight.

(1) converting an ECI state vector to flight path coordinates

This coordinate conversion is necessary for aeroassist_ocs simulations that determine entry

interface conditions from an impulsive deorbit maneuver from an initial circular orbit.

The transformation of an ECI position vector ecir to an ECF position vector ecfr is given by the

following vector-matrix operation

  ECF ECIr T r

where the elements of the transformation matrix  T are given by

page 23

  

cos sin 0

sin cos 0

0 0 1

 

 

 
  
 
  

T

and  is the Greenwich apparent sidereal time at the moment of interest. Greenwich apparent sidereal

time is given by the following expression:

0g et   

where 0g is the Greenwich apparent sidereal time at 0 hours UT, e is the inertial rotation rate of the

Earth, and t is the elapsed time since 0 hours UT.

Finally, the flight path coordinates are determined from the following set of equations

  

2 2 2 2 2 2

1 1

1 1

tan , sin

sin tan ,

x y z x y z

z

y x

z

y x

ECF ECF ECF ECF ECF ECF

ECF

ECF ECF

ECF

r

r r

r

r r r r v v v v

r
r r

v
v v

 

 

 

 

     

 
   

 

 
      

 

r

v

where

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

r ECF

    

 

    

  
  
 
    

v v

(2) converting flight path coordinates to an ECI state vector

This coordinate conversion is necessary in order to determine the orbital inclination and other orbital

characteristics at exit from the atmosphere.

The Earth-centered-fixed (ECF) position and velocity vectors of the aero-assist vehicle can be

determined from the flight path coordinates with the following set of equations:

cos cos

cos sin

sin

x

y

z

ECF

ECF

ECF

r r

r r

r r

 

 









page 24

 

 

 

cos cos sin sin cos cos sin sin sin

sin cos sin sin cos cos sin sin cos

cos cos sin cos cos

x

y

z

ECF

ECF

ECF

v v

v v

v v

        

        

    

     

     

 

where 90   .

The transformation from ECF to ECI coordinates involves the transpose of the ECI-to-ECF

transformation matrices described above as follows:

  
T

ECI ECFr T r

    
TT T T

ECI ECF ECF ECF ECF
         v T r T r T v T r

The ECF velocity vector is determined by differentiating this expression

    ECF ECI ECI ECI ECI
         v T r T r T v T r

The elements of the   T matrix are as follows:

sin cos 0

cos sin 0

0 0 0

e e

e e

   

   

 
        
  

T

Aerodynamic characteristics of aero-assist vehicles

This section provides general information about vehicle aerodynamics. It also describes the type of

aerodynamic modeling used in the aeroassist_ocs computer program.

General form of a drag polar

0

n

D D LC C k C 

Lift-to-drag ratio

0

L L

n

D D L

L C C
E

D C C kC
  



Maximum lift-to-drag ratio (value of E at which 0LdE dC )

   

 
0

0

1

2

n n

D L L L

n

D L

C kC C nkC
E

C kC




 




page 25

Lift coefficient at maximum lift-to-drag ratio

 

0

1

D
n

L

C
C

k n

 


Drag coefficient at maximum lift-to-drag ratio

 

0

1

D

D

nC
C

n

 


In general,

 

0

1

1

1
n

n

L

nn
D D

nC
E

C n kC






 


 

For a parabolic drag polar  2n  ,

0

2

D D LC C kC 

 where

0

 drag coefficient

 drag coefficient at angle-of-attack = 0

 lift coefficient

 constant

D

D

L

C

C

C

k











 and

0

0

0max

2 drag coefficient at maximum L D

/ lift coefficient at maximum L D

1
 maximum L D

2

D D

L D

L

D D

C C

C C k

C
E

C kC







 

 

 
   
 

In the aeroassist_ocs computer program, the vehicle aerodynamics are modeled using a parabolic

drag polar  2n  . The normalized lift coefficient is given by L LC C  where LC is the lift

coefficient at any simulation time and LC is the lift coefficient corresponding to maximum L D .

In this computer program, the control variables are the normalized lift coefficient and bank angle.

page 26

The following is a graphic display of a typical parabolic drag polar.

page 27

References and Bibliography

(1) “Direct Trajectory Optimization Using Nonlinear Programming and Collocation”, C. R. Hargraves

and S. W. Paris, AIAA Journal of Guidance, Control and Dynamics, Vol. 10, No. 4, July-August, 1987,

pp. 338-342.

(2) “Optimal Finite-Thrust Spacecraft Trajectories Using Direct Transcription and Nonlinear

Programming”, Paul J. Enright, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1991.

(3) “Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

(5) “Improved Collocation Methods with Application to Direct Trajectory Optimization”, Albert L.

Herman, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1995.

(6) “Minimum-Fuel Aero-assisted Coplanar Orbit Transfer Using Lift Modulation”, Kenneth D. Mease

and Nguyen X. Vinh, AIAA Journal of Guidance, Control and Dynamics, Vol. 8. No. 1, Jan.-Feb. 1985.

(7) “Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of

Guidance, Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193-207.

(8) “Variational Solutions for the Heat-Rate-Limited Aero-assisted Orbital Transfer Problem”, Hans

Seywald, AIAA Journal of Guidance, Control and Dynamics, Vol. 19, No. 3, May-June, 1996, pp. 686-

692.

(9) “Fuel-Optimal Trajectories of Aero-assisted Orbital Transfer with Plane Change”, D. S. Naidu, IEEE

Transactions on Aerospace and Electronic Systems, Vol. 27, No. 2, March 1991, pp. 361-368.

(10) Optimal Trajectories in Atmospheric Flight, N. X. Vinh, Elsevier, 1981.

(11) Hypersonic and Planetary Flight Mechanics, N. X. Vinh, R. D. Culp, and A. Busemann, University

of Michigan Press, 1980.

(12) “A Survey of Aero-assisted Orbit Transfer”, G. D. Walberg, AIAA Journal of Spacecraft and

Rockets, Vol. 22, No. 1, Jan-Feb 1985, pp. 3-18.

(13) “Optimal Maneuvers of Orbital Transfer Vehicles”, John M. Hanson, Ph.D. Thesis, University of

Michigan, Department of Aerospace Engineering, 1983.

(14) “Optimal Aero-assisted Return From High Earth Orbit With Plane Change”, Nguyen X. Vinh and

John M. Hanson, Acta Astronautica, Vol. 12, No. 1, 1985.

(15) “Combining Propulsive and Aerodynamic Maneuvers to Achieve Optimal Orbital Transfer”, John

M. Hanson, AIAA Journal of Guidance, Control and Dynamics, Vol. 12. No. 5, Sept.-Oct. 1989.

page 28

APPENDIX A

Contents of the Simulation Summary CSV File

This appendix is a brief summary of the information contained in the CSV data file produced by the

aeroassist_ocs software. The comma-separated-variable disk file is created by the odeprt

subroutine and contains the following information:

time (min) = simulation time since entry interface in minutes

altitude (ft) = altitude relative to a spherical Earth in feet

velocity (fps) = Earth-relative velocity in feet per second

flight path angle (d) = Earth-relative flight path angle in degrees

azimuth (deg) = Earth-relative azimuth angle in degrees

declination (deg) = geocentric declination in degrees

longitude (deg) = geographic longitude in degrees

mach number = Mach number (non-dimensional)

dynamic pressure (psf) = dynamic pressure in pounds per square foot

bank angle (deg) = bank angle in degrees

heat rate (btu/ft^2-s) = heat rate in BTU/ft^2-second

heat load (btu/ft^2) = accumulated heat load in BTU/ft^2

lift-to-drag = lift-to-drag ratio (non-dimensional)

lift coefficient = lift coefficient (non-dimensional)

drag coefficient = drag coefficient (non-dimensional)

lift force (lbf) = lift force in pounds

drag force (lbf) = drag force in pounds

density (slugs/ft^3) = atmospheric density in slugs per cubic feet

pressure (psf) = atmospheric pressure in pounds per square foot

temperature (deg K) = atmospheric temperature in degrees K

crossrange (nm) = crossrange distance in nautical miles

downrange (nm) = downrange distance in nautical miles

altitude rate (fps) = rate of change of altitude in feet per second

longitude rate (dps) = rate of change of longitude in degrees per second

declination rate (dps) = rate of change of declination in degrees per second

velocity rate (fps/s) = rate of change of velocity in feet per second per second

fpa rate (dps) = rate of change of flight path angle in degrees per second

azimuth rate (dps) = rate of change of azimuth angle in degrees per second

page 29

perigee altitude (nm) = perigee altitude in nautical miles

perigee radius (nm) = perigee radius in nautical miles

apogee altitude (nm) = apogee altitude in nautical miles

apogee radius (nm) = apogee radius in nautical miles

Notes:

(1) The accumulated heat load is determined from a cubic spline integration of the heat rate of the

optimized solution at all collocation nodes.

(2) The rate of change of the flight variables is determined from the equations of motion.

page 30

APPENDIX B

Fortran Functions and Subroutines

This appendix is a brief summary of the major Fortran functions and subroutines included in the

aeroassist_ocs computer program.

Aeroassist_ocs.f - main executive program

atan3.for - four quadrant inverse tangent function

atmos76.for - U.S. Standard 1976 atmosphere model

cdeorbit.for – impulsive deorbit from a circular orbit subroutine

crdr.for - subroutine that calculates crossrange and downrange

csint.for - cubic spline integration of tabular data subroutine

gast.for - Greenwich apparent sidereal time subroutine

gravity.for - fourth-order zonal gravity model subroutine

odeinp.for - simulation input subroutine

odepf.for - point functions subroutine

odeprt.for - print subroutine – creates comma-separated-variable file

oderhs.for - subroutine that evaluates the equations of motion and any algebraic

equations

readfpn.for - read and echo floating point number from an input file subroutine

readint.for - read and echo an integer from an input file subroutine

readtext.for - read and echo text from an input file subroutine

twobody2.for – two-body orbit propagation subroutine

utility.for - number and text manipulation functions and subroutines

us76.for - U.S. standard 1976 atmosphere subroutine

uvector.for - unit vector subroutine

vcross.for - vector cross product subroutine

vdot.for - vector dot product subroutine

vecmag.for - vector scalar magnitude function

xmod.for - modulo 2 pi function

page 31

APPENDIX C

Example Fortran Subroutine

This appendix contains the source code for a single Fortran 77 subroutine and illustrates typical

programming conventions used in the aeroassist_ocs software. This subroutine is the point

function routine required by the Sparse Optimization Suite.

 subroutine odepf(iphase, iphend, time, ydyn, nydyn, parm,

 & nparm, ptf, nptf, iferr)

c aeroassist point functions

c ************************************

 implicit double precision (a-h, o-z)

 include 'socscom1.inc'

 include 'pconstr.inc'

 parameter (zero = 0.0d0, one = 1.0d0)

 dimension ydyn(nydyn), parm(nparm), ptf(nptf), ywrk(6)

 dimension reci(3), veci(3), fpc(6), hv(3), oev(6)

 iferr = 0

c ---------------------------------------

c extract current flight path coordinates

c ---------------------------------------

c altitude (feet)

 xalt = ydyn(1)

c longitude (radians)

 elon = ydyn(2)

c geocentric declination

 dec = ydyn(3)

c relative speed (feet/second)

 vrel = ydyn(4)

c flight path angle (radians)

 fpa = ydyn(5)

c flight azimuth (radians)

 azim = ydyn(6)

c geocentric radius (feet)

 rmag = xalt + req

 if (iphase .eq. 1 .and. iphend .eq. -1

 & .and. ic_type .eq. 3) then

page 32

c ---

c beginning of phase 1 - atmospheric entry

c (parameter #1 ==> inertial flight path angle)

c ---

c current inertial flight path angle

 fpae = parm(1)

c compute flight path coordinates at entry interface

c using user-defined entry altitude and orbital elements

 call cdeorbit(fpae, ywrk)

c ---------------------------------

c match states at atmospheric entry

c ---------------------------------

c east longitude (radians)

 ptf(1) = ydyn(2) - ywrk(2)

c declination (radians)

 ptf(2) = ydyn(3) - ywrk(3)

c velocity (feet/second)

 ptf(3) = ydyn(4) - ywrk(4)

c flight path angle (radians)

 ptf(4) = ydyn(5) - ywrk(5)

c azimuth (radians)

 ptf(5) = ydyn(6) - ywrk(6)

 end if

 if (iphase .eq. 1 .and. iphend .eq. +1) then

c ---------------------------------

c end of phase 1 - atmospheric exit

c ---------------------------------

c compute inertial state vector at end of phase 1

 fpc(1) = elon

 fpc(2) = dec

 fpc(3) = fpa

 fpc(4) = azim

 fpc(5) = rmag

 fpc(6) = vrel

 call fpc2eci(time, fpc, reci, veci)

c compute angular momentum vector and magnitude

 call vcross(reci, veci, hv)

page 33

 hmag = vecmag(hv)

 if (ic_inc .eq. 1) then

c --

c final orbit inclination constraint at atmospheric exit

c (constrain cosine of final orbit inclination)

c --

 ptf(1) = hv(3) / hmag

 end if

 if (iopt .eq. 2) then

c --

c maximize orbital inclination at atmospheric exit

c --

 ptf(1) = acos(hv(3) / hmag)

 end if

 end if

 return

 end

page 34

APPENDIX D

Maximize Orbital Inclination Example

This appendix contains graphics and a simulation summary for an aero-assist trajectory that maximizes

the orbital inclination change. The mission starts in a 500 nautical mile circular Earth orbit with an

initial inclination equal to 5 degrees. The speed at atmospheric exit is constrained to be >= 15,000 feet

per second.

For this type of trajectory optimization make sure the orbital inclination at the atmospheric exit is not

constrained by using the following statement in the input file

enforce an orbital inclination constraint (yes or no)

no

The following are plots of the important trajectory parameters for this example.

page 35

The following is the aeroassist_ocs program output for this example.

 program aeroassist_ocs

 ======================

 input file ==> leo2leo_max_inc.in

 bounded entry conditions derived from deorbit maneuver

 maximize orbital inclination change

 orbital elements and state vector prior to deorbit impulse

 --

 calendar date January 1, 2001

page 36

 universal time 00:00:00.000

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.394392019016D+04 0.248334991895D-15 0.500000000000D+01 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.431780632080D-14 0.300000000000D+02 0.300000000000D+02 0.103541236919D+03

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.394392019016D+04 0.500000000000D+03 0.394392019016D+04 0.500000000000D+03

 rx (ft) ry (ft) rz (ft) rmag (ft)

 0.207531855633D+08 0.119362626872D+08 0.104428766999D+07 0.239637145430D+08

 vx (fps) vy (fps) vz (fps) vmag (fps)

 -.121182361413D+05 0.209095296884D+05 0.182934680739D+04 0.242364722827D+05

 orbital elements and state vector after deorbit impulse

 calendar date January 1, 2001

 universal time 00:00:00.000

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.357017458724D+04 0.104685525536D+00 0.500000000000D+01 0.210000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.456326147825D-14 0.180000000000D+03 0.300000000000D+02 0.891775123771D+02

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.319642898432D+04 -.247491205844D+03 0.394392019016D+04 0.500000000000D+03

 rx (ft) ry (ft) rz (ft) rmag (ft)

 0.207531855633D+08 0.119362626872D+08 0.104428766999D+07 0.239637145430D+08

 vx (fps) vy (fps) vz (fps) vmag (fps)

 -.114664033296D+05 0.197848183550D+05 0.173094731598D+04 0.229328066592D+05

 flight path coordinates at atmospheric entry

 --

 altitude 400000.000000000 feet

 velocity 24368.0971648879 feet/second

 declination 4.17633335544806 degrees

 longitude 16.1785108288942 degrees

 azimuth 92.9277990467808 degrees

 flight path angle -6.30689859387635 degrees

 inertial fpa -5.93056753615202 degrees

 orbital elements and state vector at atmospheric entry

 --

 calendar date January 1, 2001

 universal time 00:26:03.919

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.357017458725D+04 0.104685525537D+00 0.500000000013D+01 0.209999999997D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.373173703543D-06 0.273322949484D+03 0.123322949481D+03 0.891775123775D+02

page 37

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.319642898433D+04 -.247491205835D+03 0.394392019018D+04 0.500000000016D+03

 rx (ft) ry (ft) rz (ft) rmag (ft)

 -.117154107210D+08 0.177516413688D+08 0.155306738546D+07 0.213256568000D+08

 vx (fps) vy (fps) vz (fps) vmag (fps)

 -.200622216447D+05 -.163311939918D+05 -.142879432473D+04 0.259083401194D+05

 flight path coordinates at atmospheric exit

 altitude 400000.000000000 feet

 velocity 15000.0000000000 feet/second

 declination 8.99670339727738 degrees

 longitude 29.5623003632225 degrees

 azimuth 48.8880628810677 degrees

 flight path angle 3.984582451546240E-002 degrees

 orbital elements and state vector at atmospheric exit

 calendar date January 1, 2001

 universal time 00:31:05.462

 sma (nm) eccentricity inclination (deg) argper (deg)

 0.218954752865D+04 0.602957760689D+00 0.384433270708D+02 0.194591552768D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.126562332360D+03 0.179975688582D+03 0.145672413500D+02 0.428304598571D+02

 r-perigee (nm) h-perigee (nm) r-apogee (nm) h-apogee (nm)

 0.869342853852D+03 -.257457733631D+04 0.350975220345D+04 0.658320132855D+02

 rx (ft) ry (ft) rz (ft) rmag (ft)

 -.156695378708D+08 0.140757933205D+08 0.333485580891D+07 0.213256568000D+08

 vx (fps) vy (fps) vz (fps) vmag (fps)

 -.743898214339D+04 -.105738521023D+05 0.974327143645D+04 0.161887659164D+05

 aerodynamic characteristics

 drag coefficient at aoa = 0 degrees 5.000000000000000E-002

 drag coefficient at max L/D 0.100000000000000

 lift coefficient at max L/D 0.188982236504614

 maximum lift-to-drag ratio 1.88982236504614

page 38

APPENDIX E

De-orbit from a Circular Earth Orbit

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial

circular orbit can be determined from the following expression

   

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

    
       

      
       

      

where

 

 

radius ratio

 local circular velocity at entry interface

 local circular velocity of initial circular orbit

 flight path angle at entry interface

e

i

i eq i

e eq e

c

ee eq

c

ii eq

e

i

h r r
r

h r r

V
rh r

V
rh r

h

 

 




  



  


  




 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radius

 Earth gravitational constant

e

i

e

eq

h

r

r

r















This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, The

Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966. Additional

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh,

Busemann and Culp, The University of Michigan Press.

The true anomaly on the de-orbit trajectory at the entry interface e can be determined from the

following two equations

page 39

 

 

2

2

1
sin

1 1
cos

d d

e

d

d d

e

d e d

a er

e

a e

e r e










 

and the following four quadrant inverse tangent operation

  1tan sin ,cose e e  

where

 2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r







   
 

 

The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e is

given by

  
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 


    

   
     

In this equation  is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  .

Therefore, the flight time between the de-orbit impulse and entry interface is given by

      180
2

e et t t t


     

Finally, the orbital speed at the entry interface eV can be determined from

2

e

e d

V
r a

 
 

page 40

APPENDIX F

Typical Sparse Optimization SuiteConfiguration File

The aeroassist_ocs computer progran can read and use a user-defined configuration file. A

description of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms

for Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization of the

Sparse Optimization Suite user’s manual. Please note that the aeroassist_ocs software can read and

use a subset of the information in this file. For example, a subset configuration file might contain only

the following information;

ODETOL=0.1D-06

INSNLP:IOFLAG=5

SOCOUT=I4K4

The following is a typical “full version” configuration file created during the execution of the

aeroassist software.

AEQTOL=0.1000000000000000D-02

DTAUX=0.0000000000000000D+00

OBJCTL=0.1000000000000000D-04

ODETOL=0.1000000011686097D-06

PGDCTL=0.1000000000000000D-02

PRTMSD=0.1490116119384766D-07

PRTMXD=0.1000000000000000D-02

PRTSFD=0.1000000000000000D-04

QDRTOL=0.1000000000000000D-02

RESTOL=0.1000000000000000D-04

SMLTOL=0.1490116119384766D-10

TOLJSD=0.1000000000000000D-05

TOLM5A=0.1490116119384766D-07

TOLM5R=0.1490116119384766D-07

IDSCPH=0

IDSCND=0

IDSCVR=0

IDSCFN=0

IDTSFD=-1

IPFAUX=0

IPFSFD=0

IPRSFD=1

IPGRD=0

IPNLP=10

IPODE=0

IPUAUX=0

IPUOCP=6

IRSTRT=0

ISCALE=0

ISFHES=41

ISFINP=42

ISFRST=43

ISFSCL=44

ITSWCH=2

M5DTYP=0

MITODE=20

MTSWCH=-1

MXDATA=0

MXPARM=10

MXPCON=20

MXSTAT=20

MXTERM=50

NPTAUX=100

page 41

NSSWCH=-1

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0

SPRTHS=SPARSE

NLPALG=SNLPMN

NLPOMR=M

KEYDPL=.lueiLUE

RHSTMP=RHSTMPLT

RSTFIL=socx.restart

SCLFIL=scalewgt.fil

INSNLP:ALFLWR=0.0000000000000000D+00

INSNLP:ALFUPR=0.1000000000000000D+01

INSNLP:CONTOL=0.1490116119384766D-07

INSNLP:EPSRLF=0.1490116119384766D-07

INSNLP:OBJTOL=0.9999999747378752D-05

INSNLP:PGDTOL=0.1000000000000000D-04

INSNLP:SLPTOL=0.9000000000000000D+00

INSNLP:SFZTOL=0.1000000000000000D-01

INSNLP:TOLFIL=0.2000000000000000D+01

INSNLP:TOLKTC=0.1110953834938985D+26

INSNLP:TOLPVT=0.1000000000000000D-02

INSNLP:IHESHN=0

INSNLP:IOFLAG=5

INSNLP:IOFLIN=-1

INSNLP:IOFMFR=0

INSNLP:IOFPAT=0

INSNLP:IOFSHR=0

INSNLP:IOFSRC=0

INSNLP:IPUDRF=0

INSNLP:IPUFZF=0

INSNLP:IPUMF1=11

INSNLP:IPUMF2=12

INSNLP:IPUMF3=13

INSNLP:IPUMF4=14

INSNLP:IPUMF5=15

INSNLP:IPUMF6=16

INSNLP:IPUMF7=17

INSNLP:IPUNLP=6

INSNLP:IPUSTF=0

INSNLP:IRELAX=1

INSNLP:ITDRQP=-1

INSNLP:ITFZQP=-1

INSNLP:IT1MAX=20

INSNLP:JACPRM=0

INSNLP:LYNFNC=0

INSNLP:LYNOUT=0

INSNLP:LYNPLT=0

INSNLP:LYNPNT=101

INSNLP:LYNVAR=0

INSNLP:MAXLYN=5

INSNLP:MAXNFE=500000

INSNLP:MNSAME=2

INSNLP:NEWTON=0

INSNLP:NITMAX=50000

INSNLP:NITMIN=0

INSNLP:NORMAL=0

INSNLP:ALGOPT=FM

INSNLP:KTOPTN=SMALL

INSNLP:QPOPTN=SPARSE

INSNLP:BIGCON=-0.1000000000000000D+01

INSNLP:FEATOL=0.1000000000000000D-01

INSNLP:PMULWR=0.1000000000000000D+00

INSNLP:PTHTOL=0.1000000000000000D+02

INSNLP:RHOLWR=0.1000000000000000D+03

INSNLP:IMAXMU=10

INSNLP:MUCALC=3

INSNLP:MXQPIT=1

Orbital Mechanics with MATLAB

page 1

Single Impulse De-orbit

This document describes two MATLAB scripts that be used to compute the characteristics of single

impulse de-orbit from Earth orbits. Scripts are provided for calculating the impulsive maneuver

required to de-orbit from both circular and elliptical orbits.

cdeorbit.m – single impulse de-orbit from a circular orbit

This MATLAB script calculates the single impulsive maneuver required to establish a reentry altitude

and flight path angle relative to a non-rotating, spherical Earth. The algorithm uses a tangential delta-v

applied opposite to the velocity vector of an initial circular orbit to establish the de-orbit trajectory.

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial

circular orbit can be determined from the following expression

   

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

    
       

      
       

      

where

 

 

radius ratio

 local circular velocity at entry interface

 local circular velocity of initial circular orbit

e

i

i eq i

e eq e

c

ee eq

c

ii eq

h r r
r

h r r

V
rh r

V
rh r

 

 


  



  


  


and

 flight path angle at entry interface

 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radi

e

i

e

i

e

eq

h

h

r

r

r

 









 us

 Earth gravitational constant 

Orbital Mechanics with MATLAB

page 2

This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, The

Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966. Additional

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh,

Busemann and Culp, The University of Michigan Press.

The true anomaly on the de-orbit trajectory at the entry interface
e can be determined from the

following two equations

 

 

2

2

1
sin

1 1
cos

d d

e

d

d d

e

d e d

a er

e

a e

e r e










 

and the following four quadrant inverse tangent operation

  1tan sin ,cose e e  

where

 2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r







   
 

 

The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e is

given by

  
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 


    

   
     

In this equation  is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  .

Therefore, the flight time between the de-orbit impulse and entry interface is given by

      180
2

e et t t t


     

Finally, the orbital speed at the entry interface eV can be determined from

2

e

e d

V
r a

 
 

Orbital Mechanics with MATLAB

page 3

This MATLAB script will prompt you for the altitude of the initial circular orbit, and the entry altitude

and flight path angle. The following is a typical user interaction with this script.

 program cdeorbit

< single impulse deorbit from circular orbits >

please input the initial altitude (kilometers)

? 1000

please input the entry altitude (kilometers)

? 100

please input the entry flight path angle (degrees)

? -2

The following is the script output created for this example.

 program cdeorbit

< single impulse deorbit from circular orbits >

initial altitude 1000.000000 kilometers

entry altitude 100.000000 kilometers

entry fpa -2.000000 degrees

entry trajectory

semimajor axis 6896.07935765 kilometers

eccentricity 0.06990358

argument of perigee 180.00000000 degrees

perigee altitude 35.87871531 kilometers

apogee altitude 1000.00000000 kilometers

entry true anomaly 328.04948058 degrees

entry velocity 8078.31275892 meters/second

impulse-to-entry time 40.13350666 minutes

deorbit delta-v 261.55416617 meters/second

The software will also calculate and display the entry velocity and flight path angle relative to a rotating

spherical Earth. The following is the relative flight information for this example.

Orbital Mechanics with MATLAB

page 4

relative flight path coordinates

flight path angle -2.12418719 degrees

velocity magnitude 7.60622497 kilometers/second

Finally, the software will graphically display the initial circular orbit and the de-orbit trajectory. The

graphic display for this example is as follows where the red dots represent the original circular orbit and

the blue dots represent the de-orbit trajectory, both at one minute intervals. The black circle is the

surface of a spherical Earth and the distances are in Earth radii.

The maneuver creates an elliptical de-orbit trajectory with an apogee located at the maneuver point. The

apogee altitude of this trajectory is equal to the altitude of the initial circular orbit.

edeorbit.m – single impulse de-orbit from an elliptical orbit

This MATLAB script calculates the single impulsive maneuver required to establish a reentry altitude

and flight path angle relative to a non-rotating spherical Earth. The algorithm uses a tangential V

applied opposite to the velocity vector at apogee of the initial elliptical orbit to establish the de-orbit

trajectory that enters the Earth’s atmosphere.

The scalar magnitude of this de-orbit delta-v is given by

 

 

 2 2

2 2 1
cos

cos

p a

e

e a a p a a e

r r
V

r r r r r r






 
   
  
 

Orbital Mechanics with MATLAB

page 5

 where

 geocentric radius at the entry altitude

 flight path angle at entry

 apogee radius of the initial elliptical orbit

 perigee radius of the initial elliptical orbit

 gravitati

e

a a e

p p e

e

a

p

r

r r r

r r r

r

r

















 onal constant of the Earth

The true anomaly at entry can be determined from the following series of equations:

 

 

 

2

2

1

1
sin

1 1
cos

tan sin ,cos

d d

e

d

d d

e

d e d

e e e

a er

e

a e

e r e






  





 



 where

 2 2 2

2

 eccentricity of deorbit trajectory

 semimajor axis of deorbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r







   
  

and the inverse tangent is a four quadrant operation.

The time of flight between perigee and the entry true anomaly e is given by:

  
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 


    

   
     

In this equation  is the orbital period of the de-orbit trajectory.

Therefore, the flight time between the de-orbit impulse time and entry is given by

      180
2

e et t t t


     

Orbital Mechanics with MATLAB

page 6

Finally, the speed at reentry eV can be determined from

2

e

e d

V
r a

 
 

Please note that these equations are also valid for the case of de-orbit from an initial circular orbit as

described in the previous cdeorbit.m script.

The following is a typical user interaction with this script.

 program edeorbit

< single impulse deorbit from elliptical orbits >

please input the perigee altitude (kilometers)

? 285.798

please input the apogee altitude (kilometers)

? 35785.922

please input the entry altitude (kilometers)

? 111.252

please input the entry flight path angle (degrees)

? -4

The following is the script output created for this example.

 program edeorbit

< single impulse deorbit from elliptical orbits >

initial orbit

perigee altitude 285.798000 kilometers

apogee altitude 35785.922000 kilometers

semimajor axis 24414.000000 kilometers

eccentricity 0.727044

entry altitude 111.252000 kilometers

entry fpa -4.000000 degrees

entry trajectory

semimajor axis 24308.08290588 kilometers

eccentricity 0.73456961

Orbital Mechanics with MATLAB

page 7

perigee altitude 73.96381175 kilometers

apogee altitude 35785.92200000 kilometers

entry true anomaly 350.55084585 degrees

entry velocity 10317.40933180 meters/second

entry fpa -4.00000000 degrees

impulse-to-entry time 312.58844372 minutes

deorbit delta-v 22.29796787 meters/second

The software will also calculate and display the entry velocity and flight path angle relative to a rotating

spherical Earth. The following is the relative flight path information for this example.

relative flight path coordinates

entry velocity 9845.40345708 meters/second

entry fpa -4.19210209 degrees

This MATLAB script will also graphically display the initial elliptic orbit and the de-orbit trajectory.

The graphic display for this example is as follows where the red dots represent the original elliptical

orbit and the blue dots represent the de-orbit trajectory, both at one minute intervals. The black circle is

the surface of a spherical Earth and the distances are in Earth radii.

page 1

Program deorbit_ocs

Finite-Burn De-orbit Trajectory Optimization

This document is the user’s manual for a Fortran computer program called deorbit_ocs that uses the

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the de-orbit trajectory

optimization problem. The software models the trajectory as a single, finite-burn propulsive maneuver

followed by a user-defined, time-bounded final coast phase. This computer attempts to maximize the

final spacecraft mass. Since this simulation involves a single continuous maneuver, this is equivalent to

minimizing the required propellant mass.

The important features of this scientific simulation are as follows:

 single, continuous thrust orbital maneuver

 variable inertial attitude steering

 constant propulsive thrust magnitude

 modified equinoctial equations of motion with oblate Earth gravity model

 user-specified final coast phase and entry interface (EI) target conditions

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of

trajectory optimization problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in the Sparse

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org).

The deorbit_ocs software consists of Fortran routines that perform the following tasks:

 set algorithm control parameters and call the transcription/optimal control subroutine

 define the problem structure and perform initialization related to scaling, lower and upper

bounds, initial conditions, etc.

 compute the right-hand-side differential equations

 evaluate any point and path constraints

 display the optimal solution results and create an output file

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.

The deorbit_ocs software allows the user to select the type of initial guess, collocation method, and

other important algorithm control parameters.

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/

page 2

Program Execution

An input file created by the user can be run from the command line or a simple batch file with a

statement similar to the following:

deorbit_ocs cleo2ei.in

If the software is executed without an input file on the command line, the computer program will display

the following information screen and file name prompt:

* program deorbit_ocs *

* *

* deorbit trajectory optimization *

* *

* May 10, 2012 *

please input the name of the simulation definition file

The user should respond to this prompt with the name of a compatible input data file including the

filename extension.

The screen output created by the deorbit_ocs computer program can be re-directed to a text file with

a command line similar to

deorbit_ocs cleo2ei.in >cleo2ei.txt

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories

and finally Command Prompt. The size, font and other characteristics of the screen can be controlled

by the user with the c:\ icon in the upper left corner of the window. To log into the subdirectory created

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is

the name of the subdirectory created by the user.

The DOS command line prompt looks similar to C:\deorbit_ocs>_.

Input File Format and Contents

The deorbit_ocs software is “data-driven” by a user-created text file. This text file should be simple

ASCII format with no special characters.

The following is a typical input file used by this computer program. In the following discussion the

actual input file contents are in courier font and all explanations are in times italic font. This example

attempts to optimize the maneuver required to de-orbit a spacecraft from a circular Earth orbit (LEO) to

typical entry interface (EI) conditions.

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

page 3

The first six lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with six and only six initial text lines.

**

** de-orbit trajectory optimization

** single finite-burn maneuver with final coast

** program deorbit_ocs

** cleo2ei.in - May 11, 2012

**

The first two inputs define the calendar date and Universal Coordinated Time (UTC) of the de-orbit

maneuver. Please be sure to provide all four digits of the calendar year.

maneuver calendar date (month, day, year)

3, 18, 2010

maneuver UTC (hour, minute, second)

12, 30, 45.875

The next three inputs define the initial mass prior to the propulsive maneuver, and the thrust magnitude

and specific impulse of the upper stage or spacecraft propulsion system.

initial spacecraft mass (kilograms)

8000.0

thrust magnitude (newtons)

2000.0

specific impulse (seconds)

325.0

This next integer input defines the type of initial guess for the propulsive maneuver.

* type of propulsive initial guess *

1 = thrust duration

2 = delta-v

2

The next two numeric inputs define either the user’s initial guess for the delta-v magnitude or the

maneuver duration, and should be consistent with the previous input.

initial guess for delta-v (meters/second)

150.0

initial guess for thrust duration (seconds)

700.0

The next two inputs define the lower and upper bounds for the thrust duration. These inputs are

required for either type of propulsive initial guess.

lower bound for thrust duration (seconds)

10.0

upper bound for thrust duration (seconds)

1000.0

page 4

The next section of the input data file lets the user define the characteristics of a final coast phase that

follows the propulsive maneuver. These three inputs define an initial guess for the coast duration as

well as lower and upper bounds on the coast duration. All inputs are in minutes.

* coast maneuver *

initial guess for coast duration (minutes)

30.0

lower bound for coast duration (minutes)

20.0

upper bound for coast duration (minutes)

40.0

The next six inputs define the classical orbital elements of the initial park orbit. These elements are

defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* INITIAL ORBIT *

semimajor axis (kilometers)

6878.14d0

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5d0

argument of perigee (degrees)

100.0

right ascension of the ascending node (degrees)

220.0d0

true anomaly (degrees)

180.0

This next integer input allows the user to define the type of initial orbit constraints to use during the

simulation.

* initial orbit constraint options *

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all initial orbital elements

3 = option 2 with unconstrained true longitude

--

3

The next series of inputs define the entry interface (EI) mission constraints. These elements are defined

with respect to the relative coordinate system. Please note the proper units for each mission constraint.

Important note: To disregard a mission constraint, input the value 1.0d99 for that constraint.

* entry interface constraints (set to 1.0d99 to ignore) *

page 5

geodetic altitude (kilometers)

121.92d0

relative flight path angle (degrees)

-2.0d0

geodetic latitude (degrees)

-14.0

east longitude (degrees)

181.0

relative azimuth (degrees)

1.0d99

relative velocity (meters/second)

1.0d99

This integer input specifies the type of gravity model to use during the simulation. Option 2 will use a

2J gravity model in the spacecraft equations of motion.

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

This next input specifies the type of solution data file to create.

**

* type of comma-delimited solution data file *

**

 1 = OCS-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

2

For options 2 or 3, this input defines either the number of data points or the time step size of the data

output in the solution file.

number of user-defined nodes or print step size in solution data file

100

The name of the comma-separated-variable solution data file is defined in this next line.

name of solution output file

cleo2ei.csv

The next series of program inputs are algorithm control options and parameters for the Sparse

Optimization Suite. The first input is an integer that specifies the type of collocation method to use

during the solution process. For most simulations, the trapezoidal method is recommended.

* algorithm control parameters *

discretization/collocation method

 1 = trapezoidal

 2 = separated Hermite-Simpson

page 6

 3 = compressed Hermite-Simpson

1

The next input defines the relative error in the objective function.

relative error in the objective function (performance index)

1.0d-5

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations

1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations

20

The next input is an integer that defines the maximum number of function evaluations.

maximum number of function evaluations

50000

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations

10000

The level of output from the Sparse Optimization Suite NLP algorithm is controlled with the following

integer input.

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the

following integer input. Please note that option 4 will create lots of information.

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled

with the following integer input. Please note that option 5 will create lots of information.

differential equation output

 1 = none

 2 = terse

page 7

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program option

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s

manual. To ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0

Optimal control solution

The following is the optimal control solution for this example. The output includes the time and orbital

characteristics at the beginning and end of the propulsive maneuver. This example optimizes the finite-

burn maneuver required to transfer from a circular low Earth orbit (LEO) to an entry interface defined

by a relative flight path angle, geodetic altitude and latitude, and a geographic east longitude. Appendix

B contains a brief summary of this information.

 program deorbit_ocs

 ===================

 input data file ==> cleo2ei.in

 oblate earth gravity model

 initial epoch

 calendar date March 18, 2010

 UTC time 12:30:45.875

 beginning of finite burn

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.687814000000D+04 0.256247074642D-15 0.285000000000D+02 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220000000000D+03 0.199001209386D+03 0.199001209386D+03 0.946163624135D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.371682044841D+04 0.568790088946D+04 -.106856870886D+04 0.687814000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.596468785281D+01 0.325246126525D+01 -.343449740362D+01 0.761260651018D+01

page 8

 end of finite burn

 mission elapsed time 00:09:39.318

 sma (km) eccentricity inclination (deg) argper (deg)

 0.662834854917D+04 0.373976098013D-01 0.286374887088D+02 0.314330866858D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220229462304D+03 0.203823970508D+03 0.235257057194D+03 0.895092125778D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.210335480056D+03 0.629617719700D+04 -.269907170370D+04 0.685354480337D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.711928147802D+01 -.122317403027D+01 -.200086582577D+01 0.749558453521D+01

The following program output is the final spacecraft mass, the propellant mass consumed, the actual

thrust duration for the maneuver, and the accumulated delta-v.

 final mass 7636.46768849416 kilograms

 propellant mass 363.532311505839 kilograms

 thrust duration 579.318048180925 seconds

 9.65530080301541 minutes

 delta-v 148.223366147974 meters/second

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at

each collocation node or user-defined step size.

This section of the numeric results summarizes the time and orbital conditions at the beginning and end

of the final coast.

 beginning of coast maneuver

 mission elapsed time 00:09:39.318

 sma (km) eccentricity inclination (deg) argper (deg)

 0.662834854917D+04 0.373976098013D-01 0.286374887088D+02 0.314330866858D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220229462304D+03 0.203823970508D+03 0.235257057194D+03 0.895092125778D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.210335480056D+03 0.629617719700D+04 -.269907170370D+04 0.685354480337D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.711928147802D+01 -.122317403027D+01 -.200086582577D+01 0.749558453521D+01

 end of coast maneuver

 mission elapsed time 00:33:37.138

page 9

 sma (km) eccentricity inclination (deg) argper (deg)

 0.663096280332D+04 0.386110555799D-01 0.286533250810D+02 0.307476929735D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220038827173D+03 0.299159749780D+03 0.329907442753D+03 0.895621721271D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.614443018434D+04 -.142801717018D+04 -.156247691255D+04 0.649881446349D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.107390419948D+01 -.708739128858D+01 0.334249561358D+01 0.790927698554D+01

 coast duration 1437.81997871958 seconds

 23.9636663119930 minutes

 0.399394438533216 hours

This final section of the numeric results summarizes both the relative and inertial flight conditions at the

entry interface.

 relative flight path coordinates at entry interface

 geodetic altitude 121.919999999994 kilometers

 geodetic latitude -13.9999999999992 degrees

 east longitude 180.999999897136 degrees

 flight path angle -2.00000000000018 degrees

 azimuth 63.1924684582462 degrees

 velocity 7496.23024105710 meters/second

 inertial flight path coordinates at entry interface

 right ascension 193.083753391143 degrees

 flight path angle -1.89551468207218 degrees

 azimuth 64.6963141835643 degrees

 velocity 7909.27698553550 meters/second

Verification of the optimal control solution

The optimal control solution determined by the Sparse Optimization Suite can be verified by

numerically integrating the orbital equations of motion with the OC-computed initial park orbit

conditions and the optimal control solution. This is equivalent to solving an initial value problem (IVP)

that uses the optimal unit thrust vector solution. This part of the deorbit_ocs computer program uses

a Runge-Kutta-Fehlberg 7(8) variable step size method to integrate the orbital equations of motion.

The following is a display of the final solution computed using this explicit numerical integration

method.

 ==

 verification of optimal control solution

 ==

page 10

 beginning of coast maneuver

 mission elapsed time 00:09:39.318

 sma (km) eccentricity inclination (deg) argper (deg)

 0.662834854907D+04 0.373976097701D-01 0.286374887086D+02 0.314330866910D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220229462304D+03 0.203823970504D+03 0.235257057195D+03 0.895092125757D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.210335480218D+03 0.629617719672D+04 -.269907170359D+04 0.685354480309D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.711928147827D+01 -.122317403037D+01 -.200086582582D+01 0.749558453547D+01

 end of coast maneuver

 mission elapsed time 00:33:37.138

 sma (km) eccentricity inclination (deg) argper (deg)

 0.663096280315D+04 0.386110556971D-01 0.286533250796D+02 0.307476930541D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220038827181D+03 0.299159749691D+03 0.329907442745D+03 0.895621721237D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.614443018404D+04 -.142801717004D+04 -.156247691279D+04 0.649881446323D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.107390420036D+01 -.708739128871D+01 0.334249561350D+01 0.790927698574D+01

 relative flight path coordinates at entry interface

 geodetic altitude 121.919999748011 kilometers

 geodetic latitude -14.0000000027976 degrees

 east longitude 180.999999896537 degrees

 flight path angle -2.00000000777524 degrees

 azimuth 63.1924684615364 degrees

 velocity 7496.23024127568 meters/second

 inertial flight path coordinates at entry interface

 right ascension 193.083753390544 degrees

 flight path angle -1.89551468944646 degrees

 azimuth 64.6963141865741 degrees

 velocity 7909.27698574230 meters/second

 mass and propulsive properties

page 11

 final mass 7636.46768849181 kilograms

 propellant mass 363.532311508195 kilograms

 thrust duration 579.318048180925 seconds

 9.65530080301541 minutes

 delta-v 148.223363619416 meters/second

In additional to the user-defined solution output file, the deorbit_ocs computer program will create a

comma-separated-variable data file named maneuver.csv. This data file contains the information

described in Appendix B starting at ignition and ending at burnout of the propulsive maneuver.

The following are graphic displays of several important flight conditions for this example. The first two

images illustrate the behavior of the orbit-relative pitch and yaw angles, and the inertial right ascension

and declination angles of the unit thrust vector during the de-orbit maneuver.

These two plots summarize the relative and inertial flight path angles and velocities.

page 12

The next two plots illustrate the behavior of the semimajor axis, orbital eccentricity, orbital inclination

and right ascension of the ascending node (RAAN) during the simulation.

Creating an initial guess

The software allows the user to input either a delta-v or thrust duration initial guess. For a delta-v initial

guess, the software estimates the thrust duration using the rocket equation. For either type of initial

guess, the user should also provide lower and upper bounds for the total thrust duration.

An estimate of the thrust duration can be determined from the following expression:

sp p p ex

d

I m g m V
t

F F
 

The propellant mass required for a given V is a function of the initial (or final) mass of the spacecraft

and the exhaust velocity as follows:

page 13

 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

In these equations

 initial mass

 final mass

 propellant mass

 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i

f

p

ex sp

sp

m

m

m

V g I

I

V

F

g







 



 





The software uses a tangential thrusting steering method to generate an initial guess for the optimal

trajectory. For tangential thrusting opposite to the flight path, the unit thrust vector in the modified

equinoctial frame at all times is simply  0 1 0
T

T  u . Please note that this type of steering method

creates a coplanar initial guess.

The dynamic variables at each grid point of the initial guess are determined by setting the initial guess

option INIT(1) = 6 with INIT(2) = 2 within the odeinp subroutine for this aerospace trajectory

optimization problem. These program options create an initial guess from the numerical integration of

the equations of motion coded in the oderhs subroutine. The INIT(1) = 6 program option tells the

Sparse Optimization Suite software to construct an initial guess by solving an initial value problem

(IVP) with a linear control approximation. The INIT(2) = 2 program option tells the program to use

the Dormand-Prince variable step size numerical method to solve the initial value problem.

An initial guess for the modified equinoctial orbital elements at the beginning of the final coast phase

are determined by numerically integrating the equations of motion using the initial orbital elements,

spacecraft mass, and propulsive characteristics provided by the user.

An algorithm for estimating the impulse de-orbit delta-v from initial circular orbits is explained in

Appendix C. A numerical method for calculating the impulsive maneuver required for de-orbiting from

an initial elliptical Earth orbit can be found in Appendix D.

Problem setup

This part of the user’s manual provides details about the software implementation within

deorbit_ocs. It defines such things as point and path constraints (boundary conditions), bounds on

the dynamic variables, and the performance index or objective function.

(1) Point functions – initial orbit constraints

The software allows the user to select one of the following initial orbit constraint options:

1) constrain semimajor axis, eccentricity and inclination

page 14

2) constrain all initial orbital elements

3) option 2 with unconstrained true longitude

For option 1, the initial orbit inclination is constrained by enforcing

 2 2 tan
2

i
h k

 
   

 

where i is the initial orbit inclination.

If the initial orbit is circular, the software enforces the following two equality constraints:

 0 and 0f g 

Otherwise, for an elliptical initial orbit, the single equality constraint

 2 2f g e 

is enforced, where e is the initial orbit eccentricity.

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal

to the initial modified equinoctial orbital elements as follows:

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

Option 3 is identical to option 2 with the initial true longitude unbounded. In optimal control

terminology, these derived constraints or boundary conditions are called point functions.

(2) Performance index – maximize final spacecraft mass

The objective function or performance index J for this simulation is the mass of the spacecraft at

burnout or termination of the propulsive maneuver. This is simply

 fJ m

The value of the maxmin indicator in the Sparse Optimization Suite algorithm tells the software whether

the user is minimizing or maximizing the performance index. The spacecraft mass at the initial time is

fixed to the user-defined initial value.

page 15

(3) Path constraint – unit thrust vector scalar magnitude

For a variable steering trajectory, the scalar magnitude of the components of the unit thrust vector at any

time during the simulation is constrained as follows:

 2 2 2 1
r t nT T T Tu u u   u

(4) Point functions – entry interface mission constraints

The entry interface mission constraints are relative flight path coordinates defined with respect to a

rotating Earth. They are calculated from the inertial spacecraft coordinates at the entry interface using

the algorithm described in Appendix E.

This set of possible constraints consists of the following elements;

0 geodetic altitude

0 relative flight path angle

0 geodetic latitude

0 east longitude

0 relative azimuth

0 relative velocity

p u

p u

p u

p u

p u

p u

h h

v v

 

 

 

 

  

  

  

  

  

  

where the p subscript refers to values predicted by the software and the u subscript are the values

defined by the user.

Bounds on the dynamic variables

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial

dynamic variables during the orbital transfer.

0.05 1.05

100 0.8

1 1

1 1

1 1

1 1

i isc sc sc

f i

m m m

p p p

f

g

h

k

 

 

   

   

   

   

where
iscm is the initial spacecraft mass.

Finally, the three components of the unit thrust vector are constrained as follows

page 16

1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

Technical Discussion

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These equations

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees. However,

two components of the orbital element set are singular for an orbital inclination of 180 degrees.

The relationship between direct modified equinoctial and classical orbital elements is defined by the

following definitions

     

   

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

     

     

 where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





The relationship between classical and modified equinoctial orbital elements is summarized as follows:

semimajor axis
2 21

p
a

f g


 

orbital eccentricity
2 2e f g 

orbital inclination  1 2 22 tani h k 

argument of periapsis    1 1tan tang f k h   

right ascension of the ascending node  1tan k h 

page 17

true anomaly    1tanL L g f      

The mathematical relationships between an inertial state vector and the corresponding modified

equinoctial elements are summarized as follows:

position vector

 

 

 

2

2

2

2

2

cos cos 2 sin

sin sin 2 cos

2
sin cos

r
L L hk L

s

r
L L hk L

s

r
h L k L

s





 
  

 
   
 
 
 
  

r

velocity vector

 

 

 

2 2

2

2 2

2

2

1
sin sin 2 cos 2

1
cos cos 2 sin 2

2
cos sin

L L hk L g f hk g
s p

L L hk L f ghk f
s p

h L k L f h gk
s p


 


 



 
      

 
 
        
 
 
   
  

v

where

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     

   

The system of first-order modified equinoctial equations of orbital motion are given by

2

t

dp p p
p

dt w 
  

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

2

cos
2

ndh p s
h L

dt w


 

page 18

2

sin
2

ndk p s
k L

dt w


 

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 

where , ,r t n   are non-two-body perturbations in the radial, tangential and normal directions,

respectively. The radial direction is along the radius vector of the spacecraft measured positive in a

direction away from the gravitational center, the tangential direction is perpendicular to this radius

vector measured positive in the direction of orbital motion, and the normal direction is positive along the

angular momentum vector of the spacecraft’s orbit.

The equations of orbital motion can also be expressed in vector form as follows:

  
d

dt
  

y
y A y P b

where

    

    

 

2

2

2
0 0

1
sin 1 cos sin cos

1
cos 1 sin sin cos

cos
0 0

2

sin
0 0

2

1
0 0 sin cos

p p

w

p p p g
L w L f h L k L

w w

p p p f
L w L g h L k L

w w

p s L

w

p s L

w

p
h L k L

w



  

  







 
 
 
 
    
 
 
    
  

  
 
 
 
 
 
 
 
 
  

A

and

2

0 0 0 0 0

T

w
p

p


  
   

   

b

The total non-two-body acceleration vector is given by

 ˆ ˆ ˆ
r r t t n n     P i i i

page 19

where ˆ ˆ ˆ, and r t ni i i are unit vectors in the radial, tangential and normal directions.

These unit vectors can be computed from the inertial position vector r and velocity vector v according to

 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r

For unperturbed two-body motion, 0P and the first five equations of motion are simply

0p f g h k     . Therefore, for two-body motion these modified equinoctial orbital elements are

constant.

The true longitude is often called the fast variable of this orbital element set.

Non-spherical Earth Gravity

The non-spherical gravitational acceleration vector can be expressed as

 ˆ ˆ
N N r rg g g i i

 where

 
 

ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ

T

N N r r

N
T

N N r r






e e i i
i

e e i i

and

  ˆ 0 0 1
T

N e

In these equations the north direction component is indicated by subscript N and the radial direction

component is subscript r.

The contributions due to the zonal gravity effects of 2 3 4, ,J J J are as follows:

4

'

2
2

cos
k

e
N k k

k

R
g P J

r r

 



 
   

 


  
4

2
2

1

k

e
r k k

k

R
g k P J

r r





 
    

 


 where

page 20

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k order Legendre polynomial

e

k

k

r

R

J

P

















For a zonal only Earth gravity model, the east component is identically zero.

Finally, the zonal gravity perturbation contribution is T

g a Q g where ˆ ˆ ˆ r t n
 
 

Q i i i .

For
2J effects only, the three components are as follows:

 

 
2

22

2

24 2 2

12 sin cos3
1

2 1
r

e
J

h L k LJ R

r h k


 
    
  
 

   

 
2

2

2

24 2 2

sin cos cos sin12

1
t

e
J

h L k L h L k LJ R

r h k


  
   
  
 

  

 
2

2 22

2

24 2 2

1 sin cos6

1
n

e
J

h k h L k LJ R

r h k


   
   
  
 

Propulsive Thrust

The acceleration due to propulsive thrust can be expressed as

 

ˆ
T T

T

m t
a u

where T is the thrust magnitude, m is the spacecraft mass and ˆ
r t n

T

T T T Tu u u   u is the unit pointing

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system. The

components of this unit vector are the control variables.

The propellant mass flow rate is determined from

sp

dm T
m

dt g I
 

where g is the acceleration of gravity and spI is the specific impulse of the propulsive system. The

product spg I is also called the exhaust velocity.

page 21

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt  where

iscm is the initial

mass of the spacecraft and m is the propellant flow rate.

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle  and

the out-of-plane yaw angle  as follows:

 sin cos cos cos sin
r t nT T Tu u u      

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector

according to

 

 

1

1

sin

tan ,

r

n t

T

T T

u

u u













Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located

at the spacecraft. The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane

yaw angle is positive in the direction of the angular momentum vector. The inverse tangent calculation

in the second equation is a four quadrant operation.

The deorbit_ocs software provides the steering angles and the components of the unit thrust vector in

both the inertial and modified equinoctial coordinate systems. The following section summarizes the

inertial-to/from-modified equinoctial coordinate transformations and the calculation of the inertial unit

thrust vector in terms of right ascension and declination angles.

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu and the corresponding

unit thrust vector in the modified equinoctial system ˆ
MEETu is given by

 ˆ ˆ ˆˆ ˆ
ECI MEET r t n T

 
 

u i i i u

where

 ˆ ˆ ˆ ˆ ˆˆˆ

r n t n r

 
      

 

r v rr r v
i r i h i i i

r r v r v r

This relationship can also be expressed as

  

 

 

 

ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ECI MEE MEE

x x
x

T T y y T
y

z z
z

Q

 
 
 

  
 
 

  

r h r h

u u r h r h u

r h r h

In these equations, r is the inertial position vector and v is the inertial velocity vector of the spacecraft.

In the deorbit_ocs computer program, the components of the inertial unit thrust vector are defined in

terms of the right ascension  and the declination angle  as follows:

page 22

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u      

Finally, the right ascension and declination angles can be determined from the components of the ECI

unit thrust vector according to

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u   

where the calculation for right ascension is a four quadrant inverse tangent operation.

Flight path coordinates

The mathematical relationship between flight path and inertial coordinates is explained in Appendix E.

Geodetic coordinates

An algorithm for converting from geocentric declination and radius to geodetic altitude and latitude is

described in Appendix F. It uses a series solution involving the flattening factor of the Earth.

page 23

Algorithm Resources

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of Guidance,

Control and Dynamics, Vol. 21, No. 2, March-April 1998.

“Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, 20-22 August 1990.

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA Education

Series, 1987.

Analytical Mechanics of Space Systems, Hanspeter Schaub and John L. Junkins, AIAA Education

Series, 2003.

Spacecraft Mission Design, Charles D. Brown, AIAA Education Series, 1992.

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002.

“Optimum Deboost Altitude for Specified Atmospheric Entry Angle”, Jerome M. Baker, Bruce E.

Baxter, and Paul D. Arthur, AIAA Journal, Vol. 1, No. 7, July 1963.

“Deboost from Circular Orbits”, A. H. Milstead, The Journal of the Astronautical Sciences, Vol. XIII,

No. 4, pp. 170-171, Jul-Aug., 1966.

Hypersonic and Planetary Entry Flight Mechanics, Vinh, Busemann and Culp, The University of

Michigan Press, 1980.

“On Autonomous Optimal Deorbit Guidance”, Morgan C. Baldwin, Binfeng Pan and Ping Lu, AIAA

2009-5667, AIAA Guidance, Navigation, and Control Conference, August 10-13, 2009.

“Autonomous Optimal Deorbit Targeting”, Donald J. Jezewski, AAS 91-136, AAS/AIAA Spaceflight

Mechanics Meeting, February 11-13, 1991.

“Analysis of the Accuracy of Ballistic Descent from a Circular Circumterrestrial Orbit”, Yu. G.

Sikharulidze and A. N. Korchagin, Cosmic Research, Vol. 40, No. 1, 2002, pp.75-87.

“Geometric Theory of Optimum Disorbit Problems”, A. Busemann and N. X. Vinh, NASA CR-750,

April 1967.

“Nearly Circular Transfer Trajectories for Descending Satellites”, George M. Low, NASA Technical

Report R-3, 1959.

page 24

APPENDIX A

Example De-orbit from an Elliptical Earth Orbit

This appendix illustrates the characteristics for a typical de-orbit from a highly elliptical Earth orbit

(HEO). For this example, the entry interface constraints consist of the geodetic altitude and relative

flight path angle. An estimate for the delta-v required for this example and the coast time were

determined using the algorithm described in Appendix D.

The main portion of the simulation definition file for this example is as follows:

**

** de-orbit trajectory optimization

** single finite-burn maneuver with final coast

** program deorbit_ocs

** heo2ei.in - May 10, 2012

**

maneuver calendar date (month, day, year)

3, 18, 2010

maneuver UTC (hour, minute, second)

12, 30, 45.875

initial spacecraft mass (kilograms)

8000.0

thrust magnitude (newtons)

1000.0

specific impulse (seconds)

325.0

* type of propulsive initial guess *

1 = thrust duration

2 = delta-v

2

initial guess for delta-v (meters/second)

35.0d0

initial guess for thrust duration (seconds)

700.0

lower bound for thrust duration (seconds)

1.0

upper bound for thrust duration (seconds)

1000.0

* coast maneuver *

initial guess for coast duration (minutes)

300.0

page 25

lower bound for coast duration (minutes; > 0)

200.0

upper bound for coast duration (minutes)

500.0

* INITIAL ORBIT *

semimajor axis (kilometers)

24414.0d0

orbital eccentricity (non-dimensional)

0.727044

orbital inclination (degrees)

28.5d0

argument of perigee (degrees)

270.0

right ascension of the ascending node (degrees)

220.0d0

true anomaly (degrees)

180.0d0

* initial orbit constraint options *

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all initial orbital elements

3 = option 2 with unconstrained true longitude

--

3

* entry interface constraints (set to 1.0d99 to ignore) *

geodetic altitude (kilometers)

121.92d0

relative flight path angle (degrees)

-2.0d0

geodetic latitude (degrees)

1.0d99

east longitude (degrees)

1.0d99

relative azimuth (degrees)

1.0d99

relative velocity (meters/second)

1.0d99

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

page 26

The program output for this example is

 program deorbit_ocs

 ===================

 input data file ==> heo2ei.in

 oblate earth gravity model

 initial epoch

 calendar date March 18, 2010

 UTC time 12:30:45.875

 beginning of finite burn

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.244140000000D+05 0.727044000000D+00 0.285000000000D+02 0.270000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220000000000D+03 0.179838597519D+03 0.898385975188D+02 0.632729583647D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.237268343662D+05 -.284613210725D+05 0.201186544321D+05 0.421636066104D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.123989347177D+01 0.102137536270D+01 0.791045192336D-02 0.160642647766D+01

 end of finite burn

 mission elapsed time 00:02:25.905

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243269419485D+05 0.733224470367D+00 0.284999999981D+02 0.269999908966D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220000048521D+03 0.180155324772D+03 0.901552337382D+02 0.629348220341D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.239053722555D+05 -.283115456389D+05 0.201186693081D+05 0.421636252457D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.120740294448D+01 0.103164365370D+01 -.769905249676D-02 0.158813405416D+01

 final mass 7954.22115070684 kilograms

 propellant mass 45.7788492931622 kilograms

 thrust duration 145.904574520815 seconds

 2.43174290868026 minutes

 delta-v 18.2904541073263 meters/second

page 27

 beginning of coast maneuver

 mission elapsed time 00:02:25.905

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243269419485D+05 0.733224470367D+00 0.284999999981D+02 0.269999908966D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220000048521D+03 0.180155324772D+03 0.901552337382D+02 0.629348220341D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.239053722555D+05 -.283115456389D+05 0.201186693081D+05 0.421636252457D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.120740294448D+01 0.103164365370D+01 -.769905249677D-02 0.158813405416D+01

 end of coast maneuver

 mission elapsed time 05:15:04.421

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243574533818D+05 0.733691641752D+00 0.284878735015D+02 0.270125093234D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.219924531651D+03 0.355464345323D+03 0.265589438557D+03 0.630532606936D+03

 rx (km) ry (km) rz (km) rmag (km)

 -.326983940138D+04 0.468558859467D+04 -.308885964145D+04 0.649520161919D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.815487392014D+01 -.631067229242D+01 -.213830021530D+00 0.103136936504D+02

 coast duration 18758.5159416022 seconds

 312.641932360037 minutes

 5.21069887266728 hours

 relative flight path coordinates at entry interface

 geodetic altitude 121.919999999998 kilometers

 geodetic latitude -28.5540897239011 degrees

 east longitude 42.2691975996772 degrees

 flight path angle -2.00000000000468 degrees

 azimuth 92.4904131009538 degrees

 velocity 9897.66361056145 meters/second

 inertial flight path coordinates at entry interface

 right ascension 124.909273063683 degrees

page 28

 flight path angle -1.91929389968213 degrees

 azimuth 92.3897809434936 degrees

 velocity 10313.6936503760 meters/second

Here are the verification results for this example.

 ==

 verification of optimal control solution

 ==

 beginning of coast maneuver

 mission elapsed time 00:02:25.905

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243269419484D+05 0.733224470367D+00 0.284999999981D+02 0.269999908963D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.220000048522D+03 0.180155324775D+03 0.901552337371D+02 0.629348220339D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.239053722554D+05 -.283115456388D+05 0.201186693081D+05 0.421636252456D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.120740294437D+01 0.103164365384D+01 -.769905257556D-02 0.158813405416D+01

 end of coast maneuver

 mission elapsed time 05:15:04.421

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243574533952D+05 0.733691641944D+00 0.284878734954D+02 0.270125093237D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.219924531681D+03 0.355464335541D+03 0.265589428778D+03 0.630532607457D+03

 rx (km) ry (km) rz (km) rmag (km)

 -.326983852645D+04 0.468558927113D+04 -.308885961732D+04 0.649520165524D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.815487442942D+01 -.631067156466D+01 -.213830504622D+00 0.103136936178D+02

 relative flight path coordinates at entry interface

 geodetic altitude 121.920035928964 kilometers

 geodetic latitude -28.5540893076028 degrees

 east longitude 42.2691865228324 degrees

 flight path angle -2.00000431339059 degrees

 azimuth 92.4904186061209 degrees

 velocity 9897.66357674878 meters/second

page 29

 inertial flight path coordinates at entry interface

 right ascension 124.909261986838 degrees

 flight path angle -1.91929803838563 degrees

 azimuth 92.3897862248354 degrees

 velocity 10313.6936177802 meters/second

 mass and propulsive properties

 final mass 7954.22115071184 kilograms

 propellant mass 45.7788492881609 kilograms

 thrust duration 145.904574520815 seconds

 2.43174290868026 minutes

 delta-v 18.2904541154479 meters/second

page 30

APPENDIX B

Contents of the Simulation Summary and CSV Files

This appendix is a brief summary of the information contained in the simulation summary screen

displays and the CSV data files produced by the deorbit_ocs software.

The simulation summary screen display contains the following information:

mission elapsed time = simulation time (hh:mm:ss.sss)

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per

second

geodetic altitude = geodetic altitude in kilometers

geodetic latitude = geodetic latitude in degrees)

east longitude = east longitude in degrees

flight path angle = relative or inertial flight path angle in degrees

azimuth = relative or inertial azimuth angle in degrees

velocity = relative or inertial velocity in meters per second

final mass = final spacecraft mass in kilograms

propellant mass = expended propellant mass in kilograms

thrust duration = maneuver duration in seconds

delta-v = scalar magnitude of the maneuver in meters/seconds

page 31

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at

each collocation node or user-defined step size.

The user-defined comma-separated-variable (csv) disk files is created by the odeprt subroutine and

contains the following information:

time (sec) = mission elapsed time in seconds

time (min) = mission elapsed time in minutes

semimajor axis (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

arg of perigee (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

period (min) = orbital period in minutes

mass (kg) = spacecraft mass in kilograms

thracc (mps/s) = thrust acceleration in meters/second**2

perigee altitude = perigee altitude in kilometers

apogee altitude = apogee altitude in kilometers

geodetic altitude (km) = geodetic altitude in kilometers

ut-radial = radial component of unit thrust vector

ut-tangential = tangential component of unit thrust vector

ut-normal = normal component of unit thrust vector

ut-eci-x = x-component of eci unit thrust vector

ut-eci-y = y-component of eci unit thrust vector

ut-eci-z = z-component of eci unit thrust vector

semi-parameter = orbital semiparameter in kilometers

f equinoctial element = modified equinoctial orbital element

g equinoctial element = modified equinoctial orbital element

h equinoctial element = modified equinoctial orbital element

k equinoctial element = modified equinoctial orbital element

true longitude = true longitude in degrees

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

page 32

rmag (km) = magnitude of spacecraft’s position vector in kilometers

vx (km) = x-component of the spacecraft’s velocity vector in kilometers/second

vy (km) = y-component of the spacecraft’s velocity vector in kilometers/second

vz (km) = z-component of the spacecraft’s velocity vector in kilometers/second

vmag (km) = magnitude of spacecraft’s velocity vector in kilometers/second

rasc (deg) = inertial right ascension of the unit thrust vector in degrees

decl (deg) = inertial declination of the unit thrust vector in degrees

yaw (deg) = out-of-plane yaw angle of the unit thrust vector in degrees

pitch (deg) = in-plane pitch angle of the unit thrust vector in degrees

declination (deg) = geocentric declination in degrees

geodetic lat (deg) = geodetic latitude in degrees

longitude (deg) = east longitude in degrees

azimuth (deg) = relative azimuth in degrees

vmagr (mps) = relative velocity in meters per second

fpar (deg) = relative flight path angle in degrees

fpai (deg) = inertial flight path angle in degrees

deltav (mps) = accumulative delta-v in meters per second

page 33

APPENDIX C

De-orbit from a Circular Earth Orbit

This appendix summarizes an algorithm can be used to compute the impulsive delta-v required to de-

orbit a spacecraft initially in a circular Earth orbit. The “targets” at the entry interface consist of the

altitude and flight path angle.

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial

circular orbit can be determined from the following expression

   

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

    
       

      
       

      

where

 

 

radius ratio

 local circular velocity at entry interface

 local circular velocity of initial circular orbit

 flight path angle at entry interface

e

i

i eq i

e eq e

c

ee eq

c

ii eq

e

i

h r r
r

h r r

V
rh r

V
rh r

h

 

 




  



  


  




 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radius

 Earth gravitational constant

e

i

e

eq

h

r

r

r















This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead, The

Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966. Additional

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh,

Busemann and Culp, The University of Michigan Press.

page 34

The true anomaly on the de-orbit trajectory at the entry interface
e can be determined from the

following two equations

 

 

2

2

1
sin

1 1
cos

d d

e

d

d d

e

d e d

a er

e

a e

e r e










 

and the following four quadrant inverse tangent operation

  1tan sin ,cose e e  

where

 2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r







   
 

 

The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e is

given by

  
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 


    

   
     

In this equation  is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  .

Therefore, the flight time between the de-orbit impulse and entry interface is given by

      180
2

e et t t t


     

Finally, the orbital speed at the entry interface eV can be determined from

2

e

e d

V
r a

 
 

page 35

APPENDIX D

De-orbit from an Elliptical Earth Orbit

This appendix summarizes an algorithm can be used to compute the impulsive delta-v required to de-

orbit a spacecraft initially in an elliptical Earth orbit.

The scalar magnitude of the impulsive delta-v for de-orbit from an initial elliptical orbit is given by

 

 

 2 2

2 2 1
cos

cos

p a

e

e a a p a a e

r r
V

r r r r r r






 
   
  
 

where

 geocentric radius at the entry altitude

 flight path angle at entry

 apogee radius of the initial elliptical orbit

 perigee radius of the initial elliptical orbit

 gravitati

e

a a e

p p e

e

a

p

r

r r r

r r r

r

r

















 onal constant of the Earth

The true anomaly at entry can be determined from the following series of equations.

 

 

 

2

2

1

1
sin

1 1
cos

tan sin ,cos

d d

e

d

d d

e

d e d

e e e

a er

e

a e

e r e






  





 



where

 2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r







   
 

 

page 36

The time-of-flight between perigee and the entry interface true anomaly e is given by

  
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 


    

   
     

In this equation,  is the orbital period of the de-orbit trajectory.

Therefore, the flight time between the de-orbit impulse time and the entry interface is given by

      180
2

e et t t t


     

Finally, the speed at the entry interface eV can be determined from

2

e

e d

V
r a

 
 

page 37

APPENDIX E

Flight Path Coordinates

Relative flight path coordinates are defined with respect to a rotating spherical Earth. This set of

coordinates consists of the following elements;

 

 

 geocentric radius

 speed

 flight path angle

 geocentric declination

 geographic longitude east

 flight azimuth clockwise from north

r

V

















 

 

Please note the sign and direction convention.

The following are several useful equations that summarize the relationships between inertial and relative

flight path coordinates.

sin sin

cos cos cos cos

cos sin cos cos sin

r r i i

r r r i i i

r r r e i i i

v v

v v

v r v

 

   

     





 

where the r subscript denotes relative coordinates and the i subscript inertial coordinates.

The inertial speed can also be computed from the following expression

2 2 2 22 cos sin cos cosiv v v r r       

The inertial flight path angle can be computed from

2 2 2 2 2

2 2 2 2

cos 2 cos cos cos cos
cos

2 cos cos cos cos
i

v vr r

v vr r

      


     

 


 

The inertial azimuth can be computed from

2 2 2 2 2

cos cos cos
cos

cos 2 cos cos cos cos
i

v r

v vr r

   


      




 

where all coordinates on the right-hand-side of these equations are relative to a rotating Earth.

The transformation of an Earth-centered inertial (ECI) position vector ECIr to an Earth-centered fixed

(ECF) position vector ECFr is given by the following vector-matrix operation

page 38

  ECF ECIr T r

where the elements of the transformation matrix  T are given by

  

cos sin 0

sin cos 0

0 0 1

 

 

 
  
 
  

T

and  is the Greenwich apparent sidereal time at the moment of interest. Greenwich sidereal time is

given by the following expression

 0g et   

where 0g is the Greenwich sidereal time at 0 hours UTC, e is the inertial rotation rate of the Earth,

and t is the elapsed time since 0 hours UTC.

Finally, the flight path coordinates are determined from the following set of equations

 

2 2 2

2 2 2

1

1

1

1

tan ,

sin

sin

tan ,

y

y z

y x

z

z

y x

ECF ECF ECF

ECF ECF ECF

ECF ECF

ECF

ECF

R

R

R R

r r r r

v v v v

r r

r

v

v v

















  

  



 
   

 

 
   

 

 
 

r

v

where

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

R ECF

    

 

    

  
 

 
 
    

v v

Please note that the two argument inverse tangent calculation is a four quadrant operation.

A set of inertial flight path coordinates can be determined from these equations by setting the value of

Earth rotation to zero.

page 39

APPENDIX F

Geodetic Coordinates

The following diagram illustrates the geometric relationship between geocentric (radius and declination)

and geodetic (altitude and latitude) coordinates.

In this diagram,  is the geocentric declination,  is the geodetic latitude, r is the geocentric distance,

and h is the geodetic altitude.

The exact mathematical relationship between geocentric and geodetic coordinates is given by the

following system of two nonlinear equations

 

 

cos cos 0

sin sin 0

c h r

s h r

 

 

  

  

where the geodetic constants c and s are given by

  

 

2 2

2

1 2 sin

1

eqr
c

f f

s c f




 

 

In these equations, eqr is the Earth equatorial radius (6378.14 kilometers) and f is the flattening factor

for the Earth (1/298.257).

page 40

In this computer program, the geodetic latitude is determined using the following expression:

 2

2

sin 2 1 1
sin 4

4
f f


  

  

    
       

    

The geodetic altitude is calculated from

     21 cos2 1 1ˆ ˆ 1 1 cos4
2 4 16

h r f f





     
          

      

In these equations,  is the geocentric distance of the satellite, ˆ / eqh h r and ˆ / eqr r .

This algorithm is based on “Derivation of Transformation Formulas Between Geocentric and Geodetic

Coordinates for Nonzero Altitudes” by Sheila Ann T. Long, NASA TN D-7522, 1974.

Orbital Mechanics with MATLAB

page 1

A MATLAB Script for Optimal Single Impulse De-orbit from Earth Orbits

This document describes a MATLAB script named deorbit_snopt that can be used to compute the

optimal impulsive maneuver required to de-orbit a spacecraft in a circular or elliptical Earth orbit. The

user provides the classical orbital elements of the initial orbit along with geodetic altitude and relative

flight path angle targets at the entry interface (EI).

This script solves this maneuver optimization problem using a simple shooting method. During the

solution process, the script numerically integrates the spacecraft equations of motion subject to the

Earth’s 2J gravity coefficient. The numerical integration is performed using MATLAB’s ode45

function. The entry interface targets are computed with respect to an oblate, rotating Earth.

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control

variables. The scalar magnitude of the de-orbit V is the objective function or performance index,

and the geodetic altitude and relative flight path angle at the entry interface are treated as nonlinear

equality constraints. The algorithm uses an initial guess determined from the analytic de-orbit solution

relative to a spherical, non-rotating Earth.

The deorbit_snopt script uses the SNOPT nonlinear programming algorithm to solve this orbital

mechanics problem. MATLAB versions of SNOPT for several computer platforms can be requested

or purchased at Professor Philip Gill’s web site which is located at http://scicomp.ucsd.edu/~peg/.

Professor Gill’s web site also includes a PDF version of the software user’s guide.

Interacting with the script

This MATLAB script is “data driven” by a text file created by the user. When the deorbit_snopt

script is started, the software will display the following screen which allows the user to select a data

file for processing.

The file type defaults to names with a *.in filename extension. However, you can select any

deorbit_snopt compatible ASCII data file. The next section describes the format and typical

contents of compatible input files.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 2

Input data file

This section describes a typical input data file for the software. In the following discussion the actual

input file contents are in courier font and all explanations are in times italic font. Typical user-

provided values are in bold font.

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input.

The first five lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with five and only five initial text lines.

** impulsive de-orbit delta-v trajectory optimization

** de-orbit from initial circular orbit

** file ==> deorbit3.in April 18, 2020

The first input is the calendar date of the impulsive maneuver. Be sure to include all four digits of the

calendar year.

calendar date at time of impulsive maneuver (month, day, year)

3, 18, 2010

The next input is the UTC time of the de-orbit maneuver.

UTC at time of impulsive maneuver (hours, minutes, seconds)

12, 30, 45.875

The next series of inputs define the classical orbital elements of the initial Earth orbit. Notice that the

true anomaly is an initial guess for the location of the maneuver. The true anomaly initial guess for

elliptical Earth orbits should be 180 degrees.

**

orbital elements at time of impulsive maneuver

**

semimajor axis (kilometers)7378.14

6878.14

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5

argument of perigee (degrees)

100.0

right ascension of the ascending node (degrees)

220.0

initial guess for true anomaly (degrees)

180.0

Orbital Mechanics with MATLAB

page 3

The software allows the user to specify lower and upper bounds for the optimal true anomaly of the

maneuver. The algorithm enforces an inequality constraint on the true anomaly according to

 L U   

where and L U  are the user-defined lower and upper bounds, respectively.

The numerical values of these bounds are defined in the next two data items.

lower bound for true anomaly (degrees)

170.0

upper bound for true anomaly (degrees)

190.0

The final two items in the simulation file define the geodetic altitude and relative flight path angle

targets at the entry interface.

entry interface mission constraints

geodetic altitude (kilometers)

121.92

relative flight path angle (degrees)

-2.0

Script examples

The following is the deorbit_snopt numerical solution for this example.

**

single impulse deorbit from Earth orbits

**

time and conditions prior to deorbit maneuver

calendar date 18-Mar-2010

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.87814000000000e+03 +0.00000000000000e+00 +2.85000000000000e+01 +1.00000000000000e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20000000000000e+02 +1.90000000000000e+02 +2.90000000000000e+02 +9.46163624134673e+01

 rx (km) ry (km) rz (km) rmag (km)

 -5.45318321844679e+03 +2.83906883966968e+03 -3.08403806222734e+03 +6.87814000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -4.00911535387506e+00 -6.35100857948859e+00 +1.24236145363939e+00 +7.61260651018449e+00

deorbit delta-v vector and magnitude

x-component of delta-v 80.301516 meters/second

y-component of delta-v 117.688815 meters/second

z-component of delta-v -21.001409 meters/second

total delta-v 144.014061 meters/second

Orbital Mechanics with MATLAB

page 4

deorbit delta-v pointing angles

pitch angle -2.256618 degrees

yaw angle -179.973071 degrees

time and conditions after deorbit maneuver

--

calendar date 18-Mar-2010

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.62986196765162e+03 +3.74561317348360e-02 +2.84998225494152e+01 +1.08881122818562e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20001021787282e+02 +1.81117979216534e+02 +2.89999102035096e+02 +8.95398701301721e+01

 rx (km) ry (km) rz (km) rmag (km)

 -5.45318321844679e+03 +2.83906883966968e+03 -3.08403806222734e+03 +6.87814000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -3.92881383778096e+00 -6.23331976439964e+00 +1.22136004444855e+00 +7.46870630131950e+00

time and conditions at entry interface

calendar date 18-Mar-2010

UTC time 13:00:49.638

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.63194303419306e+03 +3.87915541331080e-02 +2.85109989908368e+01 +1.07810489094078e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.19909866252810e+02 +2.99617139359573e+02 +4.74276284536510e+01 +8.95820323314157e+01

 rx (km) ry (km) rz (km) rmag (km)

 -5.45318321844679e+03 +2.83906883966968e+03 -3.08403806222734e+03 +6.87814000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +7.50958358577267e+00 +3.73745768234497e-01 +2.46143688225353e+00 +7.91152343460458e+00

relative flight path coordinates at entry interface

east longitude 252.44489639 degrees

geocentric declination 20.58001385 degrees

flight path angle -2.00000000 degrees

relative azimuth 68.65207490 degrees

position magnitude 6497.40258326 kilometers

velocity magnitude 7.49698673 kilometers/second

geodetic coordinates at entry interface

geodetic latitude 20.70458617 degrees

geodetic altitude 121.92000000 kilometers

flight time from maneuver to EI 30.06271094 minutes

The following is a brief description of the information provided in the script output.

Orbital Mechanics with MATLAB

page 5

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum

of true anomaly and argument of perigee.

period (mins) = orbital period in minutes

rx (km) = x-component of the position vector in kilometers

ry (km) = y-component of the position vector in kilometers

rz (km) = z-component of the position vector in kilometers

rmag (km) = scalar magnitude of the position vector in kilometers

vx (kps) = x-component of the velocity vector in kilometers per second

vy (kps) = y-component of the velocity vector in kilometers per second

vz (ksp) = z-component of the velocity vector in kilometers per second

vmag (kps) = scalar magnitude of the velocity vector in kilometers per second

The components of the de-orbit delta-v vector are displayed in the ECI coordinate system. The relative

flight path coordinates are with respect to a rotating Earth. The UTC time is given in hours, minutes

and seconds.

The deorbit_snopt script will also create a three-dimensional graphics display of the initial orbit

and re-entry trajectory. The following is the graphic image for this example. The initial orbit trace is

red and the re-entry trajectory is blue. The dimensions are Earth radii (ER) and the plot is labeled with

an Earth-centered-inertial (ECI) coordinate system where green is the x-axis, red is the y-axis and blue

is the z-axis. The impulse location is marked with a blue asterisk and entry interface is marked with a

small blue circle.

Trajectory image files are saved to disk in both tif format and MATLAB fig format with a file name

indicating the solution number. The disk file names are deorbit_snopt.tif and

deorbit_snopt.fig. The interactive features of MATLAB graphics allow the user to manipulate

the fig version of the trajectory display. These capabilities allow the user to interactively find the best

viewpoint as well as verify basic three-dimensional geometry of the orbital maneuver and entry.

Orbital Mechanics with MATLAB

page 6

The following is the output created by this MATLAB script for the optimal de-orbit from a typical

highly elliptical orbit (HEO).

**

single impulse deorbit from Earth orbits

**

time and conditions prior to deorbit maneuver

calendar date 18-Mar-2010

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.44140000000000e+04 +7.27044000000000e-01 +2.85000000000000e+01 +2.70000000000000e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20000000000000e+02 +1.80010875055299e+02 +9.00108750552986e+01 +6.32729583646570e+02

 rx (km) ry (km) rz (km) rmag (km)

 +2.38242965164960e+04 -2.83802405542600e+04 +2.01189455552070e+04 +4.21640501929899e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.22991535564376e+00 +1.03330298046443e+00 -5.32994999257885e-04 +1.60636456496297e+00

deorbit delta-v vector and magnitude

x-component of delta-v -16.099990 meters/second

y-component of delta-v -13.510509 meters/second

z-component of delta-v 0.004894 meters/second

total delta-v 21.017696 meters/second

deorbit delta-v pointing angles

pitch angle -0.002649 degrees

yaw angle 179.989285 degrees

time and conditions after deorbit maneuver

--

calendar date 18-Mar-2010

Orbital Mechanics with MATLAB

page 7

UTC time 12:30:45.875

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43140994191278e+04 +7.34139993195612e-01 +2.84999999733610e+01 +2.69999971672997e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.20000297715537e+02 +1.80010641744793e+02 +9.00106134177898e+01 +6.28849923664669e+02

 rx (km) ry (km) rz (km) rmag (km)

 +2.38242965164960e+04 -2.83802405542600e+04 +2.01189455552070e+04 +4.21640501929899e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.21381536549559e+00 +1.01979247133070e+00 -5.28100846447572e-04 +1.58534687213445e+00

time and conditions at entry interface

calendar date 18-Mar-2010

UTC time 17:43:27.044

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43457651117266e+04 +7.34618508714193e-01 +2.84881736895298e+01 +2.70116511603440e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.19931376435734e+02 +3.50932531329709e+02 +2.61049042933149e+02 +6.30078806344008e+02

 rx (km) ry (km) rz (km) rmag (km)

 +2.38242965164960e+04 -2.83802405542600e+04 +2.01189455552070e+04 +4.21640501929899e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -8.39531350465642e+00 -5.97405295708906e+00 -4.38335404240751e-01 +1.03132310893426e+01

relative flight path coordinates at entry interface

east longitude 37.72990551 degrees

geocentric declination -28.11018407 degrees

flight path angle -4.00000004 degrees

relative azimuth 95.03036771 degrees

position magnitude 6495.29077143 kilometers

velocity magnitude 9.89797352 kilometers/second

geodetic coordinates at entry interface

geodetic latitude -28.26740378 degrees

geodetic altitude 121.92000146 kilometers

flight time from maneuver to EI 312.68615417 minutes

Here’s the trajectory graphics display for this example.

Orbital Mechanics with MATLAB

page 8

Technical discussion

This section is a brief explanantion of the algorithms implemented in this MATLAB script.

Nonlinear programming problem

A trajectory optimization problem can be described by a system of dynamic variables

()

()

t

t

 
=  
 

y
z

u

consisting of the state variables y and the control variables u for any time t. In this discussion

vectors are denoted in bold.

The system dynamics are defined by a vector system of ordinary differential equations called the state

equations that can be represented as follows

 () (), , ,
d

t t t
dt

= =   
y

y f y u p

where p is a vector of problem parameters that is not time dependent.

The initial dynamic variables at time 0t are defined by () ()0 0 0 0, ,t t t   ψ ψ y u and the terminal

conditions at the final time ft are defined by () (), ,f f f ft t t   ψ ψ y u . These conditions are called

the boundary values of the trajectory problem. The problem may also be subject to path constraints of

the form () (), , 0t t t =  g y u .

Orbital Mechanics with MATLAB

page 9

The basic nonlinear programming problem (NLP) is to determine the control vector history and

problem parameters that minimize the scalar performance index or objective function given by

 () ()0 0, , , ,f fJ t t t t  =  y y p

while satisfying all the user-defined mission constraints.

In this classic maneuver optimization problem, the maneuver true anomaly, the ECI components of the

maneuver delta-v vector and the flight time from the maneuver to the entry interface are the control

variables. The scalar magnitude of the de-orbit V is the objective function, and the geodetic altitude

and relative flight path angle at the entry interface are the nonlinear equality constraints.

Initial guess

An initial guess for the scalar magnitude of the de-orbit delta-v and time-of-flight from the maneuver

location to the entry interface is determined using analytic solutions for these values relative to a non-

rotating, spherical Earth model and two-body or Keplerian motion. The analytic solution for circular

orbits in discussed in Appendix B and Appendix C contains the equations for elliptical orbits. Please

note the elliptical orbit analytic solution assumes the de-orbit maneuver occurs at apogee (true anomaly

= 180). This is the typical true anomaly initial guess for de-orbit from elliptical orbits.

The initial guess for the de-orbit delta-v vector is aligned opposite (retrograde) to the unit velocity

vector on the initial Earth orbit at the maneuver location. This creates an impulsive velocity increment

in the Earth-centered-inertial (ECI) Cartesian coordinate system.

Spacecraft equations of motion

During the solution process, the deorbit_snopt script numerically propagates the spacecraft

trajectory from the maneuver time to the current estimate of the time at the entry interface. The system

of six first-order differential equations subject to Earth gravity, defined in the ECI coordinate system
(, ,)x y z , is given by the following expressions

 1 4 2 5 2 6x y zy v y y v y y v y= = = = = =

2 2 22 2 2

2 2 2

4 5 63 2 2 3 2 2 3 2 2

5 5 53 3 3
1 1 1 1 1 3

2 2 2

eq y eq eqx z z z z
J r r J r J rr r r r r

y y y
r r r r r r r r r

  
               

= − + − = − + − = − + −          
               

where 2 2 2 2 2 2

1 2 3x y zr r r r y y y= + + = + + . In these equations  and eqr are the gravitational constant

and equatorial radius of the Earth, and 2J is the first order oblateness gravity coefficient.

At the entry interface, the algorithm computes the errors in the target constraints according to

h p t

p t

h h





  

= −

= −

Orbital Mechanics with MATLAB

page 10

where h is the geodetic altitude and  is the flight path angle relative to a rotating Earth. In these

equations, the p subscript indicates the value predicted by the software, and the t subscript is the target

value provided by the user. During the solution process, the SNOPT algorithm attempts to drive these

two errors to zero.

The equations for calculating the relative flight path coordinates from an ECI position and velocity

vectors is summarized in Appendix D. The algorithm used to calculate geodetic coordinates can be

found in Appendix E and Appendix F discusses the coordinate system used to define the pitch and yaw

orientation angles of the maneuver.

SNOPT algorithm implementation

This section provides details about the MATLAB source code that solve this nonlinear programming

(NLP) problem using the SNOPT algorithm. MATLAB versions of SNOPT for several computer

platforms can be found at Professor Philip Gill’s University of California, San Diego web site which is

located at http://scicomp.ucsd.edu/~peg/. Professor Gill’s web site also includes a PDF version of the

SNOPT software user’s guide.

The SNOPT algorithm requires an initial guess for the control variables. For this problem they are

given by

xg(1) = oevpo(6);

xg(2) = dvg(1);

xg(3) = dvg(2);

xg(4) = dvg(3);

xg(5) = dtof;

where xg(1) is the user’s initial guess for the true anomaly on the initial orbit at the time of the

impulsive maneuver. xg(2), xg(2) and xg(3) are the initial guesses for the ECI components of the

de-orbit impulse, and dtof is the initial guess for the transfer time from the de-orbit maneuver to the

entry interface.

The algorithm also requires lower and upper bounds for the control variables. These are determined

from the initial guesses and user-defined true anomaly boundaries as follows:

% lower and upper bounds for deorbit true anomaly (radians)

xlwr(1) = ta_lower;

xupr(1) = ta_upper;

% lower and upper bounds for components of

% deorbit delta-v vector (kilometers/second)

dvm = norm(dvg);

xlwr(2:4) = -(dvm + 0.1 * dvm);

xupr(2:4) = +(dvm + 0.1 * dvm);

% lower and upper bounds for flight time

% from maneuver to entry interface (seconds)

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 11

xlwr(5) = dtof - 30.0;

xupr(5) = dtof + 30.0;

The algorithm also requires lower and upper bounds on the objective function. For this problem these

bounds are given by

% bounds on objective function

flow(1) = 0.0;

fupp(1) = +Inf;

The following MATLAB code sets the lower and upper bounds for the two equality constraints

(geodetic altitude and relative flight path angle) at the entry interface.

% geodetic altitude at entry interface equality constraint

flow(2) = 0.0;

fupp(2) = 0.0;

% relative flight path angle at entry interface equality constraint

flow(3) = 0.0;

fupp(3) = 0.0;

The actual call to the SNOPT MATLAB interface function is as follows

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, xmul, xstate, ...

flow, fupp, fmul, fstate, 'deorbit_shoot');

where deorbit_shoot is the name of the MATLAB function that integrates the spacecraft equations

of motion and computes the current value of the objective function and the equality constraints at the

entry interface. The solution for the control variables is returned in the x vector and f is the converged

value of the objective function. Please consult the SNOPT documentation for additional information

about the syntax of this function.

Orbital Mechanics with MATLAB

page 12

Algorithm Resources

“User’s Guide for SNOPT Version 7, A Fortran Package for Large-Scale Nonlinear Programming”,

Philip E. Gill, Walter Murray and Michael A. Saunders, March 20, 2006.

“Optimum Deboost Altitude for Specified Atmospheric Entry Angle”, Jerome M. Baker, Bruce E.

Baxter, and Paul D. Arthur, AIAA Journal, Vol. 1, No. 7, July 1963.

“Deboost from Circular Orbits”, A. H. Milstead, The Journal of the Astronautical Sciences, Vol. XIII,

No. 4, pp. 170-171, Jul-Aug., 1966.

Hypersonic and Planetary Entry Flight Mechanics, Vinh, Busemann and Culp, The University of

Michigan Press, 1980.

“On Autonomous Optimal Deorbit Guidance”, Morgan C. Baldwin, Binfeng Pan and Ping Lu, AIAA

2009-5667, AIAA Guidance, Navigation, and Control Conference, August 10-13, 2009.

“Autonomous Optimal Deorbit Targeting”, Donald J. Jezewski, AAS 91-136, AAS/AIAA Spaceflight

Mechanics Meeting, February 11-13, 1991.

“Analysis of the Accuracy of Ballistic Descent from a Circular Circumterrestrial Orbit”, Yu. G.

Sikharulidze and A. N. Korchagin, Cosmic Research, Vol. 40, No. 1, 2002, pp.75-87.

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA

Education Series, 1987.

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002.

Orbital Mechanics with MATLAB

page 13

APPENDIX A

Optimization Toolbox Implementation

There is a version of this MATLAB script named deorbit_otb that uses the Mathworks

Optimization Toolbox to solve this orbital mechanics problem. This appendix describes the source

code implementation using the fmincon/interior-point algorithm. Unlike SNOPT, this version

requires the mission constraints and objective algorithms reside in two different MATLAB functions.

The following MATLAB source code solves the deorbit trajectory optimization problem.

% load initial guesses for control variables

xg(1) = oevpo(6);

xg(2) = dvg(1);

xg(3) = dvg(2);

xg(4) = dvg(3);

xg(5) = dtof;

% lower and upper bounds for deorbit true anomaly (radians)

xlwr(1) = ta_lower;

xupr(1) = ta_upper;

% lower and upper bounds for components of

% deorbit delta-v vector (kilometers/second)

dvm = norm(dvg);

xlwr(2:4) = -(dvm + 0.1 * dvm);

xupr(2:4) = +(dvm + 0.1 * dvm);

% lower and upper bounds for flight time

% from maneuver to entry interface (seconds)

xlwr(5) = dtof - 30.0;

xupr(5) = dtof + 30.0;

% solve trajectory optimization problem

options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point', ...

 'MaxFunctionEvaluations', 5000, 'FiniteDifferenceType', 'forward');

% optimize with user-defined mission constraints

[x, fval] = fmincon('deorbit_objective', xg, [], [], [], [], xlwr, xupr,

'deorbit_constraints', options);

The MATLAB function that evaluates the objective function is named deorbit_objective and

deorbit_constraints calculates the current mission constraints.

Feel free to experiment with other fmincon non-linear programming algorithms such as sqp, etc.

Orbital Mechanics with MATLAB

page 14

APPENDIX B

De-orbit from a Circular Earth Orbit

The scalar magnitude of the single impulsive maneuver required to de-orbit a spacecraft from an initial

circular orbit can be determined from the following expression

() ()

2 2

2 1 2 11
1 1

1 1
cos cos

e ic c

e e

r r
V V V

r r r

 

   
   

− −   
 = − = −   

      
− −      

      

where

()

()

radius ratio

 local circular velocity at entry interface

 local circular velocity of initial circular orbit

 flight path angle at entry interface

e

i

i eq i

e eq e

c

ee eq

c

ii eq

e

i

h r r
r

h r r

V
rh r

V
rh r

h

 

 



+
= = =

+

= = =
+

= = =
+

=

 altitude of initial circular orbit

 altitude at entry interface

 radius of initial circular orbit

 radius at entry interface

 Earth equatorial radius

 Earth gravitational constant

e

i

e

eq

h

r

r

r



=

=

=

=

=

=

This algorithm is described in the technical article, “Deboost from Circular Orbits”, A. H. Milstead,

The Journal of the Astronautical Sciences, Vol. XIII, No. 4, pp. 170-171, Jul-Aug., 1966. Additional

information can be found in Chapter 5 of Hypersonic and Planetary Entry Flight Mechanics by Vinh,

Busemann and Culp, The University of Michigan Press.

The true anomaly on the de-orbit trajectory at the entry interface e can be determined from the

following two equations

() ()2 21 1 1

sin cos
d d d d

e e

d d e d

a e a er

e e r e
 



− −
= = −

Orbital Mechanics with MATLAB

page 15

and the following four quadrant inverse tangent operation

 ()1tan sin ,cose e e  −=

where

()2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r



=

=

 − − −
 

= −

The elapsed time-of-flight between perigee of the de-orbit trajectory and the entry true anomaly e is

given by

 ()
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
t

e e

 


 

−
   −− 

= −  
+ +    

In this equation  is the Keplerian orbital period of the de-orbit trajectory and is equal to 32 da  .

Therefore, the flight time between the de-orbit impulse and entry interface is given by

 () () ()180
2

e et t t t


  = − = −

Finally, the orbital speed at the entry interface eV can be determined from

2

e

e d

V
r a

 
= −

Orbital Mechanics with MATLAB

page 16

APPENDIX C

De-orbit from an Elliptical Earth Orbit

The scalar magnitude of the impulsive delta-v for de-orbit from an initial elliptical orbit is given by

()

()

()2 2

2 2 1
cos

cos

p a

e

e a a p a a e

r r
V

r r r r r r






 −
  = −
 + −
 

where

 geocentric radius at the entry altitude

 flight path angle at entry

 apogee radius of the initial elliptical orbit

 perigee radius of the initial elliptical orbit

 gravitati

e

a a e

p p e

e

a

p

r

r r r

r r r

r

r





=

=

=

=

=

=

= onal constant of the Earth

The true anomaly at entry can be determined from the following series of equations.

() ()

()
2 2

1
1 1 1

sin cos tan sin ,cos
d d d d

e e e e e

d d e d

a e a er

e e r e
    



−
− −

= = − =

where

()2 2 2

2

 eccentricity of the de-orbit trajectory

 semimajor axis of the de-orbit trajectory

2 1

d

d

d e e d d

d e

e

a

a r r a e
r

a r



=

=

 − − −
 

= −

The time-of-flight between perigee and the entry true anomaly e is given by

 ()
2

1 1 sin1
2 tan tan

2 1 2 1 cos

d d ed e
e

d d e

e ee
tof

e e

 


 

−
   −− 

= −  
+ +    

In this equation,  is the orbital period of the de-orbit trajectory.

Therefore, the flight time between the de-orbit impulse time and entry is given by

 () () ()180
2

e et tof tof tof


  = − = −

Orbital Mechanics with MATLAB

page 17

Finally, the speed at reentry eV can be determined from

2

e

e d

V
r a

 
= −

Orbital Mechanics with MATLAB

page 18

APPENDIX D

Flight Path Coordinates

Relative flight path coordinates are defined with respect to a rotating Earth. This set of coordinates

consists of the following trajectory elements

()

()

 geocentric radius

 speed

 flight path angle

 geocentric declination

 geographic longitude east

 flight azimuth clockwise from north

r

V









=

=

=

=

= +

= +

Please note the sign and direction convention.

The following are several useful equations that summarize the relationships between inertial and

relative flight path coordinates.

sin sin

cos cos cos cos

cos sin cos cos sin

r r i i

r r r i i i

r r r e i i i

v v

v v

v r v

 

   

     

=

=

+ =

where the r subscript denotes relative coordinates and the i subscript inertial coordinates.

The inertial speed can also be computed from the following expression

2 2 2 22 cos sin cos cosiv v v r r     = + +

The inertial flight path angle can be computed from

2 2 2 2 2

2 2 2 2

cos 2 cos cos cos cos
cos

2 cos cos cos cos
i

v vr r

v vr r

      


     

+ +
=

+ +

The inertial azimuth can be computed from

2 2 2 2 2

cos cos cos
cos

cos 2 cos cos cos cos
i

v r

v vr r

   


      

+
=

+ +

where all coordinates on the right-hand-side of these equations are relative to a rotating Earth.

The transformation of an Earth-centered inertial (ECI) position vector ECIr to an Earth-centered fixed

(ECF) position vector ECFr is given by the following vector-matrix operation

  ECF ECI=r T r

Orbital Mechanics with MATLAB

page 19

where the elements of the transformation matrix  T are given by

  

cos sin 0

sin cos 0

0 0 1

 

 

 
 = −
 
  

T

and  is the Greenwich apparent sidereal time at the moment of interest. Greenwich sidereal time is

given by the following expression:

 0g et  = +

where 0g is the Greenwich sidereal time at 0 hours UTC, e is the inertial rotation rate of the Earth,

and t is the elapsed time since 0 hours UTC.

Finally, the flight path coordinates are determined from the following set of equations

 ()

2 2 2 2 2 2

1 1

1 1

tan , sin

sin tan ,

y y z

z

y x

z

y x

ECF ECF ECF ECF ECF ECF

ECF

ECF ECF

ECF

R

R R

R

r r r r v v v v

r
r r

v
v v

 

 

− −

− −

= + + = + +

 
= =   

 

 
 = − =    

 

r

v

where

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

R ECF

    

 

    

− − 
 

= −
 
 − − − 

v v

Please note the two-argument inverse tangent calculation for  and  is a four-quadrant operation.

Orbital Mechanics with MATLAB

page 20

APPENDIX E

Geodetic Coordinates

The following diagram illustrates the geometric relationship between geocentric and geodetic

coordinates.

In this diagram,  is the geocentric declination,  is the geodetic latitude, r is the geocentric distance,

and h is the geodetic altitude. The exact mathematical relationship between geocentric and geodetic

coordinates is given by the following system of two nonlinear equations

()

()

cos cos 0

sin sin 0

c h r

s h r

 

 

+ − =

+ − =

where the geodetic constants c and s are given by

()
()

2

2 2
1

1 2 sin

eqr
c s c f

f f 
= = −

− −

and eqr is the Earth equatorial radius (6378.14 kilometers) and f is the flattening factor for the Earth

(1/298.257).

In this MATLAB script, the geodetic latitude is determined using the following expression

 2

2

sin 2 1 1
sin 4

4
f f


  

  

    
= + + −    

    

which is a series expansion in flattening factor (NASA TN D-7522).

Orbital Mechanics with MATLAB

page 21

The geodetic altitude is calculated from

 () () 21 cos2 1 1ˆ ˆ 1 1 cos4
2 4 16

h r f f





   −  
= − + + − −     

      

In these equations,  is the geocentric distance of the satellite, ˆ / eqh h r= and ˆ / eqr r= .

Orbital Mechanics with MATLAB

page 22

APPENDIX F

Pitch and Yaw Angles

The pitch and yaw angles for the de-orbit impulsive maneuver are computed and displayed in the local-

vertical-local horizontal (LVLH; also called the radial-tangential-normal RTN) coordinate system.

The following diagram illustrates the geometry of the pitch and yaw angles in this system. In this

figure, the radial direction is along the geocentric radius vector directed away from the Earth, the

tangential direction is tangent to the orbit in the direction of the orbital motion, and the normal

direction is along the angular momentum vector of the orbit.

The pitch angle is positive above the local horizontal plane formed by the tangential and normal

directions, and the yaw angle is positive in the direction of the angular momentum vector which is

perpendicular to the orbit plane. The pitch angle varies between 90 degrees and the yaw angle can

have a value between 180 degrees.

The following is the MATLAB source code for the function that computes the orientation angles using

the Earth-centered-inertial (ECI) position and velocity vectors (reci, veci) at the impulse location

and the unit pointing vector of the impulsive delta-v (ueci).

function [pitch, yaw] = ueci2angles(reci, veci, ueci)

% convect eci unit vector to rtn angles

% input

% reci = eci position vector (kilometers)

% veci = eci velocity vector (kilometers/second)

% ueci = eci unit vector

% output

Tu

Ru

Nu





 pitch

= yaw





=

Orbital Mechanics with MATLAB

page 23

% pitch = pitch angle (radians)

% positive above the local horizon

% yaw = yaw angle (radians)

% positive in the direction of the angular momentum vector

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute radial frame unit vectors

rmag = norm(reci);

xrdl = reci / rmag;

zrdl = cross(reci, veci);

hmag = norm(zrdl);

zrdl = zrdl / hmag;

yrdl = cross(zrdl, xrdl);

% unit vector in radial-tangential-normal frame

umee(1) = dot(ueci, xrdl);

umee(2) = dot(ueci, yrdl);

umee(3) = dot(ueci, zrdl);

% pitch angle (radians)

pitch = asin(umee(1));

% yaw angle (radians)

yaw = atan2(umee(3), umee(2));

Orbital Mechanics with MATLAB

page 1

The Hohmann Orbit Transfer

The coplanar circular orbit-to-circular orbit transfer was discovered by the German engineer Walter

Hohmann in 1925 and described in his classic report, The Attainability of Celestial Bodies. The transfer

consists of a velocity impulse on an initial circular orbit, in the direction of motion and collinear with the

velocity vector, which propels the space vehicle into an elliptical transfer orbit. At a transfer angle of

180 degrees from the first impulse, a second velocity impulse or V , also collinear and in the direction

of motion, places the vehicle into a final circular orbit at the desired final altitude. The impulsive V

assumption means that the velocity, but not the position, of the vehicle is changed instantaneously. This

is equivalent to a rocket engine with infinite thrust magnitude. The Hohmann formulation is the ideal

and minimum energy solution to this type of time-free orbit transfer problem.

Coplanar Equations

For the coplanar Hohmann transfer both velocity impulses are confined to the orbital planes of the initial

and final orbits. For a Hohmann transfer from a lower altitude orbit to a higher altitude circular orbit,

the first impulse creates an elliptical transfer orbit with a perigee altitude equal to the altitude of the

initial circular orbit and an apogee altitude equal to the altitude of the final orbit. The second impulse

circularizes the transfer orbit at apogee. Both impulses are posigrade which means that they are in the

direction of orbital motion.

We begin by defining three normalized radii as follows:

 1 2 32 2
f i i

i f f i f

r r r
R R R

r r r r r
  

 

where ri is the geocentric radius of the initial circular park orbit and rf is the radius of the final circular

mission orbit. The relationship between radius and initial orbit altitude hi and the final orbit altitude h f

is as follows:

i e i

f e f

r r h

r r h

 

 

where re is the radius of the Earth.

The magnitude of the first impulse is

 2

1 1 11 2lcV V R R   

and is simply the difference between the speed on the initial orbit and the perigee speed of the transfer

orbit. The scalar magnitude of the second impulse is

 2 2 2 2

2 2 2 3 2 32lcV V R R R R R   

which is the difference between the speed on the final orbit and the apogee speed of the transfer ellipse.

Orbital Mechanics with MATLAB

page 2

In each of these V equations Vlc is called the local circular velocity. It can be determined from

lc

i

V
r




and represents the scalar speed in the initial orbit. In these equations  is the gravitational constant of

the central body. The transfer time from the first impulse to the second is equal to one half the orbital

period of the transfer ellipse

3a

 




where a is the semimajor axis of the transfer orbit and is equal to   / 2i fr r . The orbital eccentricity of

the transfer ellipse is

   max , min ,i f i f

f i

r r r r
e

r r






The following diagram illustrates the geometry of the coplanar Hohmann transfer.

initial orbit

transfer orbit

final orbit

V1

V2

ri

r
f

Non-coplanar Equations

The non-coplanar Hohmann transfer involves orbital transfer between two circular orbits which have

different orbital inclinations. For this problem the propulsive energy is minimized if we optimally

partition the total orbital inclination change between the first and second impulses.

Orbital Mechanics with MATLAB

page 3

The scalar magnitude of the first impulse is

 2

1 1 1 11 2 coslcV V R R    

where 1 is the plane change associated with the first impulse. The magnitude of the second impulse is

 2 2 2 2

2 2 2 3 2 3 22 coslcV V R R R R R    

where  2 is the plane change associated with the second impulse. These two equations are different

forms of the law of cosines.

The total V required for the maneuver is the sum of the two impulses as follows

 1 2V V V   

The relationship between the plane change angles is

 1 2t   

where  t is the total plane change angle between the initial and final orbits.

Optimizing the non-coplanar Hohmann transfer involves allocating the total plane change angle between

the two maneuvers such that the total V required for the mission is minimized. We can determine this

answer by solving for the root of a derivative.

The partial derivative of the total V with respect to the first plane change angle is given by:

 

 

2

2 3 1 11 1

2 2 2 2 2
1 1 1 1 2 2 3 2 3 1

sin cos cos sinsin

1 2 cos 2 cos

t t

t

R RV R

R R R R R R R

   

   


 

     

If we determine the value of 1 which makes this derivative zero, we have found the optimum plane

change required at the first impulse. Once 1 is calculated we can determine  2 from the total plane

change angle relationship and the velocity impulses from the previous equations.

Numerical Solution

This numerical algorithm has been implemented in an interactive MATLAB script called hohmann.m.

This script prompts the user for the initial and final altitudes in kilometers and the initial and final orbital

inclinations in degrees. The software then calls the Brent root-finding algorithm to solve the partial

derivative equation described above.

The call to the Brent root-finding algorithm is as follows:

[xroot, froot] = brent('hohmfunc', 0, dinc, rtol);

Orbital Mechanics with MATLAB

page 4

where hohmfunc is the objective function for this problem. Since we know that the optimum first plane

change angle is somewhere between 0 and the total plane change angle dinc, we pass these as the

bounds of the root. In the parameter list rtol is the user-defined root-finding convergence tolerance.

The following is a typical orbit transfer from a low altitude Earth orbit (LEO) at an altitude of 185.2

kilometers and an orbital inclination of 28.5 degrees to a geosynchronous Earth orbit (GSO) at an

altitude of 35786.36 kilometers and 0 degrees inclination.

The following is a V diagram for the first maneuver of this orbit transfer example. In this view we are

looking along the line of nodes which is the mutual intersection of the park and transfer orbit planes with

the equatorial plane.

equator

V

Vi Vp

26.3o

28.5o

In this diagram Vi is the speed on the initial park orbit, Vp is the perigee speed of the elliptic transfer

orbit, and V is the impulse required for the first maneuver. The inclinations of the park and transfer

orbit are also labeled. From this geometry and the law of cosines, the required V is given by

 2 2 2 cosi p i pV V V V V i    

where i is the inclination difference or plane change between the park and transfer orbits.

User interaction with the script

The following is a typical user interaction with this MATLAB script. User inputs are in bold font.

Hohmann Orbit Transfer Analysis

please input the initial altitude kilometers

? 300

please input the final altitude kilometers

? 35786.2

please input the initial orbital inclination degrees

(0 <= inclination <= 180)

? 28.5

please input the final orbital inclination degrees

(0 <= inclination <= 180)

? 0

Orbital Mechanics with MATLAB

page 5

The following is the script solution for this example.

Hohmann Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers

initial orbit radius 6678.1363 kilometers

initial orbit inclination 28.5000 degrees

initial orbit velocity 7725.7606 meters/second

final orbit altitude 35786.2000 kilometers

final orbit radius 42164.3363 kilometers

final orbit inclination 0.0000 degrees

final orbit velocity 3074.6540 meters/second

first inclination change 2.2002 degrees

second inclination change 26.2998 degrees

total inclination change 28.5000 degrees

first delta-v 2449.4551 meters/second

second delta-v 1781.8532 meters/second

total delta-v 4231.3083 meters/second

transfer orbit semimajor axis 24421.2363 kilometers

transfer orbit eccentricity 0.72654389

transfer orbit inclination 26.2998 degrees

transfer orbit perigee velocity 10151.4962 meters/second

transfer orbit apogee velocity 1607.8298 meters/second

transfer orbit coast time 18990.3276 seconds

 316.5055 minutes

 5.2751 hours

This MATLAB script is valid for Hohmann transfers from a high initial circular orbit to a lower final

orbit. It also handles the case of transfer to a mission orbit with higher orbital inclination.

Orbital Mechanics with MATLAB

page 6

The hohmann script will also create a graphics display of the initial, transfer and final orbits. The

following is the graphics display for this example. The initial orbit trace is red, the transfer orbit is blue

and the final mission orbit is green. The dimensions are Earth radii (ER) and the plot is labeled with an

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. The location of

each impulse is marked with a small blue circle.

The interactive graphic features of MATLAB allow the user to rotate and zoom the display. These

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer.

The hohmann MATLAB script will also create color a Postscript disk file of this graphic image. This

image includes a TIFF preview and is created with MATLAB code similar to

print -depsc -tiff -r300 hohmann1.eps

Primer Vector Analysis

This section summarizes the primer vector analysis included with this MATLAB script. The term

primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity. A

technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for

Space Navigation, Butterworths, London, 1963. Another excellent resource is “Primer Vector Theory

and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-

burn, Space Trajectories”, also by Jezewski.

As shown by Lawden, the following four necessary conditions must be satisfied in order for an

impulsive orbital transfer to be locally optimal:

(1) the primer vector and its first derivative are everywhere continuous

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and

has unit magnitude  ˆ ˆ and 1T  p p u p

Orbital Mechanics with MATLAB

page 7

(3) the magnitude of the primer vector may not exceed unity on a coasting arc  1p p

(4) at all interior impulses (not at the initial or final times) 0p p ; therefore, 0d dt p at the

intermediate impulses

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses

provide information about how to improve the nominal transfer trajectory by changing the endpoint

times and/or moving the impulse times. These four cases for non-zero slopes are summarized as

follows;

 If 0 0p  and 0fp   perform an initial coast before the first impulse and add a final coast

after the second impulse

 If 0 0p  and 0fp   perform an initial coast before the first impulse and move the second

impulse to a later time

 If 0 0p  and 0fp   perform the first impulse at an earlier time and add a final coast after the

second impulse

 If 0 0p  and 0fp   perform the first impulse at an earlier time and move the second

impulse to a later time

The primer vector analysis of a two impulse orbital transfer involves the following steps.

First partition the two-body state transition matrix as follows:

   0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
                
   

r r

r v

v v

r v

where

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
               

       

r

r

and so forth.

The value of the primer vector at any time t along a two body trajectory is given by

      11 0 0 12 0 0, ,t t t t t p p p

and the value of the primer vector derivative is

      21 0 0 22 0 0, ,t t t t t p p p

Orbital Mechanics with MATLAB

page 8

which can also be expressed as

   0

0

0

,t t
  

    
   

pp

pp

The primer vector boundary conditions at the initial and final impulses are as follows:

    0
0 0

0

f

f f

f

t t


   
 

VV
p p p p

V V

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit

vector in the direction of the corresponding impulse.

The value of the primer vector derivative at the initial time is

       1

0 0 12 0 11 0 0, ,f f ft t t t t  p p p p

provided the 12 sub-matrix is non-singular.

The scalar magnitude of the derivative of the primer vector can be determined from

  
2d d

dt dt
 

p p p
p p

p

The following two graphic images illustrate the behavior of the magnitudes of the primer vector and its

derivative for the example given earlier. The location of each impulse is marked with a small red circle.

Orbital Mechanics with MATLAB

page 9

From the properties of the primer vector and its derivative, we can see that this orbit transfer is optimal.

The hohmann MATLAB script will also create color a Postscript disk file of these graphic images. This

image includes a TIFF preview and is created with MATLAB source code similar to

print -depsc -tiff -r300 primer.eps

Algorithm resources

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925. Also, The

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960.

(2) Jean-Pierre Marec, Optimal Space Trajectories, Elsevier, 1979.

(3) R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, 1972.

(4) R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, 1987.

(5) D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.

(6) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal

of Guidance, Control and Dynamics, Vol. 15, No. 4.

(7) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004.

Orbital Mechanics with MATLAB

page 1

The Gravity Perturbed Hohmann Transfer

This document is the user’s manual for a MATLAB script named phohmann which can be used to solve

the gravity perturbed Hohmann transfer between coplanar and non-coplanar circular Earth orbits. The

algorithm starts with a two-body Hohmann transfer initial guess and then uses the SNOPT nonlinear

programming (NLP) method to determine the optimum two impulse orbit transfer subject to non-

spherical Earth gravity perturbations. Appendix A summarizes the governing equations for the two-

body Hohmann transfer. It also includes information about the MATLAB implementation used to solve

this classic astrodynamics problem. This script is valid for “exterior” Hohmann transfers from a lower

altitude circular orbit to a higher altitude circular orbit.

The phohmann script uses modified equinoctial orbital elements to solve the gravity perturbed orbit

transfer “targeting” problem. Additional information about these orbital elements can be found in

Appendix B. That appendix also explains how to use components and combinations of these non-

singular elements to calculate a variety of final orbital element targets or boundary conditions.

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s

web site which is located at http://scicomp.ucsd.edu/~peg/. Professor Gill’s web site also includes a

PDF version of the SNOPT software user’s guide. A brief introduction to nonlinear programming can

be found in Appendix C.

User interaction with the script

The phohmann MATLAB script will interactively prompt the user for the name of the simulation

definition input data file. This prompt is similar to the following;

The file type defaults to names with a *.in filename extension. However, you can select any

phohmann compatible ASCII data file by selecting the Files of type: field or by typing the name of the

file directly in the File name: field.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 2

Input file format and contents

The phohmann software is “data-driven” by a user-created text file. This text file should be simple

ASCII format with no special characters.

The following is a typical input file used by this MATLAB script. In the following discussion the actual

input file contents are in courier font and all explanations are in times italic font. This example is a

Hohmann transfer from a low Earth orbit (LEO) to a geosynchronous orbit (GSO). In this data file, user

provided inputs are in bold font.

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

The first five lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with five and only five initial text lines.

**

* input data file for phohmann MATLAB script

* impulsive LEO-to-GSO orbital transfer

* filename ==> leo2gso.in

**

The first inputs to the program define the initial UTC calendar date and time for the simulation. The

data for the calendar year should include all four digits. The calendar date and time are required in

order to correctly calculate the tesseral or longitude-dependent components of the Earth’s gravity.

initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

--

2, 25, 2013

initial UTC

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)

--

20, 18, 33.0

The next three inputs are the altitude, orbital inclination and right ascension of the ascending node

(RAAN) of the initial circular orbit.

initial orbit

altitude (kilometers; altitude > 0)

185.32

orbital inclination (degrees; 0 <= inclination <= 180)

--

28.5

right ascension of the ascending node (degrees; 0 <= raan <= 360)

100.0

Orbital Mechanics with MATLAB

page 3

The next two inputs are the altitude and orbital inclination of the final circular orbit.

final orbit

altitude (kilometers; altitude > 0)

35788.0955

orbital inclination (degrees; 0 <= inclination <= 180)

--

0.0

The Earth gravitational constant and radius are user-defined by the next two inputs.

**

astrodynamic constants and gravity model

**

central body gravitational constant (km^3/sec^2)

--

398600.4415

central body radius (kilometers)

6378.14

Finally, the name of the Earth gravity model to use in the simulation and the order and degree of this

model are set by the following three inputs.

name of Earth gravity model data file

egm96.dat

order of the gravity model (zonals)

4

degree of the gravity model (tesserals)

4

The following is the phohmann solution for this example. The first part of the display is the two-body

Hohmann transfer solution. The second section summarizes the SNOPT iterations and summary. The

final section is the perturbed Hohmann transfer solution found during the optimization.

two-body Hohmann transfer solution

initial orbit altitude 185.3200 kilometers

initial orbit inclination 28.5000 degrees

initial orbit velocity 7792.9603 meters/second

final orbit altitude 35788.0955 kilometers

final orbit inclination 0.0000 degrees

final orbit velocity 3074.5848 meters/second

first inclination change 2.1645 degrees

Orbital Mechanics with MATLAB

page 4

second inclination change 26.3355 degrees

total inclination change 28.5000 degrees

first delta-v 2481.9821 meters/second

second delta-v 1790.3423 meters/second

total delta-v 4272.3244 meters/second

transfer orbit semimajor axis 24364.8478 kilometers

transfer orbit eccentricity 0.73061765

transfer orbit perigee velocity 10251.8686 meters/second

transfer orbit apogee velocity 1595.7727 meters/second

transfer orbit coast time 18924.5926 seconds

 315.4099 minutes

 5.2568 hours

orbital elements and state vector of the initial orbit

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.56346000000000e+03 +0.00000000000000e+00 +2.85000000000000e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +0.00000000000000e+00 +0.00000000000000e+00 +8.81980522880484e+01

 rx (km) ry (km) rz (km) rmag (km)

 -1.13973286818979e+03 +6.46374629458551e+03 +0.00000000000000e+00 +6.56346000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -6.74454148515196e+00 -1.18924463633983e+00 +3.71847929670569e+00 +7.79296034444086e+00

orbital elements and state vector of the transfer orbit after the first impulse

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43648477500000e+04 +7.30617647713395e-01 +2.63354979218110e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +0.00000000000000e+00 +0.00000000000000e+00 +6.30819751739617e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.13973286818979e+03 +6.46374629458550e+03 +0.00000000000000e+00 +6.56346000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -9.04826108087521e+00 -1.59545255705264e+00 +4.54800087376082e+00 +1.02518685807620e+01

orbital elements and state vector of the transfer orbit prior to second impulse

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43648477500000e+04 +7.30617647713395e-01 +2.63354979218110e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +1.80000000000000e+02 +1.80000000000000e+02 +6.30819751739617e+02

 rx (km) ry (km) rz (km) rmag (km)

 +7.32208995364962e+03 -4.15256356357386e+04 +2.29083173533909e-12 +4.21662355000000e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.40842308946174e+00 +2.48342990924876e-01 -7.07927123702901e-01 +1.59577274464277e+00

Orbital Mechanics with MATLAB

page 5

orbital elements and state vector of the final orbit

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +4.21662355000000e+04 +0.00000000000000e+00 +0.00000000000000e+00 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +1.80000000000000e+02 +1.80000000000000e+02 +1.43617371924092e+03

 rx (km) ry (km) rz (km) rmag (km)

 +7.32208995364962e+03 -4.15256356357386e+04 +0.00000000000000e+00 +4.21662355000000e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +3.02787492676107e+00 +5.33896043798643e-01 -0.00000000000000e+00 +3.07458477809479e+00

initial delta-v vector, magnitude and steering angles

x-component of delta-v -2303.719596 meters/second

y-component of delta-v -406.207921 meters/second

z-component of delta-v 829.521577 meters/second

delta-v magnitude 2481.982050 meters/second

pitch angle -0.000000 degrees

yaw angle -8.975045 degrees

final delta-v vector, magnitude and steering angles

x-component of delta-v 1619.451837 meters/second

y-component of delta-v 285.553053 meters/second

z-component of delta-v 707.927124 meters/second

delta-v magnitude 1790.342317 meters/second

pitch angle -0.000000 degrees

yaw angle 49.627319 degrees

 Nonlinear constraints 5 Linear constraints 1

 Nonlinear variables 6 Linear variables 0

 Jacobian variables 6 Objective variables 6

 Total constraints 6 Total variables 6

 The user has defined 0 out of 36 first derivatives

 Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

 0 5 1 5.7E+01 8.9E-06 4.2723244E+00 2 r c

 Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

 0 6 1 5.7E+01 8.9E-06 4.2723244E+00 2 r c

 1 2 1.0E+00 2 2.9E-01 1.3E-06 4.2749551E+00 1.3E-07 n r c

 2 2 1.1E-01 3 2.6E-01 1.0E-06 4.2749548E+00 2 1.3E-07 s c

 3 1 1.0E+00 4 6.7E-04 (2.4E-07) 4.2749546E+00 2 1.3E-07 c

 4 1 1.0E+00 5 2.6E-05 (1.9E-10) 4.2749546E+00 2 1.3E-07 c

 5 1 1.0E+00 6 (2.5E-11)(9.7E-13) 4.2749546E+00 2 1.3E-07 c

 SNOPTA EXIT 0 -- finished successfully

 SNOPTA INFO 1 -- optimality conditions satisfied

 Problem name

 No. of iterations 13 Objective value 4.2749546090E+00

 No. of major iterations 5 Linear objective 0.0000000000E+00

 Penalty parameter 1.316E-07 Nonlinear objective 4.2749546090E+00

 No. of calls to funobj 98 No. of calls to funcon 98

 Calls with modes 1,2 (known g) 6 Calls with modes 1,2 (known g) 6

 Calls for forward differencing 6 Calls for forward differencing 6

 Calls for central differencing 72 Calls for central differencing 72

 No. of superbasics 2 No. of basic nonlinears 4

 No. of degenerate steps 0 Percentage .00

Orbital Mechanics with MATLAB

page 6

 Max x 1 2.3E+00 Max pi 5 2.5E+00

 Max Primal infeas 0 0.0E+00 Max Dual infeas 5 2.9E-10

 Nonlinear constraint violn 8.7E-11

gravity-perturbed Hohmann transfer solution

orbital elements and state vector of the initial orbit

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.56346000000000e+03 +0.00000000000000e+00 +2.85000000000000e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +0.00000000000000e+00 +0.00000000000000e+00 +8.81980522880484e+01

 rx (km) ry (km) rz (km) rmag (km)

 -1.13973286818979e+03 +6.46374629458551e+03 +0.00000000000000e+00 +6.56346000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -6.74454148515196e+00 -1.18924463633983e+00 +3.71847929670569e+00 +7.79296034444086e+00

orbital elements and state vector of the transfer orbit after the initial delta-v

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.44593744898382e+04 +7.31658863355877e-01 +2.63335418348091e+01 +3.59907068451479e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +9.29315485206550e-02 +0.00000000000000e+00 +6.34494336505482e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.13973286818979e+03 +6.46374629458551e+03 +0.00000000000000e+00 +6.56346000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -9.05235339099006e+00 -1.58903790996246e+00 +4.54905377104437e+00 +1.02549516628076e+01

orbital elements and state vector of the transfer orbit prior to the final delta-v

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.43663822497766e+04 +7.30510103763810e-01 +2.63224626979287e+01 +4.49503355132814e-02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +9.99180887891227e+01 +1.79955049664487e+02 +1.80000000000000e+02 +6.30879346284528e+02

 rx (km) ry (km) rz (km) rmag (km)

 +7.26271659870086e+03 -4.15360610054494e+04 -4.54747350886464e-13 +4.21662355000000e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.40980173813377e+00 +2.43062653381369e-01 -7.07743262330976e-01 +1.59609552335964e+00

orbital elements and state vector of the final orbit

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +4.21662354999999e+04 +2.56314888882674e-15 +1.01379591428343e-13 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +0.00000000000000e+00 +2.79918088789123e+02 +2.79918088789123e+02 +1.43617371924091e+03

 rx (km) ry (km) rz (km) rmag (km)

 +7.26271659870086e+03 -4.15360610054494e+04 -4.54747350886465e-13 +4.21662355000000e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +3.02863510092978e+00 +5.29566788146922e-01 +5.44009282066327e-15 +3.07458477809479e+00

Orbital Mechanics with MATLAB

page 7

initial delta-v vector, magnitude and steering angles

x-component of delta-v -2307.811906 meters/second

y-component of delta-v -399.793274 meters/second

z-component of delta-v 830.574474 meters/second

delta-v magnitude 2485.092435 meters/second

pitch angle 0.162032 degrees

yaw angle -8.974637 degrees

final delta-v vector, magnitude and steering angles

x-component of delta-v 1618.833363 meters/second

y-component of delta-v 286.504135 meters/second

z-component of delta-v 707.743262 meters/second

delta-v magnitude 1789.862174 meters/second

pitch angle -0.108656 degrees

yaw angle 49.614537 degrees

total delta-v 4274.954609 meters/second

transfer time 18904.205381 seconds

 315.070090 minutes

 5.251168 hours

degree of gravity model 4

order of gravity model 4

The following is a brief summary of the information provided by this MATLAB script.

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the position vector in kilometers

ry (km) = y-component of the position vector in kilometers

rz (km) = z-component of the position vector in kilometers

rmag (km) = scalar magnitude of the position vector in kilometers

vx (km/sec) = x-component of the velocity vector in kilometers per second

vy (km/sec) = y-component of the velocity vector in kilometers per second

vz (km/sec) = z-component of the velocity vector in kilometers per second

Orbital Mechanics with MATLAB

page 8

vmag (km/sec) = scalar magnitude of the velocity vector in kilometers per second

x-component of delta-v = ECI x-component of the impulsive delta-v maneuver in meters per second

y-component of delta-v = ECI y-component of the impulsive delta-v maneuver in meters per second

z-component of delta-v = ECI z-component of the impulsive delta-v maneuver in meters per second

delta-v magnitude = scalar magnitude of the impulsive delta-v maneuver in meters per second

transfer time = time interval between the two impulsive maneuvers in seconds, minutes and hours

Note that ECI implies an Earth-centered-inertial coordinate system.

Additional information about the data displayed by the optimization algorithm can be found in the

SNOPT user’s manual which is available at Professor Gill’s website which is located at

http://scicomp.ucsd.edu/~peg/.

The pitch and yaw angles for each impulsive maneuver are computed and displayed in a local-vertical-

local horizontal coordinate system. The following diagram illustrates the geometry of the pitch and yaw

angles in this system. In this figure, the radial direction is along the geocentric radius vector directed

away from the Earth, the tangential direction is tangent to the orbit in the direction of the orbital motion,

and the normal direction is along the angular momentum vector of the orbit. The pitch angle is positive

above the local horizontal plane formed by the tangential and normal directions, and the yaw angle is

positive in the direction of the angular momentum vector which is perpendicular to the orbit plane.

Tu

Ru

Nu





 pitch

= yaw







The phohmann script will also create a graphics display of the initial, transfer and final orbits. The

following is the graphics display for this example. The initial orbit trace is red, the transfer orbit is blue

and the final mission orbit is green. The dimensions are Earth radii (ER) and the plot is labeled with an

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. The location of

each impulse is marked with a small blue circle.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 9

Trajectory image files are saved to disk in both encapsulated, color Postscript format and MATLAB fig

format. The disk file names are phohmann1.eps and phohmann1.fig. The interactive features of

MATLAB graphics allow the user to re-load and manipulate the fig version of the trajectory display.

These capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital maneuver.

Technical discussion

In this MATLAB script, the orbital motion is modeled with respect to a true-of-date Earth-centered-

inertial (ECI) coordinate system. The origin of this system is the center of the Earth and the

fundamental plane is the Earth’s equator. The x-axis is aligned with the true-of-date Vernal Equinox,

the z-axis is aligned with the Earth’s spin axis, and the y-axis completes this orthogonal, right-handed

coordinate system.

Acceleration due to Earth gravity

This MATLAB script uses a spherical harmonic representation of the Earth’s geopotential function

given by

      0 0

1 1 1

, , sin cos

n nn
m m m

n n n n n

n n m

R R
r C P u P u S m C m

r r r r r

  
   

 

  

   
          

   
 

where  is the geocentric latitude,  is the geocentric east longitude and 2 2 2r x y z   r is the

geocentric distance. In this expression the S’s and C’s are unnormalized harmonic coefficients of the

geopotential, and the P’s are associated Legendre polynomials of degree n and order m with argument

u  sin .

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived

from the gradient of the potential function expressed as

    , ,g t t a r r

Orbital Mechanics with MATLAB

page 10

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the

gravitational acceleration due to higher order non-spherical terms in the Earth’s geopotential. In terms

of the Earth’s geopotential  , the inertial rectangular cartesian components of the spacecraft’s

acceleration vector are as follows

2 22 2 2

1 1z
x x y

r r x yr x y

  

  

     
          

2 22 2 2

1 1z
y y x

r r x yr x y

  

  

     
          

2 2

2

1 x y
z z

r r r

 

 

   
         

The three partial derivatives of the geopotential with respect to r, ,  are given by

      
2 0

1
1 cos sin sin

nN n
m m m

n n n

n m

R
n C m S m P

r r r r

 
  

  

    
      

   
 

      1

2 0

cos sin sin tan sin

nN n
m m m m

n n n n

n m

R
C m S m P m P

r r

 
    





 

    
        

   
 

    
2 0

cos sin sin

nN n
m m m

n n n

n m

R
m S m C m P

r r

 
  

  

    
    
   

 

 where

  

 

1

1

 radius of the Earth

 geocentric distance

, harmonic coefficients

 geocentric latitude sin

 longitude

 right ascension tan

 right ascension of Greenwich

m m

n n

g

y x

g

R

r

S C

z r

r r



  















 

  

 



Right ascension is measured positive east of the vernal equinox, longitude is measured positive east of

Greenwich, and latitude is positive above the Earth’s equator and negative below.

For m  0, the coefficients are called zonal terms, when m n the coefficients are sectorial terms, and

for n m  0 the coefficients are called tesseral terms.

The Legendre polynomials with argument sin are computed using recursion relationships given by:

Orbital Mechanics with MATLAB

page 11

         

     

       

0 0 0

1 2

1

1

1

2 1

1
sin 2 1 sin sin 1 sin

sin 2 1 cos sin , 0,

sin sin 2 1 cos sin , 0,

n n n

n n

n n

m m m

n n n

P n P n P
n

P n P m m n

P P n P m m n

   

  

   

 







 

     

   

    

where the first few associated Legendre functions are given by

      0 0 1

0 1 1sin 1, sin sin , sin cosP P P      

and P j ii

j  0 for .

The trigonometric arguments are determined from expansions given by

   

   

 

sin 2cos sin 1 sin 2

cos 2cos cos 1 cos 2

tan 1 tan tan

m m m

m m m

m m

   

   

  

   

   

  

The following are the first 14 lines of the 18 by 18 egm96.dat gravity model file included with this

script. Column 1 is the degree l, column 2 is the order m, column 3 is the C coefficients and the last

column contains the S gravity model coefficients.

 2 0 -1.08262668355E-003 0.00000000000E+000

 3 0 2.53265648533E-006 0.00000000000E+000

 4 0 1.61962159137E-006 0.00000000000E+000

 5 0 2.27296082869E-007 0.00000000000E+000

 6 0 -5.40681239107E-007 0.00000000000E+000

 7 0 3.52359908418E-007 0.00000000000E+000

 8 0 2.04799466985E-007 0.00000000000E+000

 9 0 1.20616967365E-007 0.00000000000E+000

10 0 2.41145438626E-007 0.00000000000E+000

11 0 -2.44402148325E-007 0.00000000000E+000

12 0 1.88626318279E-007 0.00000000000E+000

13 0 2.19788001661E-007 0.00000000000E+000

14 0 -1.30744533118E-007 0.00000000000E+000

Gravity model coefficients are often published in normalized form. The relationship between

normalized , ,,l m l mC S and un-normalized gravity coefficients , ,,l m l mC S is given by the following

expression:

   

 

 

1 2

,,

,, 0

!1

2 2 1 !

l ml m

l ml m m

CC l m

SS l l m

     
    

       

where 0m is equal to 1 if m is zero and equal to zero if m is greater than zero.

Orbital Mechanics with MATLAB

page 12

The following is the MATLAB source code for the function that opens and reads a gravity model file

(fname) and creates matrices of the un-normalized coefficients.

function [ccoef, scoef] = readgm(fname)

% read gravity model data file

% input

% fname = name of gravity data file

% output

% ccoef, scoef = gravity model coefficients

% data file format (space delimited ascii)

% column 1 is the degree, column 2 is the order, column 3 are the C coefficients

% and the last column contains the S gravity model coefficients. For example,

% 2 0 -1.08262668355E-003 0.00000000000E+000

% 3 0 2.53265648533E-006 0.00000000000E+000

% 4 0 1.61962159137E-006 0.00000000000E+000

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% read the data file

gdata = dlmread(fname);

nrows = size(gdata, 1);

% initialize coefficients

idim = gdata(nrows, 1) + 1;

ccoef = zeros(idim, idim);

scoef = zeros(idim, idim);

% create gravity model coefficients

for n = 1:nrows

 i = gdata(n, 1);

 j = gdata(n, 2);

 ccoef(i + 1, j + 1) = gdata(n, 3);

 scoef(i + 1, j + 1) = gdata(n, 4);

end

Solving the trajectory optimization problem

As mentioned earlier, the trajectory optimization uses the two-body Hohmann transfer solution for the

initial guess. For this problem, the components of the initial and final impulsive delta-v vector are

control variables. The transfer time from the initial to the final impulse is also an “indirect” or implicit

control variable as will be explained later. The objective or cost function for this problem is the sum of

the scalar magnitude of the two impulses given by

Orbital Mechanics with MATLAB

page 13

 i ff    v v

This is the scalar value we want to minimize.

The SNOPT algorithm requires initial guesses (xg) for the six components of the delta-v vectors as well

as lower (xlwr) and upper (xupr) bounds on each component. It also requires lower (flow) and upper

(fupp) bounds on the objective function and any linear or nonlinear constraints.

The following is the MATLAB source code that sets up this information.

% initial guess for components of initial delta-v

xg(1) = vti(1) - vi(1);

xg(2) = vti(2) - vi(2);

xg(3) = vti(3) - vi(3);

% initial guess for components of final delta-v

xg(4) = vf(1) - vtf(1);

xg(5) = vf(2) - vtf(2);

xg(6) = vf(3) - vtf(3);

xg = xg';

% define lower and upper bounds for components of delta-v vectors (kilometers/second)

dvm = norm(xg(1:3));

for i = 1:1:3

 xlwr(i) = xg(i) - 0.01;

 xupr(i) = xg(i) + 0.01;

end

dvm = norm(xg(4:6));

for i = 4:1:6

 xlwr(i) = xg(i) - 0.01;

 xupr(i) = xg(i) + 0.01;

end

xlwr = xlwr';

xupr = xupr';

% bounds on objective function

flow(1) = 0.0d0;

fupp(1) = +Inf;

% enforce final modified equinoctial equality constraints

flow(2) = 0.0d0;

fupp(2) = 0.0d0;

Orbital Mechanics with MATLAB

page 14

flow(3) = 0.0d0;

fupp(3) = 0.0d0;

flow(4) = 0.0d0;

fupp(4) = 0.0d0;

flow(5) = 0.0d0;

fupp(5) = 0.0d0;

if (itarget <= 1.0d-8)

 % equatorial orbit constraint

 flow(6) = 0.0d0;

 fupp(6) = 0.0d0;

end

flow = flow';

fupp = fupp';

% read SNOPT specs file

snspec('snopt_specs.txt');

% solve the orbital TPBVP using SNOPT

snscreen on;

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'tpbvp');

The tpbvp MATLAB function defines the current value of the objective function and the mission

constraints. The function that evaluates the Earth gravity model and the first order equations of motion

is called ceqm1. Here’s the source code for this function.

function ydot = ceqm1 (t, y)

% first order form of Cowell's equations of orbital motion

% version for ode45

% input

% t = current simulation time

% y = current eci state vector

% output

% ydot = eci acceleration vector

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute non-spherical gravity perturbations

agrav = gravity(t, y);

% total acceleration vector

ydot = [y(4)

 y(5)

Orbital Mechanics with MATLAB

page 15

 y(6)

 agrav(1)

 agrav(2)

 agrav(3)];

Notice that the main script will read a SNOPT “specs” file named snopt_specs.txt which has the

following contents.

Begin SNOPT options

 major iterations limit 50

 minor iterations limit 100

 derivative option 0

 major optimality tolerance 1.0d-6

 solution Yes

End SNOPT options

Additional information about this special file can be found in the SNOPT documentation.

The tpbvp objective function starts with the two-body solution for the position and velocity vectors of

the maneuver on the initial orbit and the current value for the delta-v vector and numerically integrates

the first-order form of the orbital equations to the descending node. At the descending node the software

adds the current value of the second delta-v vector to the velocity vector of the transfer orbit to

determine the velocity vector on the final mission orbit.

The position vector at the descending node and the resultant velocity vector are used to compute the

current modified equinoctial orbital elements of the final mission orbit.

The following is the MATLAB source code within the tpbvp function that uses the “event finding”

feature of the built-in ode45 algorithm to predict the descending node conditions. The bound for the

search time (tend) is 102% of the two-body Hohmann transfer time.

% set up options for ode45

options = odeset('RelTol', 1.0e-12, 'AbsTol', 1.0e-12, 'Events', @nc_event);

% solve for nodal crossing condition

rwrk = xi(1:3);

vwrk = xi(4:6);

% maximum search duration = 102% of two-body transfer time (seconds)

tend = 1.02 * tof;

[t, ysol, tevent, yevent, ie] = ode45(@ceqm1, [0 tend], [rwrk vwrk], options);

The following is the MATLAB source code for descending node objective function nc_event. The

computed value is simply the current z-component of the unit position vector.

function [value, isterminal, direction] = nc_event(t, y)

% nodal crossing event function

% required by phohmann.m

% Orbital Mechanics with MATLAB

Orbital Mechanics with MATLAB

page 16

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% z-component of the unit position vector

value = y(3) / norm(y(1:3));

isterminal = 1;

direction = -1;

Note that setting direction = -1 ensures a descending node crossing since we want to search for

values of the z-component of position that are decreasing. This implementation essentially treats the

coast time between the maneuvers as an “indirect” or implicit control variable.

Targeting to the final mission orbit

This section summarizes the technique used to compute and enforce the nonlinear constraints that define

the final mission orbit. Since the final orbit of the Hohmann transfer is circular, we enforce the

following three modified equinoctial element nonlinear constraints

 0 0 0t p t p t pp p f f g g     

In these three equations, the t subscript implies “target” or desired values and the p subscript implies

values “predicted” by the optimization process. The targeted values are computed using the position and

velocity vectors of the mission orbit determined during the two-body Hohmann transfer solution.

Here’s the MATLAB source code that evaluates these constraints.

% enforce semiparameter and circular orbit constraints (p, f = g = 0)

f(2) = mee_final(1) - mee_target(1);

f(3) = mee_final(2) - mee_target(2);

f(4) = mee_final(3) - mee_target(3);

If the final mission orbit is equatorial (inclination = 0), we want to enforce the following two constraints.

 0 0t p t ph h k k   

If the orbital inclination of the final mission orbit is non-zero, we enforce the following single nonlinear

mission constraint.

    2 2 2 2 0t t p ph k h k   

Here’s the MATLAB source code that evaluates this constraint.

% enforce mission orbit inclination constraint(s)

if (itarget <= 1.0d-8)

 % equatorial orbit (h = k = 0)

 f(5) = mee_final(4);

Orbital Mechanics with MATLAB

page 17

 f(6) = mee_final(5);

else

 % non-equatorial mission orbit (h^2 + k^2 = 0)

 f(5) = (mee_final(4)^2 + mee_final(5)^2) - (mee_target(4)^2 + ...

 mee_target(5)^2);

end

Note that we are not enforcing the right ascension of the ascending node (RAAN) or the true anomaly of

the final mission orbit.

Additional information about targeting with the modified equinoctial orbital elements can be found in

Appendix B.

Algorithm resources

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925. Also, The

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960.

(2) Jean-Pierre Marec, Optimal Space Trajectories, Elsevier, 1979.

(3) R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, 1972.

(4) R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, 1987.

(5) D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.

(6) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal

of Guidance, Control and Dynamics, Vol. 15, No. 4.

(7) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004.

Orbital Mechanics with MATLAB

page 18

Appendix A

Two-body Hohmann Transfer

The coplanar circular orbit-to-circular orbit transfer was discovered by the German engineer Walter

Hohmann in 1925 and described in his classic report, The Attainability of Celestial Bodies. The transfer

consists of a velocity impulse on an initial circular orbit, in the direction of motion and collinear with the

velocity vector, which propels the space vehicle into an elliptical transfer orbit. At a transfer angle of

180 degrees from the first impulse, a second velocity impulse or V , also collinear and in the direction

of motion, places the vehicle into a final circular orbit at the desired final altitude. The impulsive V

assumption means that the velocity, but not the position, of the vehicle is changed instantaneously. This

is equivalent to a rocket engine with infinite thrust magnitude. Therefore, the Hohmann formulation is

the ideal and minimum energy solution to this type of orbit transfer problem.

Coplanar Equations

For the coplanar Hohmann transfer both velocity impulses are confined to the orbital planes of the initial

and final orbits. For a Hohmann transfer from a lower altitude orbit to a higher altitude circular orbit,

the first impulse creates an elliptical transfer orbit with a perigee altitude equal to the altitude of the

initial circular orbit and an apogee altitude equal to the altitude of the final orbit. The second impulse

circularizes the transfer orbit at apogee. Both impulses are posigrade which means that they are in the

direction of orbital motion.

We begin by defining three normalized radii as follows:

 1 2 32 2
f i i

i f f i f

r r r
R R R

r r r r r
  

 

where ri is the geocentric radius of the initial circular park orbit and rf is the radius of the final circular

mission orbit. The relationship between radius and initial orbit altitude hi and the final orbit altitude h f

is as follows:

i e i

f e f

r r h

r r h

 

 

where re is the radius of the Earth.

The magnitude of the first impulse is

 2

1 1 11 2lcV V R R   

and is simply the difference between the speed on the initial orbit and the perigee speed of the transfer

orbit. The scalar magnitude of the second impulse is

 2 2 2 2

2 2 2 3 2 32lcV V R R R R R   

which is the difference between the speed on the final orbit and the apogee speed of the transfer ellipse.

Orbital Mechanics with MATLAB

page 19

In each of these V equations Vlc is called the local circular velocity. It can be determined from

lc iV r .

and represents the scalar speed in the initial orbit. In these equations  is the gravitational constant of

the central body. The transfer time from the first impulse to the second is equal to one half the orbital

period of the transfer ellipse

3a

 




where a is the semimajor axis of the transfer orbit and is equal to   / 2i fr r . The orbital eccentricity of

the transfer ellipse is

   max , min ,i f i f

f i

r r r r
e

r r






The following diagram illustrates the geometry of the coplanar Hohmann transfer.

initial orbit

transfer orbit

final orbit

V1

V2

ri

r
f

Non-coplanar Equations

The non-coplanar Hohmann transfer involves orbital transfer between two circular orbits which have

different orbital inclinations. For this problem the propulsive energy is minimized if we optimally

partition the total orbital inclination change between the first and second impulses.

The scalar magnitude of the first impulse is

 2

1 1 1 11 2 coslcV V R R    

where 1 is the plane change associated with the first impulse. The magnitude of the second impulse is

Orbital Mechanics with MATLAB

page 20

 2 2 2 2

2 2 2 3 2 3 22 coslcV V R R R R R    

where  2 is the plane change associated with the second impulse. These two equations are different

forms of the law of cosines.

The total V required for the maneuver is the sum of the two impulses as follows

1 2V V V   

The relationship between the plane change angles is

 1 2t   

where  t is the total plane change angle between the initial and final orbits.

Optimizing the non-coplanar Hohmann transfer involves allocating the total plane change angle between

the two maneuvers such that the total V required for the mission is minimized. We can determine this

answer by solving for the root of a derivative.

The partial derivative of the total V with respect to the first plane change angle is given by:

 

 

2

2 3 1 11 1

2 2 2 2 2
1 1 1 1 2 2 3 2 3 1

sin cos cos sinsin

1 2 cos 2 cos

t t

t

R RV R

R R R R R R R

   

   


 

     

If we determine the value of 1 which makes this derivative zero, we have found the optimum plane

change required at the first impulse. Once 1 is calculated we can determine  2 from the total plane

change angle relationship and the velocity impulses from the previous equations.

Numerical Solution

This numerical algorithm has been implemented in an interactive MATLAB script called hohmann.m.

This script prompts the user for the initial and final altitudes in kilometers and the initial and final orbital

inclinations in degrees. The software then calls the Brent root-finding algorithm to solve the partial

derivative equation described above.

The call to the Brent root-finding algorithm is as follows:

[xroot, froot] = brent('hohmfunc', 0, dinc, rtol);

where hohmfunc is the objective function for this problem. Since we know that the optimum first plane

change angle is somewhere between 0 and the total plane change angle dinc, we pass these as the

bounds of the root. In the parameter list rtol is the user-defined root-finding convergence tolerance.

The following discussion pertains to a typical orbit transfer from a low altitude Earth orbit (LEO) at an

altitude of 185.2 kilometers and an orbital inclination of 28.5 degrees to a geosynchronous Earth orbit

(GSO) at an altitude of 35786.36 kilometers and 0 degrees inclination.

Orbital Mechanics with MATLAB

page 21

The following is a V diagram for the first maneuver of this orbit transfer example. In this view we are

looking along the line of nodes which is the mutual intersection of the park and transfer orbit planes with

the equatorial plane.

equator

V

Vi Vp

26.3o

28.5o

In this diagram Vi is the speed on the initial park orbit, Vp is the perigee speed of the elliptic transfer

orbit, and V is the impulse required for the first maneuver. The inclinations of the park and transfer

orbit are also labeled. From this geometry and the law of cosines, the required V is given by

 2 2 2 cosi p i pV V V V V i    

where i is the inclination difference or plane change between the park and transfer orbits.

Algorithm resources

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925. Also, The

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960.

(2) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal

of Guidance, Control and Dynamics, Vol. 15, No. 4.

(3) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004.

Orbital Mechanics with MATLAB

page 22

Appendix B

Targeting with Modified Equinoctial Orbital Elements

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These direct

modified equinoctial equations exhibit no singularity for zero eccentricity and orbital inclinations equal

to 0 and 90 degrees. However, please note that two of the components are singular for an orbital

inclination of 180 degrees.

The classic reference for these elements is “A Set of Modified Equinoctial Orbital Elements”, M. J. H.

Walker, B. Ireland and J. Owens, Celestial Mechanics, Vol. 36, pp. 409-419, 1985.

The modified equinoctial elements are defined in terms of the classical orbital elements as follows:

 

 

 

 

 

21

cos

sin

tan 2 cos

tan 2 sin

p a e

f e

g e

h i

k i

L





 

 

 

 

 

 

  

where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of perigee

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





The classical orbital elements can be recovered from the modified equinoctial orbital elements with

semimajor axis

2 21

p
a

f g


 

orbital eccentricity

2 2e f g 

Orbital Mechanics with MATLAB

page 23

orbital inclination

  1 2 22 tani h k 

argument of periapsis

    1 1tan , tan ,g f k h   

 

sin
tan 2

g h f k

e i





 

cos
tan 2

f h g k

e i





right ascension of the ascending node

  1tan ,k h 

 

sin
tan 2

k

i
 

 

cos
tan 2

h

i
 

true anomaly

    1tan ,L L g f      

 

 

1
sin sin cos

1
cos cos sin

f L g L
e

f L g L
e





 

 

In these expressions, an inverse tangent expression of the form  1tan ,a b  denotes a four quadrant

evaluation where sina  and cosb  .

Constraint formulations that enforce both the sine and cosine of a desired orbital element should be used

whenever possible. This approach involves a combination of equality and inequality constraints and

ensures that the “targeted” orbital element is in the correct quadrant.

To illustrate this technique, here are several examples for different values of argument of perigee and the

corresponding mission constraints:

Orbital Mechanics with MATLAB

page 24

 

sin 0 0
0 90

tan 2 cos

gh f k

f h g k e i






   
   

 

sin 0 0

270
cos 0 0

gh f k

f h gk






   
  

   

 tan 2 sin

178
cos 0 0

g h f k e i

f h gk






 
  

   

The following is a sign table of the sine and cosine for each quadrant.

quadrant sine cosine

1  

2  

3  

4  

orbital eccentricity constraint

 2 2e f g 

For a circular orbit, 0f g  .

orbital inclination constraint

 2 2tan
2

i
h k

 
  

 

For an equatorial orbit, 0h k  .

argument of perigee constraints

  
 

sin tan 2 sin
tan 2

g h f k
g h f k e i

e i
 


   

  
 

cos tan 2 cos
tan 2

f h g k
f h g k e i

e i
 


   

right ascension of the ascending node constraints

  
 

tan 2 sin sin
tan 2

k
k i

i
   

Orbital Mechanics with MATLAB

page 25

  
 

tan 2 cos cos
tan 2

h
h i

i
   

true anomaly constraints

    1tan ,L L g f      

 In general,

 

 

1
sin sin cos

1
cos cos sin

f L g L
e

f L g L
e





 

 

For a circular orbit,

sin sin cos cos sin

cos cos cos sin sin

L L

L L





  

  

For a circular, equatorial orbit,

 L  , sin sin L  and cos cos L  .

 Also, note that

2 2

2 2

 periapsis radius
1

 apoapsis radius
1

p

a

p
r

f g

p
r

f g

 
 

 
 

Algorithm resources

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, August 20-22, 1990.

Orbital Mechanics with MATLAB

page 26

Appendix C

Nonlinear Programming Problem

A trajectory optimization problem can be described by a system of dynamic variables

 

 

t

t

 
  
 

y
z

u

consisting of the state variables y and the control variables u for any time t. In this discussion vectors

are denoted in bold font.

The system dynamics are defined by a vector system of ordinary differential equations called the state

equations that can be represented as follows

    , , ,
d

t t t
dt

    
y

y f y u p

where p is a vector of problem parameters that is not time dependent.

The initial dynamic variables at time 0t are defined by    0 0 0 0, ,t t t   ψ ψ y u and the terminal

conditions at the final time ft are defined by    , ,f f f ft t t   ψ ψ y u . These conditions are called the

boundary values of the trajectory problem.

The problem may also be subject to path constraints of the form    , , 0t t t   g y u .

For any mission time t there are also simple bounds on the state variables

  l ut y y y

the control variables

  l ut u u u

and the problem parameters

  l ut p p p

The basic nonlinear programming problem (NLP) involves the determination of the control vector

history and problem parameters that minimize the scalar performance index or objective function given

by

    0 0, , , ,f fJ t t t t    y y p

while satisfying all the user-defined mission constraints.

Orbital Mechanics with MATLAB

page 27

Algorithm resources

(1) “Direct Trajectory Optimization Using Nonlinear Programming and Collocation”, C. R. Hargraves

and S. W. Paris, AIAA Journal of Guidance, Control and Dynamics, Vol. 10, No. 4, July-August, 1987,

pp. 338-342.

(2) “Optimal Finite-Thrust Spacecraft Trajectories Using Direct Transcription and Nonlinear

Programming”, Paul J. Enright, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1991.

(3) “Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

(4) “Improved Collocation Methods with Application to Direct Trajectory Optimization”, Albert L.

Herman, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1995.

(5) “Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of

Guidance, Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193-207.

(6) Practical Optimization, Philip E. Gill, Walter Murray and Margaret H. Wright, Emerald Group

Publishing Limited, 1982.

Orbital Mechanics with MATLAB

page 1

Optimal Impulsive Orbital Transfer

This document describes a MATLAB script called oota_matlab that can be used to determine

optimum one and two impulse orbital transfers between non-coplanar circular and elliptical orbits. The

initial and final orbits need not be co-apsidal. The numerical algorithm is based on the orbit transfer and

rendezvous work of Gary McCue, Gentry Lee and David Bender, described in “Numerical Investigation

of Minimum Impulse Orbital Transfer”, AIAA Journal, 3, 2328-2334 (1965), and “An Analysis of Two-

Impulse Orbital Transfer”, AIAA Journal, 2, 1767-1773, October 1964.

The numerical solution of this classic astrodynamic problem involves a combination of one-dimensional

root-finding using Brent’s derivative-free method and multi-dimensional unconstrained minimization

using the built-in fminsearch algorithm provided with MATLAB. The oota_matlab MATLAB

script uses primer vector theory to determine the optimality of the solution(s) computed by this

numerical method.

Interacting with the script

To execute the oota_matlab script, log into the directory containing the source code and type

oota_matlab in the MATLAB command window. This MATLAB script is “data driven” by a simple

text file created by the user. The script will prompt the user for the name of the data file with a screen

similar to

The file type defaults to names with a *.in filename extension. However, you can select any

oota_matlab.m compatible ASCII data file by selecting the Files of type: field or by typing the name

of the file directly in the File name: field.

Data file format and contents

The oota_matlab script reads a simple ASCII data file that defines the initial and final orbits along

with the algorithm search characteristics. The following is a typical data file named leo2gso.in for

this application. This example solves the problem of two impulse, non-coplanar orbital transfer from a

typical low altitude circular Earth orbit (LEO) to a circular geosynchronous Earth orbit (GSO).

Orbital Mechanics with MATLAB

page 2

The annotation text in this file can be modified but should not be deleted because the MATLAB

function that reads this data (read_oota.m) expects to find exactly 81 lines of text and numeric

information. The first two data items define the gravitational constant and radius of the central body.

Please note the units and valid range for each input. User inputs are shown in bold font.

* input data file for oota_matlab.m MATLAB script

* impulsive LEO-to-GSO orbital transfer

* filename ==> leo2gso.dat

central body gravitational constant (km^3/sec^2)

398600.4415

central body radius (kilometers)

6378.1363

initial orbit

semimajor axis (kilometers)

(semimajor axis > 0)

6653.14

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

0.0

orbital inclination (degrees)

(0 <= inclination <= 180)

28.5

argument of perigee (degrees)

(0 <= argument of perigee <= 360)

0

right ascension of the ascending node (degrees)

(0 <= raan <= 360)

30

final orbit

semimajor axis (kilometers)

(semimajor axis > 0)

42166.2355

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

0

orbital inclination (degrees)

(0 <= inclination <= 180)

0

argument of perigee (degrees)

(0 <= argument of perigee <= 360)

0

right ascension of the ascending node (degrees)

(0 <= raan <= 360)

0

Orbital Mechanics with MATLAB

page 3

algorithm search parameters

initial orbit true anomaly at which to begin the search (degrees)

0

final orbit true anomaly at which to begin the search (degrees)

0

initial orbit true anomaly search increment (degrees)

30

final orbit true anomaly search increment (degrees)

30

number of initial orbit true anomaly search intervals

12

number of final orbit true anomaly search intervals

12

The last section of this data file defines the algorithm grid search parameters to use during the

optimization. These numbers define the initial true anomaly for the initial and final orbits, the true

anomaly search increment for each orbit, and the total number of intervals to analyze. Notice the

combination of true anomaly search increments and number of search intervals in this example will

encompass the entire true anomaly range for both the initial and final orbits.

Solution information

The oota_matlab MATLAB script provides the following types of information about the solution(s).

1. text file summarizing all solutions

2. text file of detailed information about all solutions

3. graphics file of three-dimensional trajectories

4. graphics file of the primer vector characteristics

The following is the summary text file for the leo2gso example described in the previous section. The

argument of latitude is the sum of the argument of perigee and true anomaly at the impulse location. It

describes the location of a maneuver relative to the ascending node of the initial and transfer orbit. For

equatorial orbits, the argument of perigee is measured relative to the x-axis of the Earth-centered-inertial

(ECI) coordinate system.

input data file ==> leo2gso.in

 oota dv1 true dv2 true dv1 arg dv2 arg delta-v1 delta-v2 total

 solution anomaly anomaly latitude latitude magnitude magnitude delta-v

 number (degrees) (degrees) (degrees) (degrees) (m/s) (m/s) (m/s)

 -------- --------- --------- --------- --------- --------- --------- ---------

 1 0.0060 179.9979 0.0060 180.0000 2456.4991 1783.6790 4240.1782

 2 0.0064 179.9977 0.0064 180.0000 2456.5011 1783.6771 4240.1782

 3 0.0065 179.9977 0.0065 180.0000 2456.4997 1783.6784 4240.1782

 4 0.0054 179.9981 0.0054 180.0000 2456.5004 1783.6777 4240.1782

 5 180.0050 179.9982 180.0050 0.0000 2456.4992 1783.6790 4240.1781

 6 180.0064 179.9977 180.0064 0.0000 2456.5011 1783.6771 4240.1782

 7 0.0078 179.9973 0.0078 180.0000 2456.5015 1783.6767 4240.1782

 8 0.0074 179.9974 0.0074 180.0000 2456.4990 1783.6793 4240.1782

 9 180.0080 179.9972 180.0080 0.0000 2456.4999 1783.6783 4240.1782

 10 180.0058 179.9980 180.0058 0.0000 2456.5011 1783.6771 4240.1782

Orbital Mechanics with MATLAB

page 4

Summary text files are saved to disk with a file name consisting of the name of the input data file (minus

the filename extension) concatenated with _summary.txt. For example, the name of the summary text

file for this case is leo2gso_summary.txt.

The following is the first solution contained in the detailed solutions text file. The initial part of this file

contains the name of the simulation definition input data file, the solution number and information about

the minimization algorithm performance.

input data file ==> leo2gso.in

solution number 1

number of function evaluations 286

number of iterations 136

Optimization terminated:

 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-08

 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-08

initial orbit - prior to the first impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.65314000000000e+03 +5.53905824337510e-16 +2.85000000000000e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +3.00000000000000e+01 +6.02978812312732e-03 +6.02978812312732e-03 +9.00118574397072e+01

 rx (km) ry (km) rz (km) rmag (km)

 +5.76148056050912e+03 +3.32710286869169e+03 +3.34094235711526e-01 +6.65313999999999e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -3.40184196051086e+00 +5.89053395030101e+00 +3.69333290837307e+00 +7.74026013232195e+00

transfer orbit - after the first impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.44096861143452e+04 +7.27438527447300e-01 +2.63076547250235e+01 +2.12842711764707e-03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.99994795350325e+01 +4.36350638641582e-03 +6.49193350406289e-03 +6.32561888727922e+02

 rx (km) ry (km) rz (km) rmag (km)

 +5.76148056050912e+03 +3.32710286869169e+03 +3.34094235712489e-01 +6.65314000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -4.56040306954073e+00 +7.89736266175169e+00 +4.50866270516224e+00 +1.01731830100921e+01

transfer orbit - prior to the second impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.44096877431762e+04 +7.27438549042367e-01 +2.63076547250235e+01 +2.12842723128193e-03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.99994795350325e+01 +1.79997871572769e+02 +1.80000000000000e+02 +6.32561952043141e+02

 rx (km) ry (km) rz (km) rmag (km)

 -3.65172226388517e+04 -2.10827860347250e+04 +2.28858249950193e-12 +4.21662355000000e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +7.19306020021783e-01 -1.24621899990843e+00 -7.11392988206719e-01 +1.60516134075115e+00

Orbital Mechanics with MATLAB

page 5

final orbit - after the second impulse

 sma (km) eccentricity inclination (deg) argper (deg)

 +4.21662355000000e+04 +1.57009245868378e-16 +0.00000000000000e+00 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +0.00000000000000e+00 +2.09999479535032e+02 +2.09999479535032e+02 +1.43617371924092e+03

 rx (km) ry (km) rz (km) rmag (km)

 -3.65172226388517e+04 -2.10827860347250e+04 -0.00000000000000e+00 +4.21662355000000e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +1.53726820176287e+00 -2.66268248830778e+00 -0.00000000000000e+00 +3.07458477809479e+00

ECI delta-v vectors, magnitudes and LVLH angles

delta-v1x -1158.5611 meters/second

delta-v1y 2006.8287 meters/second

delta-v1z 815.3298 meters/second

delta-v1 2456.4991 meters/second

LVLH pitch angle 0.0076 degrees

LVLH yaw angle 9.1154 degrees

delta-v2x 817.9622 meters/second

delta-v2y -1416.4635 meters/second

delta-v2z 711.3930 meters/second

delta-v2 1783.6790 meters/second

LVLH pitch angle -0.0051 degrees

LVLH yaw angle 310.1870 degrees

total delta-v 4240.1782 meters/second

transfer time 18975.8310 seconds

 316.2639 minutes

 5.2711 hours

Detailed text files are saved to disk with a file name consisting of the name of the input data file (minus

the filename extension) concatenated with _solutions.txt. For example, the name of the summary

text file for this test case is leo2gso_solutions.txt.

The following is a brief description of the information provided in the detailed text file.

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum

of true anomaly and argument of perigee.

period (mins) = orbital period in minutes

rx (km) = x-component of the position vector in kilometers

Orbital Mechanics with MATLAB

page 6

ry (km) = y-component of the position vector in kilometers

rz (km) = z-component of the position vector in kilometers

rmag (km) = scalar magnitude of the position vector in kilometers

vx (kps) = x-component of the velocity vector in kilometers per second

vy (kps) = y-component of the velocity vector in kilometers per second

vz (ksp) = z-component of the velocity vector in kilometers per second

vmag (kps) = scalar magnitude of the velocity vector in kilometers per second

transfer time = flight time between the two impulses in seconds, minutes and hours

The pitch and yaw angles for each impulsive maneuver are computed and displayed in the local-vertical-

local horizontal (LVLH; also called the radial-tangential-normal) coordinate system. The following

diagram illustrates the geometry of the pitch and yaw angles in this system. In this figure, the radial

direction is along the geocentric radius vector directed away from the Earth, the tangential direction is

tangent to the orbit, and the normal direction is along the angular momentum vector of the orbit.

The oota_matlab script will also create a graphics display of the initial, transfer and final orbits for

each solution. The following is one of the graphic images for this example. The initial orbit trace is red,

the transfer orbit is blue and the final mission orbit is green. The dimensions are Earth radii (ER) and

the plot is labeled with an ECI coordinate system where green is the x-axis, red is the y-axis and blue is

the z-axis. The initial impulse location is marked with a small blue asterisk.

Trajectory image files are saved to disk in both TIF format and MATLAB fig format with a file name

consisting of the name of the input data file (minus the filename extension) concatenated with _traj,

the solution number and either .tif or .fig. For example, the names of the graphics disk files for the

first solution are leo2gso_traj1.tif and leo2gso_traj1.fig. The interactive features of

MATLAB graphics allow the user to manipulate the fig version of the trajectory display. This allows

the user to interactively find the best viewpoint as well as verify the basic three-dimensional geometry of

the orbital transfer.

Tu

Ru

Nu





 pitch

= yaw





=

Orbital Mechanics with MATLAB

page 7

The oota_matlab script will also create a graphics disk file of the primer vector and its derivative for

each solution. The image for one of the solutions for this example is shown below. These plots

illustrate the behavior of the scalar magnitudes of the primer vector and its derivative as a function of

elapsed time since the first impulse.

Primer image files are saved to disk with a file name consisting of the name of the input data file (minus

the filename extension) concatenated with _primer, the solution number and .tif. For example, the

name of the graphics file for the first solution is leo2gso_primer1.tif. Please note these files are

also saved in TIF format.

Orbital Mechanics with MATLAB

page 8

The type of minimization algorithm and grid search implemented in this MATLAB script will often

produce duplicate solutions to a particular orbit transfer problem. The summary and detailed text files

allow the user to eliminate these duplicate solutions and retain one or more unique solutions.

Technical Discussion

The solution to this important astrodynamics problem is formulated in a reference coordinate system.

The fundamental reference plane of this coordinate system is the final orbit plane and the x-axis is

aligned with the intersection of the planes of the initial and final orbits. The z-axis of this system is

aligned with the angular momentum vector of the final orbit and the y-axis completes this orthogonal

coordinate system. In the equations which follow, elements of the initial orbit have a subscript of 1 and

elements of the final orbit a subscript of 2. Elements of the transfer orbit will have a subscript of t.

The following diagram illustrates the geometry of a two impulse orbital transfer. The relative

inclination between the initial and final orbit planes is ir and  is the transfer angle which is the angle

from the first and second impulse measured in the plane of the transfer orbit. N corresponds to the x-

axis, W1 is in the direction of the initial orbit angular momentum vector, and W2 is in the direction of

the angular momentum vector of the final orbit.

The independent variables for this problem are 1,  2 and pt , where 1 is the angle from the N axis to

the first impulse as measured in the initial orbit plane,  2 is the angle from the N axis to the second

impulse as measured in the final orbit plane, and pt is the semi-parameter of the transfer orbit. The

expression for N is as follows

 2 1

2 1


=



W W
N

W W

Orbital Mechanics with MATLAB

page 9

where  1 0 sin cos
T

r ri i= −W and  2 0 0 1
T

=W .

The relative inclination between the initial and final orbit planes is determined from

 ()1

1 2cosri
−= •w w

where w1 is the ECI unit angular momentum vector of the initial orbit given by

1 1

1 1 1

1

sin sin

cos sin

cos

i

i

i

 
 = − 
 
  

w

and w2 is the ECI unit angular momentum vector of the final orbit given by

2 2

2 2 2

2

sin sin

cos sin

cos

i

i

i

 
 = − 
 
  

w

The unit position vector at the first impulse in the reference coordinate system is

1

1 1

1

cos

sin cos

sin sin

r

r

i

i







 
 =
 
  

U

and the unit position vector of the second impulse, also in the reference coordinate system, is determined

from

2

2 2

cos

sin

0





 
 =
 
  

U

The transfer angle can be computed from the following dot product

 ()1

1 2cos − = •U U

The minimum and maximum bounds on the semi-parameter of the transfer orbit can be determined from

the following two expressions

() ()

1 2 1 2 1 2 1 2
min max

1 2 1 2 1 2 1 2 1 2 1 22 2

r r r r
p p

r r r r r r r r

− • − •
= =

+ + + • + − + •

r r r r

r r r r

The partial derivative of the total required V with respect to the semi-parameter of the transfer orbit is

as follows

Orbital Mechanics with MATLAB

page 10

() ()1 1 2 2

1 2

1

2

t

t t

z zV

p p

  • −  • +
= − 

   

V V U V V U

V V

Part of the optimal orbital transfer solution involves finding the value of pt which lies between pmin and

pmax which makes this partial derivative expression equal to zero.

The V vectors in the reference coordinate system are given by the following two expressions

 ()1 1 1z =  + −V V U V

 ()2 2 2z = −V V V U

where the upper sign in these two equations corresponds to the short transfer and

 tan
2

z
p

 
=

with

()2 1

1 2

tp
−

=


r r
V

r r

The velocity vector of the satellite prior to the first impulse with respect to the reference coordinate

system is calculated from

 ()1 1 1 1

1p


=  +V W e U

and prior to the second impulse it is given by

 ()2 2 2 2

2p


=  +V W e U

In these expressions, e1 is the reference coordinate system eccentricity vector of the initial orbit which is

given by

  1 1 1 1 1cos sin cos sin sin
T

r re i i  =e

and e2 is the eccentricity of the final orbit defined by

  2 2 2 2cos sin 0
T

e  =e

where e1 and e2 are the scalar eccentricity of the initial and final orbits, respectively.

The total scalar delta-v required for the orbit transfer is given by 1 2V =  + V V .

Orbital Mechanics with MATLAB

page 11

In terms of the Earth-centered-inertial (ECI) components of the two V vectors, the total scalar V

required for the orbital transfer is

 2 2 2 2 2 2

1 1 1 2 2 2x y x x y xV V V V V V V =  +  +  +  +  + 

This is the scalar quantity we want to minimize.

Eventually, we want to convert the reference coordinate system solution to ECI vectors and then to

classical orbital elements. The transformation of an ECI position or velocity vector Xeci to its

corresponding reference coordinate system companion Xrcs is given by the following matrix-vector

multiplication

  eci rcs=X T X

The conversion of a vector in the reference coordinate system to its corresponding ECI vector involves

the transpose of this matrix as follows

  rcs eci=X T X

The elements of the reference coordinate system-to-ECI transformation matrix T are given by the

following nine expressions

11 2 2 2

12 2 2 2

13 2 2

21 2 2 2

22 2 2 2

23 2 2

31 2

32 2

33 2

cos cos sin cos sin

cos sin sin cos cos

sin cos

sin cos cos cos sin

sin sin cos cos cos

cos sin

sin sin

sin cos

cos

T i

T i

T i

T i

T i

T i

T i

T i

T i

 

 

 

 





=  − 

= −  − 

= 

=  + 

= −  + 

= − 

=

=

=

where

 () ()1cos sign zN −= − •N U

and

  2 2cos sin 0
T

=  U

The position vector of the initial and transfer orbits at the first impulse in the reference coordinate

system is

()
1

1 1

1 1 11 cos

p

e  

 
=  

+ − 
r U

and the position vector of the transfer and final orbit at the second impulse is

()
2

2 2

2 2 21 cos

p

e  

 
=  

+ − 
r U

Orbital Mechanics with MATLAB

page 12

In these equations the arguments of perigee  1 and  2 are with respect to the reference coordinate

system. They can be determined with the following three equations

   () ()1 1

1 2cos tan ,
T

rcs eci x y z      − −= = =T

where the inverse tangent calculation here is a four-quadrant operation.

The ECI argument of perigee vectors at each impulse are given by

1

1 1 1 1 1

1 1 1 1 1

1 1

cos cos sin sin cos

cos sin sin cos cos

sin sin

eci

i

i

i

 

  



 −  
 =  + 
 
  

and

2

2 2 2 2 2

2 2 2 2 2

2 2

cos cos sin sin cos

cos sin sin cos cos

sin sin

eci

i

i

i

 

  



 −  
 =  + 
 
  

where all the orbital elements in these two equations are with respect to the ECI coordinate system.

The semi-parameter of the initial orbit can be determined from

 ()2

1 1 11p a e= −

and the semi-parameter of the final orbit is given by

 ()2

2 2 21p a e= −

where a1 and a2 are the semimajor axes of the initial and final orbits, respectively.

The transfer orbit velocity vectors prior to the first and second impulses in the reference coordinate

system are calculated from the next two equations

1 21 2T Tz z= + = −V V U V V U

The transfer orbit position and velocity vectors can be transformed into the ECI coordinate system using

the transpose of the T matrix as described above, and then converted to classical orbital elements.

Time-of-flight

The time of flight between perigee and another true anomaly on an elliptic orbit is given by

Orbital Mechanics with MATLAB

page 13

 ()
2

1 1 1 sin
2 tan tan

2 1 2 1 cos

e e e
tof

e e

  


 

−
  − − 

= −  
+ +    

where

 orbital period

 orbital eccentricity

 true anomaly

e





=

=

=

Therefore, the flight time between any two true anomalies on the same elliptical orbit is given by

 () ()1 2t tof tof  = −

This equation is implemented in a MATLAB function named tof1.m which is used to compute the

transfer time between the first and second impulses for the case of a two-impulse orbit transfer.

Primer Vector Analysis

This section summarizes the primer vector analysis used to determine the optimality of solutions

computed by this MATLAB script. The term primer vector was invented by Derek F. Lawden and

represents the adjoint vector for velocity in the optimal control theory for space trajectories.

A technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories

for Space Navigation, Butterworths, London, 1963. Another excellent resource is “Primer Vector

Theory and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with

“Optimal, Multi-burn, Space Trajectories”, also by Jezewski. As noted by Jezewski, the primer vector is

sometimes called the Lagrange multiplier, costate vector or perhaps an adjoint variable.

As shown by D. F. Lawden, the following four necessary conditions must be satisfied in order for an

impulsive orbital transfer to be locally optimal.

(1) the primer vector and its first derivative are everywhere continuous

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and

has unit magnitude ()ˆ ˆ and 1T= = =p p u p

(3) the magnitude of the primer vector may not exceed unity on a coasting arc ()1p= p

(4) at all interior impulses (not at the initial or final times) 0=p p ; therefore, 0d dt =p at the

intermediate impulses

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses

provide information about how to improve the nominal transfer trajectory by changing the endpoint

times and/or moving the impulse times. These four cases for non-zero slopes are summarized as

• If 0 0p  and 0fp  → perform an initial coast before the first impulse and add a final coast

after the second impulse

Orbital Mechanics with MATLAB

page 14

• If 0 0p  and 0fp  → perform an initial coast before the first impulse and move the second

impulse to a later time

• If 0 0p  and 0fp  → perform the first impulse at an earlier time and add a final coast after the

second impulse

• If 0 0p  and 0fp  → perform the first impulse at an earlier time and move the second

impulse to a later time

The primer vector analysis of a two impulse orbital transfer involves the following computational steps.

First partition the two-body state transition matrix as follows

 () 0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
  = = =            
   

r r

r v

v v

r v

where

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
    = =          

       

r

r

and so forth.

The value of the primer vector at any time t along a two body trajectory is given by

 () () ()11 0 0 12 0 0, ,t t t t t=  +p p p

and the value of the primer vector derivative is

 () () ()21 0 0 22 0 0, ,t t t t t=  +p p p

which can also be expressed as

 () 0

0

0

,t t
  

=    
   

pp

pp

In these equations, 0t represents the time of the first impulse and ft is the time of the second impulse.

The primer vector boundary conditions at the initial and final impulses are as follows

 () ()0
0 0

0

f

f f

f

t t


= = = =
 

VV
p p p p

V V

Orbital Mechanics with MATLAB

page 15

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit

vector in the direction of the corresponding impulse.

The value of the primer vector derivative at the initial time is

 () () () 1

0 0 12 0 11 0 0, ,f f ft t t t t−= =  −p p p p

provided the 12 state transition sub-matrix is non-singular.

The scalar magnitude of the derivative of the primer vector at any mission elapsed time can be

determined from

 ()
2d d

dt dt
= =

p p p
p p

p

Checking a solution for optimality

An oota_matlab solution is deemed locally optimal if all the following primer vector and derivative

magnitude conditions are true.

 () ()0 1.001 1.001ft t p p

 () 01.001 for all ft t t t  p

 () ()0 0.00001 0.00001ft t p p

The first two equations enforce the primer optimality at the first and second impulses. The second

equation checks for primer optimality everywhere along the coast portion of the transfer trajectory.

Finally, the last two equations ensure that the primer derivative conditions at the first and second

impulse locations are also satisfied.

The oota_matlab script creates 300 equally spaced time values along the transfer trajectory. The

scalar magnitude of the primer vector and its derivative are computed at these time points using the

equations of the previous section. The maximum value of the primer magnitude along the orbit transfer

is determined using the MATLAB max statement operating on the vector of primer values.

The following is the snippet of MATLAB source code that performs the optimality check.

if (y1(1) <= tol_pv && y1(end) <= tol_pv && max(y1) <= tol_pv ...

 && abs(y2(1)) <= tol_pvd && abs(y2(end)) <= tol_pvd)

In this statement, y1 is the array of primer vector magnitudes, y2 is the array of primer derivative

magnitudes, tol_pv is the tolerance on the primer vector magnitude (1.001) and tol_pvd is the

primer derivative magnitude tolerance (0.0001). This statement checks the absolute value of the

primer derivative magnitudes since they may be positive or negative at maneuver locations.

These primer and derivative array values are also used to create the graphics image for a two-impulse

orbit transfer.

Orbital Mechanics with MATLAB

page 16

Appendix A

LEO-to-Molniya Example

This appendix describes the OOTA solution of an optimal two impulse orbital transfer from a low

circular Earth orbit (LEO) to an elliptical Molniya repeating ground track orbit.

Here is the data definition input (leo2moly.in) for this example.

* input data file for oota_matlab.m MATLAB script

* impulsive LEO-to-Molniya orbital transfer

* filename ==> leo2moly.in

central body gravitational constant (km^3/sec^2)

398600.4415

central body radius (kilometers)

6378.14

initial orbit

semimajor axis (kilometers)

(semimajor axis > 0)

6653.14

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

0.0

orbital inclination (degrees)

(0 <= inclination <= 180)

51.6

argument of perigee (degrees)

(0 <= argument of perigee <= 360)

0

right ascension of the ascending node (degrees)

(0 <= raan <= 360)

0

final orbit

semimajor axis (kilometers)

(semimajor axis > 0)

26553.071184

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

0.737

orbital inclination (degrees)

(0 <= inclination <= 180)

63.4

Orbital Mechanics with MATLAB

page 17

argument of perigee (degrees)

(0 <= argument of perigee <= 360)

270.0

right ascension of the ascending node (degrees)

(0 <= raan <= 360)

100.0

algorithm search parameters

initial orbit true anomaly at which to begin the search (degrees)

0

final orbit true anomaly at which to begin the search (degrees)

0

initial orbit true anomaly search increment (degrees)

60

final orbit true anomaly search increment (degrees)

60

number of initial orbit true anomaly search intervals

6

number of final orbit true anomaly search intervals

6

The following is one of the solution summaries for this example.

input data file ==> leo2moly.in

solution number 1

number of function evaluations 271

number of iterations 139

Optimization terminated:

 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-08

 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-08

initial orbit - prior to the first impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.65314000000000e+03 +2.77456789218216e-16 +5.16000000000000e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +0.00000000000000e+00 +3.24412296369100e+02 +3.24412296369100e+02 +9.00118574397072e+01

 rx (km) ry (km) rz (km) rmag (km)

 +5.41050425386182e+03 -2.40495037709735e+03 -3.03429221767488e+03 +6.65314000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +4.50443242893421e+00 +3.90986331092379e+00 +4.93301979512252e+00 +7.74026013232195e+00

transfer orbit - after the first impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.11539982192466e+04 +6.85491165777775e-01 +5.13247641350847e+01 +3.24478972417759e+02

Orbital Mechanics with MATLAB

page 18

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.52533693995149e-01 +3.59775987696247e+02 +3.24254960114006e+02 +5.10326858043352e+02

 rx (km) ry (km) rz (km) rmag (km)

 +5.41050425386183e+03 -2.40495037709736e+03 -3.03429221767489e+03 +6.65314000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +5.83483985081196e+00 +5.12828173456787e+00 +6.37462388606419e+00 +1.00489033890523e+01

transfer orbit - prior to the second impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.11539982192467e+04 +6.85491165777776e-01 +5.13247641350847e+01 +3.24478972417759e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.52533693995149e-01 +1.52270145267547e+02 +1.16749117685306e+02 +5.10326858043354e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29049013453925e+04 +1.58564428966570e+04 +1.98804833674103e+04 +2.85166070736183e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -2.95123601438420e+00 +3.88768171330320e-01 +5.01937947519657e-01 +3.01875411499481e+00

final orbit - after the second impulse

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.65530711840000e+04 +7.37000000000000e-01 +6.34000000000000e+01 +2.70000000000000e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +1.41231327743477e+02 +5.12313277434767e+01 +7.17681695832038e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29049013453925e+04 +1.58564428966570e+04 +1.98804833674103e+04 +2.85166070736183e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -1.54031917839349e+00 -5.20034004351135e-01 +3.20954662441303e+00 +3.59780600801229e+00

ECI delta-v vectors, magnitudes and LVLH angles

delta-v1x 1330.4074 meters/second

delta-v1y 1218.4184 meters/second

delta-v1z 1441.6041 meters/second

delta-v1 2309.2747 meters/second

LVLH pitch angle -0.3965 degrees

LVLH yaw angle 1.4744 degrees

delta-v2x 1410.9168 meters/second

delta-v2y -908.8022 meters/second

delta-v2z 2707.6087 meters/second

delta-v2 3185.5537 meters/second

LVLH pitch angle 13.5026 degrees

LVLH yaw angle 230.9747 degrees

total delta-v 5494.8284 meters/second

transfer time 7374.8151 seconds

 122.9136 minutes

 2.0486 hours

Orbital Mechanics with MATLAB

page 19

Here is the solution summary for this example.

input data file ==> leo2moly.in

 oota dv1 true dv2 true dv1 arg dv2 arg delta-v1 delta-v2 total

 solution anomaly anomaly latitude latitude magnitude magnitude delta-v

 number (degrees) (degrees) (degrees) (degrees) (m/s) (m/s) (m/s)

 -------- --------- --------- --------- --------- --------- --------- ---------

 1 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 2 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 3 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 4 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 5 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 6 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 7 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 8 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 9 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 10 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 11 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 12 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 13 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 14 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 15 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 16 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

 17 324.4123 152.2701 324.4123 116.7491 2309.2747 3185.5537 5494.8284

The following illustrates the trajectory graphics for this example. The initial LEO orbit is red, the

elliptical transfer orbit is blue and the final Molniya orbit is green. The asterisk is the orbital location of

the first impulse and the small circle is the location of the second impulse.

Orbital Mechanics with MATLAB

page 20

Typical behavior of the primer vector and its derivative for this example is illustrated in the next plot.

Orbital Mechanics with MATLAB

page 1

Gravity Perturbed Optimal Orbital Transfer

This document is the user’s manual for a MATLAB script named poota which can be used to solve the

optimal two-impulse, non-spherical gravity perturbed orbital transfer between non-coplanar Earth orbits.

The algorithm starts with an initial guess computed by the two-body oota MATLAB script and then

uses the SNOPT nonlinear programming (NLP) method to determine the optimum two impulse orbit

transfer subject to non-spherical Earth gravity perturbations. Initial guess conditions can also be

extracted from other compatible software simulations. Additional orbit perturbations such as third-body

point mass gravity or solar radiation pressure can easily be added to the equations of motion of this

MATLAB script.

The poota script uses modified equinoctial orbital elements to solve the gravity perturbed orbit transfer

“targeting” problem. Additional information about these orbital elements can be found in Appendix A.

That appendix also explains how to use components and combinations of these non-singular elements to

calculate a variety of final orbital element targets or boundary conditions.

MATLAB versions of SNOPT for several computer platforms can be requested at Professor Philip Gill’s

web site which is located at http://ccom.ucsd.edu/~optimizers/. Professor Gill’s web site also includes a

PDF version of the SNOPT software user’s guide. A brief introduction to nonlinear programming can

be found in Appendix B of this document.

User interaction with the script

The poota MATLAB script will interactively prompt the user for the name of the simulation definition

input data file. This prompt is similar to the following;

The file type defaults to names with a *.in filename extension. However, you can select any poota

compatible ASCII data file by selecting the Files of type: field or by typing the name of the file directly

in the File name: field.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 2

Input file format and contents

The poota software is “data-driven” by a user-created text file. This text file should be simple ASCII

format with no special characters.

The following is a typical input file used by this MATLAB script. In the following discussion the actual

input file contents are in courier font and all explanations are in times italic font. This example is a

transfer from a low Earth orbit (LEO) to a Molniya (from the Russian word for “lightning”) elliptical

Earth orbit (EEO). This input file was created using the optimal output from an oota.m simulation. In

this data file, user provided inputs are in bold font.

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

The first five lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with five and only five text lines.

**

* input data file for poota.m MATLAB script

* impulsive, gravity-perturbed LEO-to-Molniya orbital transfer

* filename ==> leo2moly.in ==> December 14, 2017

**

The first inputs to the program define the initial UTC calendar date and time for the simulation. The

data for the calendar year should include all four digits. The calendar date and time are required to

correctly calculate the tesseral or longitude-dependent components of the Earth’s gravity.

initial calendar date

(1 <= month <= 12, 1 <= day <= 31, year = all digits!)

--

2, 11, 2013

initial UTC

(0 <= hours <= 24, 0 <= minutes <= 60, 0 <= seconds <= 60)

--

20, 18, 19.36

The next six inputs are the classical orbital elements of the initial low Earth Orbit (LEO) prior to the

first impulsive maneuver. These items can be extracted from an oota.m simulation or any other

compatible computer program.

**

initial orbit - prior to the first impulse

**

semimajor axis (kilometers)

(semimajor axis > 0)

6653.14

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

0.0

Orbital Mechanics with MATLAB

page 3

orbital inclination (degrees)

(0 <= inclination <= 180)

51.6

argument of perigee (degrees)

(0 <= argument of perigee <= 360)

0.0

right ascension of the ascending node (degrees)

(0 <= raan <= 360)

0.0

true anomaly (degrees)

(0 <= true anomaly <=360)

324.412296733363

The next three inputs define the Earth-centered-inertial (ECI) delta-v guess for the first impulsive

maneuver in the units of meters/second.

**

initial guess for the first ECI delta-v vector

**

delta-vx (meters/second)

1330.4075

delta-vy (meters/second)

1218.4185

delta-vz (meters/second)

1441.6042

The next three inputs summarize the ECI delta-v guess for the second impulsive maneuver also in the

units of meters/second.

initial guess for the second ECI delta-v vector

delta-vx (meters/second)

1410.9169

delta-vy (meters/second)

-908.8023

delta-vz (meters/second)

2707.6089

The next set of six classical orbital elements inputs correspond to the final orbit “targets”.

final orbit "targets"

semimajor axis (kilometers)

(semimajor axis > 0)

26553.071184

orbital eccentricity (non-dimensional)

(0 <= eccentricity < 1)

0.737

orbital inclination (degrees)

(0 <= inclination <= 180)

63.4

Orbital Mechanics with MATLAB

page 4

argument of perigee (degrees)

(0 <= argument of perigee <= 360)

270.0

right ascension of the ascending node (degrees)

(0 <= raan <= 360)

100.0

true anomaly (degrees)

(0 <= true anomaly <=360)

141.231327743477

This next input is the two-body initial guess for the orbit transfer time in seconds.

two-body orbit transfer time (seconds)

7374.8151

The Earth gravitational constant and radius are user-defined by the next two inputs.

**

astrodynamic constants and gravity model

**

central body gravitational constant (km^3/sec^2)

--

398600.4415

central body radius (kilometers)

6378.14

Finally, the name of the Earth gravity model to use in the simulation and the order and degree of this

model are set by the following three inputs.

name of Earth gravity model data file

egm96.dat

order of the gravity model (zonals)

8

degree of the gravity model (tesserals)

8

The following is the poota solution for this example. The first part of the display summarizes useful

information about the user-defined initial guess. The second section summarizes the SNOPT iterations

and summary. The final section of the output is the gravity perturbed orbit transfer solution found

during the optimization.

Gravity-perturbed, Two-impulse Orbit Transfer Analysis

==

user-defined orbital elements and state vector of the park orbit

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +6.65314000000000e+03 +0.00000000000000e+00 +5.16000000000000e+01 +0.00000000000000e+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +0.00000000000000e+00 +3.24412296733363e+02 +3.24412296733363e+02 +9.00118574397073e+01

Orbital Mechanics with MATLAB

page 5

 rx (km) ry (km) rz (km) rmag (km)

 +5.41050427847703e+03 -2.40495035573127e+03 -3.03429219071760e+03 +6.65314000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +4.50443238891588e+00 +3.90986332871179e+00 +4.93301981756539e+00 +7.74026013232195e+00

initial guess for orbital elements and state vector of the transfer orbit after the first impulse

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.11540016846597e+04 +6.85491217299906e-01 +5.13247641745961e+01 +3.24478972781318e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.52533654168549e-01 +3.59775987721832e+02 +3.24254960503150e+02 +5.10326983444715e+02

 rx (km) ry (km) rz (km) rmag (km)

 +5.41050427847703e+03 -2.40495035573127e+03 -3.03429219071760e+03 +6.65314000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +5.83483988891588e+00 +5.12828182871179e+00 +6.37462401756540e+00 +1.00489035426409e+01

initial guess for orbital elements and state vector of the transfer orbit prior to second impulse

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.11540016846598e+04 +6.85491217299906e-01 +5.13247641745960e+01 +3.24478972781318e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.52533654168549e-01 +1.52270140234892e+02 +1.16749113016209e+02 +5.10326983444715e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29049002337334e+04 +1.58564447485915e+04 +1.98804856918629e+04 +2.85166092208052e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -2.95123603224056e+00 +3.88768603587956e-01 +5.01938485784781e-01 +3.01875427761895e+00

initial guess for orbital elements and state vector of the transfer orbit after the second impulse

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.65530827342780e+04 +7.37000036687095e-01 +6.34000067825626e+01 +2.70000015036282e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000001165420e+02 +1.41231311447734e+02 +5.12313264840160e+01 +7.17682164106908e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29049002337334e+04 +1.58564447485915e+04 +1.98804856918629e+04 +2.85166092208052e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -1.54031913224056e+00 -5.20033696412044e-01 +3.20954738578478e+00 +3.59780662295074e+00

user-defined orbital elements and state vector of the mission orbit

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.65530711840000e+04 +7.37000000000000e-01 +6.34000000000000e+01 +2.70000000000000e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +1.00000000000000e+02 +1.41231327743477e+02 +5.12313277434770e+01 +7.17681695832038e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29049013453926e+04 +1.58564428966570e+04 +1.98804833674105e+04 +2.85166070736184e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -1.54031917839348e+00 -5.20034004351151e-01 +3.20954662441301e+00 +3.59780600801227e+00

Orbital Mechanics with MATLAB

page 6

initial guess for initial delta-v vector, magnitude and steering angles

x-component of delta-v 1330.407500 meters/second

y-component of delta-v 1218.418500 meters/second

z-component of delta-v 1441.604200 meters/second

delta-v magnitude 2309.274870 meters/second

pitch angle -0.396455 degrees

yaw angle -1.474411 degrees

initial guess for final delta-v vector, magnitude and steering angles

x-component of delta-v 1410.916900 meters/second

y-component of delta-v -908.802300 meters/second

z-component of delta-v 2707.608900 meters/second

delta-v magnitude 3185.553967 meters/second

pitch angle 13.502600 degrees

yaw angle 129.025342 degrees

 Nonzero derivs Jij 55

 Non-constant Jij's 55 Constant Jij's 0

 SNJAC EXIT 100 -- finished successfully

 SNJAC INFO 102 -- Jacobian structure estimated

 Scale option 0

 Nonlinear constraints 7 Linear constraints 1

 Nonlinear variables 7 Linear variables 0

 Jacobian variables 7 Objective variables 6

 Total constraints 8 Total variables 7

 Itn 0: Feasible linear rows

 Itn 0: PP1. Minimizing Norm(x-x0)

 Itn 0: PP1. Norm(x-x0) approximately minimized (0.00E+00)

 The user has defined 0 out of 55 first derivatives

 Itn 0: Hessian set to a scaled identity matrix

 Itn 4: Infeasible subproblem. Elastic mode started with weight = 2.3E+05

 Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

 0 4 1 2.9E-03 1.0E+00 5.4948288E+00 r i

 Search exit 5 -- step too small. Major itn = 0

 Itn 4 -- Central differences invoked. Small step length.

 Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

 0 0 1.0E+00 1 2.9E-03 1.0E+00 6.2492568E+00 3.3E-03 r i c

 Itn 4: Hessian set to a scaled identity matrix

 1 0 1.0E+00 2 4.6E-06 3.4E-02 5.4964753E+00 3.3E-03 r i

 Search exit 5 -- step too small. Major itn = 1

 Itn 4 -- Central differences invoked. Small step length.

 1 0 1.0E+00 2 4.6E-06 3.4E-02 5.4976636E+00 2.0E+00 r i c

 Itn 4: Elastic weight increased to 2.350E+06

 Itn 4: Elastic weight increased to 2.350E+08

 Itn 4: Elastic weight increased to 2.350E+10

 2 0 1.0E+00 3 (3.8E-11)(3.9E-11) 5.4976627E+00 2.0E+00 r i c

 SNOPTA EXIT 0 -- finished successfully

 SNOPTA INFO 1 -- optimality conditions satisfied

 Problem name matlabMx

 No. of iterations 4 Objective 5.4976631940E+00

Orbital Mechanics with MATLAB

page 7

 No. of major iterations 2 Linear obj. term 0.0000000000E+00

 Penalty parameter 2.026E+00 Nonlinear obj. term 5.4976631940E+00

 User function calls (total) 45 Calls with modes 1,2 (known g) 3

 Calls for forward differencing 21 Calls for central differencing 14

 No. of degenerate steps 0 Percentage 0.00

 Max x 7 7.4E+03 Max pi 4 2.3E+10

 Max Primal infeas 12 2.0E-12 Max Dual infeas 3 9.3E+01

 Nonlinear constraint violn 2.8E-07

 Solution printed on file 9

 Time for MPS input 0.00 seconds

 Time for solving problem 1.37 seconds

 Time for solution output 0.00 seconds

 Time for constraint functions 1.40 seconds

 Time for objective function 0.00 seconds

Gravity-perturbed Two-impulse Orbit Transfer Analysis

===

predicted orbital elements and state vector of the transfer orbit after the initial delta-v

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.11671023071891e+04 +6.85685412823596e-01 +5.13366592810150e+01 +3.24424997756782e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.41569275048433e-01 +3.59836813556265e+02 +3.24261811313046e+02 +5.10801123250296e+02

 rx (km) ry (km) rz (km) rmag (km)

 +5.41050427847703e+03 -2.40495035573127e+03 -3.03429219071760e+03 +6.65314000000000e+03

 vx (kps) vy (kps) vz (kps) vmag (kps)

 +5.83871587822862e+00 +5.12500634248986e+00 +6.37462401756540e+00 +1.00494837918453e+01

predicted orbital elements and state vector of the transfer orbit prior to the final delta-v

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.11418028453867e+04 +6.85332159815510e-01 +5.13298884384500e+01 +3.24489090032656e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +2.02185017854783e-01 +1.52289343782529e+02 +1.16778433815185e+02 +5.09885613105625e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29007200838770e+04 +1.58578532716098e+04 +1.98717713621579e+04 +2.85094262681018e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -2.95089496123111e+00 +3.89427513695840e-01 +4.99613504467329e-01 +3.01812002983457e+00

predicted orbital elements and state vector of the mission orbit

--

 sma (km) eccentricity inclination (deg) argper (deg)

 +2.65530711858840e+04 +7.37000000029211e-01 +6.34000000005345e+01 +2.70000000000315e+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 +9.99999999989945e+01 +1.41218027730079e+02 +5.12180277303945e+01 +7.17681695908418e+02

 rx (km) ry (km) rz (km) rmag (km)

 -1.29007200838770e+04 +1.58578532716098e+04 +1.98717713621579e+04 +2.85094262681018e+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -1.54092132791403e+00 -5.19293981387735e-01 +3.21047420530623e+00 +3.59878443378630e+00

Orbital Mechanics with MATLAB

page 8

predicted initial delta-v vector, magnitude and steering angles

x-component of delta-v 1334.283489 meters/second

y-component of delta-v 1215.143014 meters/second

z-component of delta-v 1441.604200 meters/second

delta-v magnitude 2309.785194 meters/second

pitch angle 27.789418 degrees

yaw angle 100.512247 degrees

predicted final delta-v vector, magnitude and steering angles

x-component of delta-v 1409.973633 meters/second

y-component of delta-v -908.721495 meters/second

z-component of delta-v 2710.860701 meters/second

delta-v magnitude 3187.878000 meters/second

pitch angle 13.534348 degrees

yaw angle 129.042135 degrees

total delta-v 5497.663194 meters/second

transfer time 7374.815100 seconds

 122.913585 minutes

 2.048560 hours

degree of gravity model 8

order of gravity model 8

The following is a brief summary of the information provided by this MATLAB script.

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the position vector in kilometers

ry (km) = y-component of the position vector in kilometers

rz (km) = z-component of the position vector in kilometers

rmag (km) = scalar magnitude of the position vector in kilometers

vx (km/sec) = x-component of the velocity vector in kilometers per second

vy (km/sec) = y-component of the velocity vector in kilometers per second

vz (km/sec) = z-component of the velocity vector in kilometers per second

Orbital Mechanics with MATLAB

page 9

vmag (km/sec) = scalar magnitude of the velocity vector in kilometers per second

x-component of delta-v = ECI x-component of the impulsive delta-v maneuver in meters per second

y-component of delta-v = ECI y-component of the impulsive delta-v maneuver in meters per second

z-component of delta-v = ECI z-component of the impulsive delta-v maneuver in meters per second

delta-v magnitude = scalar magnitude of the impulsive delta-v maneuver in meters per second

transfer time = time interval between the two impulsive maneuvers in seconds, minutes and hours

Note that ECI implies an Earth-centered-inertial coordinate system.

Additional information about the data displayed by the optimization algorithm can be found in the

SNOPT user’s manual which is available at Professor Gill’s website which is located at

http://scicomp.ucsd.edu/~peg/.

The pitch and yaw angles for each impulsive maneuver are computed and displayed in a local-vertical-

local horizontal coordinate system. The following diagram illustrates the geometry of the pitch and yaw

angles in this system. In this figure, the radial direction is along the geocentric radius vector directed

away from the Earth, the tangential direction is tangent to the orbit in the direction of the orbital motion,

and the normal direction is along the angular momentum vector of the orbit. The pitch angle is positive

above the local horizontal plane formed by the tangential and normal directions, and the yaw angle is

positive in the direction of the angular momentum vector which is perpendicular to the orbit plane.

Tu

Ru

Nu





 pitch

= yaw





=

The poota script will also create a graphics display of the initial, transfer and final orbits. The

following is the graphics display for this example. The initial orbit trace is red, the transfer orbit is blue

and the final mission orbit is green. The dimensions are Earth radii (ER) and the plot is labeled with an

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. The location of

each impulse is marked with a small blue circle.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 10

Trajectory image files are saved to disk in both encapsulated, color Postscript format and MATLAB

fig format. The disk file names are poota1.eps and poota1.fig. The interactive features of

MATLAB graphics allow the user to re-load and manipulate the fig version of the trajectory display.

These capabilities also allow the user to interactively find the best viewpoint as well as verify basic

three-dimensional geometry of the orbital maneuver.

Technical discussion

In this MATLAB script, the orbital motion is modeled with respect to a true-of-date Earth-centered-

inertial (ECI) coordinate system. The origin of this system is the center of the Earth and the

fundamental plane is the Earth’s equator. The x-axis is aligned with the true-of-date Vernal Equinox,

the z-axis is aligned with the Earth’s spin axis, and the y-axis completes this orthogonal, right-handed

coordinate system.

Acceleration due to Earth gravity

This MATLAB script uses a spherical harmonic representation of the Earth’s geopotential function

given by

 () () ()0 0

1 1 1

, , sin cos

n nn
m m m

n n n n n

n n m

R R
r C P u P u S m C m

r r r r r

  
   

 

= = =

   
  = + + +     

   
 

where  is the geocentric latitude,  is the geocentric east longitude and
2 2 2r x y z= = + +r is the

geocentric distance. In this expression the S’s and C’s are unnormalized harmonic coefficients of the

Orbital Mechanics with MATLAB

page 11

geopotential, and the P’s are associated Legendre polynomials of degree n and order m with argument

u = sin  .

The software calculates the acceleration due to the Earth’s gravity field with a vector equation derived

from the gradient of the potential function expressed as

 () (), ,g t t= a r r

This acceleration vector is a combination of pure two-body or point mass gravity acceleration and the

gravitational acceleration due to higher order non-spherical terms in the Earth’s geopotential. In terms

of the Earth’s geopotential  , the inertial rectangular cartesian components of the spacecraft’s

acceleration vector are as follows

2 22 2 2

1 1z
x x y

r r x yr x y

  

  

     
= − −     ++   

2 22 2 2

1 1z
y y x

r r x yr x y

  

  

     
= − +     ++   

2 2

2

1 x y
z z

r r r

 

 

 +  
= +        

The three partial derivatives of the geopotential with respect to r, ,  are given by

 () () ()
2 0

1
1 cos sin sin

nN n
m m m

n n n

n m

R
n C m S m P

r r r r

 
  

 = =

    
= − + +   

   
 

 () () ()1

2 0

cos sin sin tan sin

nN n
m m m m

n n n n

n m

R
C m S m P m P

r r

 
    



+

= =

    
 = + −     

   
 

 () ()
2 0

cos sin sin

nN n
m m m

n n n

n m

R
m S m C m P

r r

 
  

 = =

    
= −   
   

 

 where

 ()

()

1

1

 radius of the Earth

 geocentric distance

, harmonic coefficients

 geocentric latitude sin

 longitude

 right ascension tan

 right ascension of Greenwich

m m

n n

g

y x

g

R

r

S C

z r

r r



  





−

−

=

=

=

= =

= = −

= =

=

Orbital Mechanics with MATLAB

page 12

Right ascension is measured positive east of the vernal equinox, longitude is measured positive east of

Greenwich, and latitude is positive above the Earth’s equator and negative below.

For m = 0, the coefficients are called zonal terms, when m n= the coefficients are sectorial terms, and

for n m  0 the coefficients are called tesseral terms.

The Legendre polynomials with argument sin  are computed using recursion relationships given by:

() () () () ()

() () ()

() () () ()

0 0 0

1 2

1

1

1

2 1

1
sin 2 1 sin sin 1 sin

sin 2 1 cos sin , 0,

sin sin 2 1 cos sin , 0,

n n n

n n

n n

m m m

n n n

P n P n P
n

P n P m m n

P P n P m m n

   

  

   

− −

−

−

−

− −

 = − − − 

= −  

= + −  =

where the first few associated Legendre functions are given by

 () () ()0 0 1

0 1 1sin 1, sin sin , sin cosP P P    = = =

and P j ii

j = 0 for .

The trigonometric arguments are determined from expansions given by

() ()

() ()

()

sin 2cos sin 1 sin 2

cos 2cos cos 1 cos 2

tan 1 tan tan

m m m

m m m

m m

   

   

  

= − − −

= − − −

= − +

The following are the first 14 lines of the 18 by 18 egm96.dat gravity model file included with this

script. Column 1 is the degree l, column 2 is the order m, column 3 is the C coefficients and the last

column contains the S gravity model coefficients.

 2 0 -1.08262668355E-003 0.00000000000E+000

 3 0 2.53265648533E-006 0.00000000000E+000

 4 0 1.61962159137E-006 0.00000000000E+000

 5 0 2.27296082869E-007 0.00000000000E+000

 6 0 -5.40681239107E-007 0.00000000000E+000

 7 0 3.52359908418E-007 0.00000000000E+000

 8 0 2.04799466985E-007 0.00000000000E+000

 9 0 1.20616967365E-007 0.00000000000E+000

10 0 2.41145438626E-007 0.00000000000E+000

11 0 -2.44402148325E-007 0.00000000000E+000

12 0 1.88626318279E-007 0.00000000000E+000

13 0 2.19788001661E-007 0.00000000000E+000

14 0 -1.30744533118E-007 0.00000000000E+000

Gravity model coefficients are often published in normalized form. The relationship between

normalized , ,,l m l mC S and un-normalized gravity coefficients , ,,l m l mC S is given by the following

expression:

Orbital Mechanics with MATLAB

page 13

() ()

()
()

1 2

,,

,, 0

!1

2 2 1 !

l ml m

l ml m m

CC l m

SS l l m

     +
=    

− + −     

where
0m is equal to 1 if m is zero and equal to zero if m is greater than zero.

The following is the MATLAB source code for the function that opens and reads a gravity model file

(fname) and creates matrices of the un-normalized coefficients.

function [ccoef, scoef] = readgm(fname)

% read gravity model data file

% input

% fname = name of gravity data file

% output

% ccoef, scoef = gravity model coefficients

% data file format (space delimited ascii)

% column 1 is the degree, column 2 is the order, column 3 are the C coefficients

% and the last column contains the S gravity model coefficients. For example,

% 2 0 -1.08262668355E-003 0.00000000000E+000

% 3 0 2.53265648533E-006 0.00000000000E+000

% 4 0 1.61962159137E-006 0.00000000000E+000

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% read the data file

gdata = dlmread(fname);

nrows = size(gdata, 1);

% initialize coefficients

idim = gdata(nrows, 1) + 1;

ccoef = zeros(idim, idim);

scoef = zeros(idim, idim);

% create gravity model coefficients

for n = 1:nrows

 i = gdata(n, 1);

 j = gdata(n, 2);

 ccoef(i + 1, j + 1) = gdata(n, 3);

 scoef(i + 1, j + 1) = gdata(n, 4);

end

Orbital Mechanics with MATLAB

page 14

Solving the trajectory optimization problem

As mentioned earlier, the trajectory optimization uses a two-body orbital transfer solution generated

with the oota.m MATLAB script for the initial guess. For this problem, the components of the initial

and final impulsive delta-v vector and the orbit transfer time are control variables. The objective or cost

function for this problem is the sum of the scalar magnitude of the two impulses given by

i ff =  + v v

This is the scalar value we want to minimize.

The SNOPT algorithm requires initial guesses (xg) for the six components of the delta-v vectors as well

as lower (xlwr) and upper (xupr) bounds on each component. It also requires lower (flow) and upper

(fupp) bounds on the objective function and any linear or nonlinear constraints.

The following is the MATLAB source code that sets up this information.

% initial guess for components of initial delta-v

xg(1) = dv1(1);

xg(2) = dv1(2);

xg(3) = dv1(3);

% initial guess for components of final delta-v

xg(4) = dv2(1);

xg(5) = dv2(2);

xg(6) = dv2(3);

% initial guess for orbit transfer time

xg(7) = ttransfer;

xg = xg';

% define lower and upper bounds for components of delta-v vectors (kilometers/second)

for i = 1:1:3

 xlwr(i) = xg(i) - 0.01;

 xupr(i) = xg(i) + 0.01;

end

for i = 4:1:6

 xlwr(i) = xg(i) - 0.01;

 xupr(i) = xg(i) + 0.01;

end

% lower and upper bounds on transfer time (seconds)

xlwr(7) = 0.95 * ttransfer;

xupr(7) = 1.05 * ttransfer;

Orbital Mechanics with MATLAB

page 15

% bounds on objective function

flow(1) = 0.0e0;

fupp(1) = +Inf;

% semimajor axis ==> enforce final modified equinoctial "p" equality constraint

flow(2) = 0.0;

fupp(2) = 0.0;

% orbital eccentricity ==> enforce final modified equinoctial "sqrt(f^ + g^2)" equality

constraint

flow(3) = 0.0;

fupp(3) = 0.0;

% orbital inclination ==> enforce final modified equinoctial "sqrt(h^2 + k^2)" equality

constraint

flow(4) = 0.0;

fupp(4) = 0.0;

% argument of perigee constraints

flow(5) = sin(oev_mo(4));

fupp(5) = sin(oev_mo(4));

flow(6) = cos(oev_mo(4));

fupp(6) = cos(oev_mo(4));

% raan constraints

flow(7) = sin(oev_mo(5));

fupp(7) = sin(oev_mo(5));

flow(8) = cos(oev_mo(5));

fupp(8) = cos(oev_mo(5));

flow = flow';

fupp = fupp';

% solve the orbital TPBVP using SNOPT

snscreen on;

xmul = zeros(7, 1);

xstate = zeros(7, 1);

fmul = zeros(8, 1);

fstate = zeros(8, 1);

% solve the orbital TPBVP using SNOPT

snscreen on;

[x, f, inform, xmul, fmul] = snopt(xg, xlwr, xupr, flow, fupp, 'tpbvp');

Orbital Mechanics with MATLAB

page 16

The tpbvp MATLAB function defines the current value of the objective function and the mission

constraints. The function that evaluates the Earth gravity model and the first order equations of motion

is called ceqm1. Here’s the source code for this function.

function ydot = ceqm1 (t, y)

% first order form of Cowell's equations of orbital motion

% version for ode45

% input

% t = current simulation time

% y = current eci state vector

% output

% ydot = eci acceleration vector

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute non-spherical gravity perturbations

agrav = gravity(t, y);

% total acceleration vector

ydot = [y(4)

 y(5)

 y(6)

 agrav(1)

 agrav(2)

 agrav(3)];

The tpbvp objective function starts with the two-body solution for the position and velocity vectors of

the maneuver on the initial orbit and the current value for the delta-v vector and numerically integrates

the first-order form of the orbital equations for the predicted transfer time. At the final time the software

adds the current value of the second delta-v vector to the velocity vector of the transfer orbit to

determine the velocity vector on the final mission orbit. This predicted state vector is used to compute

the current modified equinoctial orbital elements of the final mission orbit.

The following is the MATLAB source code for the tpbvp function.

function [f, g] = tpbvp(x)

% two point boundary value objective function and

% and modified equinoctial element constraints

% input

% x(1:3) = current first delta-v vector (kilometers/second)

% x(4:6) = current second delta-v vector (kilometers/second)

% x(7) = current transfer time (seconds)

% output

% f(1) = objective function (total delta-v magnitude)

% f(2) = predicted semiparameter difference

% f(3) = predicted orbital eccentricity difference

% f(4) = predicted orbital inclination difference

Orbital Mechanics with MATLAB

page 17

% f(5) = predicted mission orbit sine of argument of perigee

% f(6) = predicted mission orbit cosine of argument of perigee

% f(7) = predicted mission orbit sine of raan

% f(8) = predicted mission orbit cosine of raan

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global emu rpo vpo ritop vitop rftop vftop

global mee_target mee_predict

% load current state vector of transfer orbit after first impulse

ritop(1) = rpo(1);

ritop(2) = rpo(2);

ritop(3) = rpo(3);

vitop(1) = vpo(1) + x(1);

vitop(2) = vpo(2) + x(2);

vitop(3) = vpo(3) + x(3);

% load current orbit transfer time (seconds)

ttime = x(7);

% set up options for ode45

options = odeset('RelTol', 1.0e-8, 'AbsTol', 1.0e-8);

% propagate to end of current transfer orbit time

[~, ysol] = ode45(@ceqm1, [0.0 ttime], [ritop, vitop], options);

% current "predicted" state vector prior to second impulse

rftop(1:3) = ysol(end, 1:3);

vftop(1:3) = ysol(end, 4:6);

% current "predicted" mission orbit position vector

rmop = rftop;

% current "predicted" mission orbit velocity vector after second delta-v

vmop(1) = vftop(1) + x(4);

vmop(2) = vftop(2) + x(5);

vmop(3) = vftop(3) + x(6);

% compute current modified equinoctial and classical orbital elements

% of "predicted" mission orbit

mee_predict = eci2mee(emu, rmop, vmop);

oev_predict = eci2orb1(emu, rmop, vmop);

% objective function (total delta-v magnitude)

f(1) = norm(x(1:3)) + norm(x(4:6));

% mission orbit semimajor axis difference (kilometers)

f(2) = mee_predict(1) - mee_target(1);

Orbital Mechanics with MATLAB

page 18

% mission orbit orbital eccentricity difference

f(3) = sqrt(mee_predict(2)^2 + mee_predict(3)^2) ...

 - sqrt(mee_target(2)^2 + mee_target(3)^2);

% mission orbit orbital inclination difference

f(4) = sqrt(mee_predict(4)^2 + mee_predict(5)^2) ...

 - sqrt(mee_target(4)^2 + mee_target(5)^2);

% mission orbit sine and cosine of argument of perigee

f(5) = (mee_predict(3) * mee_predict(4) - mee_predict(2) * mee_predict(5)) ...

 / (oev_predict(2) * tan(0.5 * oev_predict(3)));

f(6) = (mee_predict(2) * mee_predict(4) + mee_predict(3) * mee_predict(5)) ...

 / (oev_predict(2) * tan(0.5 * oev_predict(3)));

% mission orbit sine and cosine of raan

f(7) = mee_predict(5) / (tan(0.5 * oev_predict(3)));

f(8) = mee_predict(4) / (tan(0.5 * oev_predict(3)));

% transpose objective function/constraints vector

f = f';

% no derivatives

g = [];

Targeting to the final mission orbit

This section summarizes the technique used to compute and enforce the nonlinear constraints that define

the final mission or “targeted” orbit. The semimajor axis constraint is simply

0p tp p− =

The orbital eccentricity constraint is formulated as follows

 2 2 2 2

p p t tf g f g+ = +

The orbital inclination constraint is coded according to

 2 2 2 2

p p t th k h k+ = +

The argument of perigee constraints are formulated as

()
sin

tan 2

p p p p

t

p p

g h f k

e i


−
= and

()
cos

tan 2

p p p p

t

p p

f h g k

e i


+
=

The right ascension of the ascending node constraints are implemented by

Orbital Mechanics with MATLAB

page 19

()

sin
tan 2

p

t

p

k

i
 = and

()
cos

tan 2

p

t

p

h

i
 =

In these equations, the t subscript implies “target” or desired values and the p subscript implies values

“predicted” by the optimization process. The targeted values are computed using the position and

velocity vectors of the mission orbit determined during the transfer orbit solution. Note that true

anomaly of the final or mission orbit is not enforced explicitly since it results from the numerical

integration for the predicted orbital transfer time.

Additional information about targeting with the modified equinoctial orbital elements can be found in

Appendix B.

Algorithm resources

(1) Walter Hohmann, Die Erreichbarkeit der Himmelskorper, Oldenbourgh, Munich, 1925. Also, The

Attainability of Heavenly Bodies, NASA Technical Translation F-44, 1960.

(2) Jean-Pierre Marec, Optimal Space Trajectories, Elsevier, 1979.

(3) R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, 1972.

(4) R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, 1987.

(5) D. F. Lawden, Optimal Trajectories for Space Navigation, Butterworths, London, 1963.

(6) John E. Prussing, “Simple Proof of the Global Optimality of the Hohmann Transfer”, AIAA Journal

of Guidance, Control and Dynamics, Vol. 15, No. 4.

(7) A. Miele, M. Ciarcia, and J. Mathwig, “Reflections on the Hohmann Transfer”, Journal of

Optimization Theory and Applications, Vol. 123, No. 2, pp. 233-253, November 2004.

Orbital Mechanics with MATLAB

page 20

Appendix A

Targeting with Modified Equinoctial Orbital Elements

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These direct

modified equinoctial equations exhibit no singularity for zero eccentricity and orbital inclinations equal

to 0 and 90 degrees. However, please note that two of the components are singular for an orbital

inclination of 180 degrees.

The classic reference for these elements is “A Set of Modified Equinoctial Orbital Elements”, M. J. H.

Walker, B. Ireland and J. Owens, Celestial Mechanics, Vol. 36, pp. 409-419, 1985.

The modified equinoctial elements are defined in terms of the classical orbital elements as follows:

()

()

()

()

()

21

cos

sin

tan 2 cos

tan 2 sin

p a e

f e

g e

h i

k i

L





 

= −

= +

= +

= 

= 

= + +

where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of perigee

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L





=

=

=

=

=

 =

=

=

The classical orbital elements can be recovered from the modified equinoctial orbital elements with

semimajor axis

2 21

p
a

f g
=

− −

orbital eccentricity

 2 2e f g= +

Orbital Mechanics with MATLAB

page 21

orbital inclination

 ()1 2 22 tani h k−= +

argument of periapsis

 () ()1 1tan , tan ,g f k h − −= −

()

sin
tan 2

g h f k

e i


−
=

()

cos
tan 2

f h g k

e i


+
=

right ascension of the ascending node

 ()1tan ,k h− =

()

sin
tan 2

k

i
 =

()

cos
tan 2

h

i
 =

true anomaly

 () ()1tan ,L L g f  −= − + = −

()

()

1
sin sin cos

1
cos cos sin

f L g L
e

f L g L
e





= −

= +

In these expressions, an inverse tangent expression of the form ()1tan ,a b −= denotes a four quadrant

evaluation where sina = and cosb = .

Constraint formulations that enforce both the sine and cosine of a desired orbital element should be used

whenever possible. This approach involves a combination of equality and inequality constraints and

ensures that the “targeted” orbital element is in the correct quadrant.

To illustrate this technique, here are several examples for different values of argument of perigee and the

corresponding mission constraints:

Orbital Mechanics with MATLAB

page 22

()

sin 0 0
0 90

tan 2 cos

gh f k

f h g k e i






 → − 
  → 

+ =

sin 0 0

270
cos 0 0

gh f k

f h gk






 → − 
= → 

= → + =

()tan 2 sin

178
cos 0 0

g h f k e i

f h gk






− =
= → 

 → + 

The following is a sign table of the sine and cosine for each quadrant.

quadrant sine cosine

1 + +

2 + −

3 − −

4 − +

orbital eccentricity constraint

 2 2e f g= +

For a circular orbit, 0f g= = .

orbital inclination constraint

 2 2tan
2

i
h k

 
= + 

 

For an equatorial orbit, 0h k= = .

argument of perigee constraints

 ()
()

sin tan 2 sin
tan 2

g h f k
g h f k e i

e i
 

−
− = → =

 ()
()

cos tan 2 cos
tan 2

f h g k
f h g k e i

e i
 

+
+ = → =

right ascension of the ascending node constraints

 ()
()

tan 2 sin sin
tan 2

k
k i

i
= →  =

Orbital Mechanics with MATLAB

page 23

 ()
()

tan 2 cos cos
tan 2

h
h i

i
= →  =

true anomaly constraints

 () ()1tan ,L L g f  −= − + = −

 In general,

()

()

1
sin sin cos

1
cos cos sin

f L g L
e

f L g L
e





= −

= +

For a circular orbit,

sin sin cos cos sin

cos cos cos sin sin

L L

L L





= − 

= + 

For a circular, equatorial orbit,

 L = , sin sin L = and cos cos L = .

 Also, note that

2 2

2 2

 periapsis radius
1

 apoapsis radius
1

p

a

p
r

f g

p
r

f g

= →
+ +

= →
− +

Algorithm resources

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, August 20-22, 1990.

Orbital Mechanics with MATLAB

page 24

Appendix B

Nonlinear Programming Problem

A trajectory optimization problem can be described by a system of dynamic variables

()

()

t

t

 
=  
 

y
z

u

consisting of the state variables y and the control variables u for any time t. In this discussion vectors

are denoted in bold font.

The system dynamics are defined by a vector system of ordinary differential equations called the state

equations that can be represented as follows

 () (), , ,
d

t t t
dt

= =   
y

y f y u p

where p is a vector of problem parameters that is not time dependent.

The initial dynamic variables at time 0t are defined by () ()0 0 0 0, ,t t t   ψ ψ y u and the terminal

conditions at the final time ft are defined by () (), ,f f f ft t t   ψ ψ y u . These conditions are called the

boundary values of the trajectory problem.

The problem may also be subject to path constraints of the form () (), , 0t t t =  g y u .

For any mission time t there are also simple bounds on the state variables

 ()l ut y y y

the control variables

 ()l ut u u u

and the problem parameters

 ()l ut p p p

The basic nonlinear programming problem (NLP) involves the determination of the control vector

history and problem parameters that minimize the scalar performance index or objective function given

by

 () ()0 0, , , ,f fJ t t t t  =  y y p

while satisfying all the user-defined mission constraints.

Orbital Mechanics with MATLAB

page 25

Algorithm resources

(1) “Direct Trajectory Optimization Using Nonlinear Programming and Collocation”, C. R. Hargraves

and S. W. Paris, AIAA Journal of Guidance, Control and Dynamics, Vol. 10, No. 4, July-August, 1987,

pp. 338-342.

(2) “Optimal Finite-Thrust Spacecraft Trajectories Using Direct Transcription and Nonlinear

Programming”, Paul J. Enright, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1991.

(3) “Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

(4) “Improved Collocation Methods with Application to Direct Trajectory Optimization”, Albert L.

Herman, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1995.

(5) “Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of

Guidance, Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193-207.

(6) Practical Optimization, Philip E. Gill, Walter Murray and Margaret H. Wright, Emerald Group

Publishing Limited, 1982.

page 1

Program rendezvous_ocs

Finite-Burn, Earth Orbit Rendezvous Trajectory Optimization

This document is the user’s manual for a Fortran computer program called rendezvous_ocs that uses

the Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the classic Earth

orbit rendezvous trajectory optimization problem. The software models the trajectory as a mission

consisting of one or more maneuvers separated by coasting periods. The propulsive phases are

simulated as variable thrust, finite-burn propulsive maneuvers. This computer program attempts to

maximize the spacecraft mass at the end of the propulsive maneuvers.

The important features of this scientific simulation are as follows:

 finite-burn orbital maneuvers

 variable attitude steering during all maneuvers

 user-defined throttle bounds

 modified equinoctial equations of motion with oblate Earth gravity model

 user-specified flyby or rendezvous final orbit constraints

 fixed or free final flyby or rendezvous time

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of

trajectory optimization problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in the Sparse

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org).

The rendezvous_ocs software consists of Fortran routines that perform the following tasks:

 set algorithm control parameters and call the transcription/optimal control subroutine

 define the problem structure and perform initialization related to scaling, lower and upper

bounds, initial conditions, etc.

 compute the right-hand-side differential equations

 evaluate any point and path constraints

 display the optimal solution results and create an output file

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.

The rendezvous_ocs software allows the user to select the type of initial guess, collocation method,

and other important algorithm control parameters.

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/

page 2

Program execution

An input file created by the user can be run from the command line or a simple batch file with a

statement similar to the following:

rendezvous_ocs leo2meo_10k.in

If the software is executed without an input file on the command line, the computer program will display

the following information screen and file name prompt:

* program rendezvous_ocs *

* *

* finite burn earth orbit *

* rendezvous optimization *

* *

* April 10, 2012 *

please input the name of the simulation definition file

The user should respond to this prompt with the name of a compatible input data file including the

filename extension.

The screen output created by the rendezvous_ocs computer program can be re-directed to a text file

with a command line similar to

rendezvous_ocs leo2meo_10k.in >leo2meo_10k.txt

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories

and finally Command Prompt. The size, font and other characteristics of the screen can be controlled

by the user with the c:\ icon in the upper left corner of the window. To log into the subdirectory created

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is

the name of the subdirectory created by the user.

The DOS command line prompt looks similar to C:\rendezvous_ocs>_.

Input file format and contents

The rendezvous_ocs software is “data-driven” by a user-created text file. The following is a typical

input file used by this computer program. In the following discussion the actual input file contents are

in courier font and all explanations are in times italic font. This example attempts to optimize the

maneuvers required to perform a rendezvous between a spacecraft in a circular low Earth orbit (LEO)

and a second spacecraft in a typical medium altitude Earth orbit (MEO).

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

page 3

The first six lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with six and only six initial text lines.

** finite-burn earth-orbit rendezvous

** trajectory optimization

** program rendezvous_ocs

** leo2meo_10k.in - April 10, 2012

The first input is an integer that tells the simulation what type of trajectory to model.

trajectory type (1 = flyby, 2 = rendezvous)

2

The next three inputs define an initial guess, lower bound and upper bound for the total simulation

duration in minutes. Identical values for the lower and upper bounds will create a fixed time mission.

initial guess for total simulation duration (minutes)

85.0

lower bound for total simulation duration (minutes)

88.0

upper bound for total simulation duration (minutes)

88.0

The next input is the initial mass of the entire spacecraft in kilograms.

initial spacecraft mass (kilograms)

8000.0

This next integer input defines the type of initial guess for the propulsive maneuver.

type of propulsive initial guess

1 = thrust duration

2 = delta-v magnitude

2

The next four inputs define the thrust magnitude and the specific impulse of the upper stage or

spacecraft propulsion system, and the user’s initial guess for either the delta-v or thrust duration for the

first maneuver.

first propulsive maneuver

thrust magnitude (newtons)

10000.0

specific impulse (seconds)

350.0

initial guess for delta-v (meters/second)

2925.0

initial guess for thrust duration (seconds)

170.0

page 4

The next six inputs define the classical orbital elements of the initial park orbit. These elements are

defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* INITIAL ORBIT *

semimajor axis (kilometers)

8000.0

orbital eccentricity (non-dimensional)

0.015

orbital inclination (degrees)

28.5

argument of perigee (degrees)

100.0

right ascension of the ascending node (degrees)

20.0

true anomaly (degrees)

30.0

The next six inputs define the classical orbital elements of the final mission orbit. These elements are

defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* FINAL ORBIT *

semimajor axis (kilometers)

10000.0

orbital eccentricity (non-dimensional)

0.05

orbital inclination (degrees)

40.0

argument of perigee (degrees)

200.0

right ascension of the ascending node (degrees)

55.0

true anomaly (degrees)

120.0

This integer input specifies the type of gravity model to use during the simulation. Option 2 will use a

2J gravity model in the spacecraft equations of motion.

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

This next input defines the type of initial guess to use. Please see the technical discussion section for

information about how the first option is modeled. Option 2 requires either a binary restart file created

page 5

from a previous run using either initial guess option 1 or an updated binary restart file. This feature is

described in the next two sections.

* initial guess options *

 1 = numerical integration

 2 = binary data file

1

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input

specifies the name of the file to use.

name of binary initial guess data file

leo2meo_10k.rsbin

The following input can be used to create or update an initial guess binary file. The creation or update

process uses the filename defined above. For initial guess option 1, the software will create a binary

restart file. For initial guess option 2, an input of yes to this item will update the binary file used to

initialize the simulation.

* binary restart file option *

create/update binary data file (yes or no)

no

This next input specifies the type of solution data file to create.

**

* type of comma-delimited solution data file *

**

 1 = OC-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

1

For options 2 or 3, this input defines either the number of data points or the time step size of the data

output in the solution file.

number of user-defined nodes or print step size in solution data file

25

The name of the comma-separated-variable solution data file is defined in this next line.

name of solution output file

leo2heo_10k.csv

The next series of program inputs are algorithm control options and parameters for the Sparse

Optimization Suite. The first input is an integer that specifies the type of collocation method to use

during the solution process. For most simulations, the trapezoidal method is recommended.

* algorithm control parameters *

discretization/collocation method

page 6

 1 = trapezoidal

 2 = separated Hermite-Simpson

 3 = compressed Hermite-Simpson

1

The next input defines the relative error in the objective function.

relative error in the objective function (performance index)

1.0d-5

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations

1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations

20

The next input is an integer that defines the maximum number of function evaluations.

maximum number of function evaluations

10000

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations

10000

The level of output from the NLP algorithm is controlled with the following integer input.

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

The level of output from the optimal control algorithm is controlled with the following integer input.

Please note that option 4 will create lots of information.

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled

with the following integer input. Please note that option 5 will create lots of information.

differential equation output

page 7

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program option

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s

manual. To ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0

The last series of inputs allow the reading and writing of configuration input files. The user should

create a configuration file before attempting to read one. These configuration files are simple text files

which can be edited external to the rendezvous_ocs software. Please consult Appendix C.

* optimal control configuration options

read an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2meo_10k_config.txt

create an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2meo_10k_config1.txt

Optimal control solution

The following is the optimal control solution for this example. The output includes the time and orbital

characteristics at the beginning and end of each mission phase.

 program rendezvous_ocs

 ======================

 input file ==> leo2meo_10k.in

 rendezvous trajectory

 oblate earth gravity model

 beginning of maneuver phase

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.800000000000D+04 0.150000000000D-01 0.285000000000D+02 0.100000000000D+03

page 8

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200000000000D+02 0.300000000000D+02 0.130000000000D+03 0.118684693004D+03

 rx (km) ry (km) rz (km) rmag (km)

 -.658713032027D+04 0.325905620287D+04 0.288604970418D+04 0.789563272225D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.381028378016D+01 -.564780744839D+01 -.217399960475D+01 0.715138208606D+01

 end of maneuver phase

 mission elapsed time 00:54:37.540

 sma (km) eccentricity inclination (deg) argper (deg)

 0.999778599805D+04 0.500760702724D-01 0.399921786418D+02 0.199752487246D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.550628877938D+02 0.467623343061D+02 0.246514821552D+03 0.165811819507D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.335362513193D+04 -.702990130399D+04 -.568340909816D+04 0.964196312202D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.515138258024D+01 0.360501455968D+01 -.181069217135D+01 0.654304811253D+01

 spacecraft mass 3339.96227073119 kilograms

 propellant mass 4660.03772926881 kilograms

 phase duration 3277.53953053337 seconds

 54.6256588422229 minutes

 delta-v 2998.07572342380 meters/second

The following program output is the spacecraft mass, the propellant mass consumed, the actual thrust

duration for all the maneuvers, and the accumulated delta-v for the mission.

 spacecraft mass 3339.96227073119 kilograms

 propellant mass 4660.03772926881 kilograms

 phase duration 3277.53953053337 seconds

 54.6256588422229 minutes

 delta-v 2998.07572342380 meters/second

This section of the numeric results summarizes the time and orbital conditions at the beginning and end

of the transfer orbit coast.

 beginning of coast phase

 mission elapsed time 00:54:37.540

 sma (km) eccentricity inclination (deg) argper (deg)

 0.999778599805D+04 0.500760702724D-01 0.399921786418D+02 0.199752487246D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

page 9

 0.550628877938D+02 0.467623343061D+02 0.246514821552D+03 0.165811819507D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.335362513193D+04 -.702990130399D+04 -.568340909816D+04 0.964196312202D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.515138258024D+01 0.360501455968D+01 -.181069217135D+01 0.654304811253D+01

 end of coast phase

 mission elapsed time 01:27:60.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.100000000000D+05 0.500000000000D-01 0.400000000000D+02 0.200000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.550000000000D+02 0.120000000000D+03 0.320000000000D+03 0.165866900904D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.862186499607D+04 0.353038894193D+04 -.422710739886D+04 0.102307692308D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.459681283666D+00 0.541422590670D+01 0.292176275871D+01 0.616942839083D+01

 coast duration 2002.46046946663 seconds

 33.3743411577771 minutes

After the simulation is complete, the software will display a simulation summary similar to the

following;

 SIMULATION SUMMARY

 ==================

 initial mass 8000.00000000000 kilograms

 total propellant mass 4660.03772926881 kilograms

 final spacecraft mass 3339.96227073119 kilograms

 total delta-v 2998.07572342380 meters/second

 total sim duration 5280.00000000000 seconds

 88.0000000000000 minutes

The rendezvous_ocs computer program will also create an output file called orbits.csv. This file

contains the Earth-centered inertial position and velocity vectors of the park orbit and final mission

orbit. The rendezvous_ocs software package includes a MATLAB script called oplot.m that can be

used to create trajectory graphic displays using this data file. The interactive graphic features of

MATLAB allow the user to rotate and zoom the displays. These capabilities allow the user to

interactively find the best viewpoint as well as verify basic orbital geometry of the orbital transfer.

The following is the graphics display for this example. The initial orbit trace is red, the final orbit is

blue and the transfer orbit is black. The dimensions are Earth radii (ER) and the plot is labeled with an

ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.

page 10

The following two plots illustrate the evolution of the pitch and yaw steering angles and the throttle

setting during the two propulsive maneuvers determined by the software.

page 11

The next two plots illustrate the behavior of the inertial right ascension and declination, and the

accumulated delta-v and throttle setting during the simulation.

The next pair of plots illustrate the behavior of the semimajor axis, eccentricity, inclination and the right

ascension of the ascending node (RAAN) during the simulation.

Verification of the optimal control solution

The optimal control solution determined by the Sparse Optimization Suite can be verified by

numerically integrating the orbital equations of motion with the OC-computed optimal control solution.

This is equivalent to solving an initial value problem (IVP) that uses the optimal unit thrust vector

solution. This part of the rendezvous_ocs computer program uses a Runge-Kutta-Fehlberg 7(8)

variable step size method to integrate the orbital equations of motion.

The following is a display of the final solution computed using this explicit numerical integration

method.

page 12

 verification of optimal control solution

 ==

 final mass 3339.96216840498 kilograms

 propellant mass 4660.03783159502 kilograms

 delta-v 2998.07650071517 meters/second

 final mission orbit

 mission elapsed time 01:27:60.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.100000037673D+05 0.500000524679D-01 0.400000018124D+02 0.199999582004D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.549999947879D+02 0.120000292543D+03 0.319999874547D+03 0.165866994633D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.862187310660D+04 0.353037110635D+04 -.422712123100D+04 0.102307756263D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.459669452953D+00 0.541422750064D+01 0.292175590011D+01 0.616942566002D+01

Creating an initial guess

The software allows the user to input either a delta-v or thrust duration initial guess. For a delta-v initial

guess, the software estimates the thrust duration using the rocket equation. An estimate of the thrust

duration can be determined from the following expression:

sp p p ex

d

I m g m V
t

F F
 

The propellant mass required for a given V is a function of the initial (or final) mass of the spacecraft

and the exhaust velocity as follows:

 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

In these equations

 initial mass

 final mass

 propellant mass

 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i

f

p

ex sp

sp

m

m

m

V g I

I

V

F

g







 



 





page 13

The software uses a tangential thrusting steering method to generate an initial guess for the optimal

trajectory. For tangential thrusting, the unit thrust vector in the modified equinoctial frame at all times is

simply  0 1 0
T

T u .

The dynamic variables and control variables at each grid point are determined by the Sparse

Optimization Suite by setting the initial guess option INIT(1) = 6 with INIT(2) = 2. These

program options create an initial guess from the numerical integration of the equations programmed in

the oderhs subroutine. The number and location of the initial collocation nodes are determined from

the variable step-size numerical integration. The INIT(2) = 2 option tells the program to use a

Dormand-Prince numerical integration method.

Please note that this algorithm creates a coplanar initial guess.

If the software cannot find a feasible solution, try increasing the guess for the thrust duration or the

value for the magnitude of the delta-v.

Binary restart data files can also be used to initialize a rendezvous_ocs simulation. A typical

scenario is

1. Create a binary restart file from a converged and optimized simulation

2. Modify the original input file with slightly different spacecraft characteristics, propulsive

parameters or perhaps final mission targets and/or constraints

3. Use the previously created binary restart file as the initial guess for the new simulation

This techniques works well provided the two simulations are not dramatically different. Sometimes it

may be necessary to make successive small changes in the mission definition and run multiples

simulations to eventually reach the final desired solution.

Problem setup

This section provides additional details about the software implementation. It explains such things as

point and path constraints, the performance index and the numerical technique used to create an initial

guess for the software.

(1) Point functions – initial orbit constraints

For this two-point boundary value problem (TPBVP), both lower and upper bounds for all modified

equinoctial elements are set equal to the user-defined initial modified equinoctial orbital elements as

follows:

L U i L U i

L U i L U i

L U i L U i

p p p f f f

g g g h h h

k k k L L L

   

   

   

In Sparse Optimization Suite terminology, these constraints or boundary conditions are called point

functions.

page 14

(2) Performance index – maximize final spacecraft mass

The objective function or performance index J for this simulation is the mass of the spacecraft at the end

of the mission. This is simply

fJ m

The value of the maxmin indicator tells the software whether the user is minimizing or maximizing the

performance index. The spacecraft mass at the initial time is fixed to the user-defined initial value.

(3) Path constraint – unit thrust vector scalar magnitude

For variable attitude steering, the scalar magnitude of the components of the unit thrust vector at any

time during the simulation is constrained as follows:

 2 2 2 1
r t nT T T Tu u u   u

(4) Point functions – final mission orbit constraints

The final mission constraints enforced by the software are determined by the trajectory type. For the

flyby trajectory option, the final orbit position vector is constrained to the values corresponding to the

user-defined final orbit. The rendezvous trajectory option adds the final three components of the inertial

velocity vector to this constraint set.

The computation of inertial position and velocity vectors from the modified equinoctial orbital elements

in described in the Technical Discussion section later in this document.

Bounds on the dynamic variables

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial

dynamic variables during the orbital transfer.

0.05 1.05 100 0.8

1 1 1 1

1 1 1 1

i isc sc sc f im m m p p p

f g

h k

   

       

       

where
iscm is the initial spacecraft mass.

For variable attitude steering, the three components of the unit thrust vector are constrained as follows:

1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

page 15

Technical Discussion

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These equations

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees. However,

two components of the orbital element set are singular for an orbital inclination of 180 degrees.

The relationship between direct modified equinoctial and classical orbital elements is defined by the

following definitions

     

   

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

     

     

 where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





The relationship between classical and modified equinoctial orbital elements is summarized as follows:

semimajor axis

2 21

p
a

f g


 

orbital eccentricity

2 2e f g 

orbital inclination

  1 2 22 tani h k 

argument of periapsis

    1 1tan tang f k h   

right ascension of the ascending node

  1tan k h 

page 16

true anomaly

    1tanL L g f      

The mathematical relationships between an inertial state vector and the corresponding modified

equinoctial elements are summarized as follows:

position vector

 

 

 

2

2

2

2

2

cos cos 2 sin

sin sin 2 cos

2
sin cos

r
L L hk L

s

r
L L hk L

s

r
h L k L

s





 
  

 
   
 
 
 
  

r

velocity vector

 

 

 

2 2

2

2 2

2

2

1
sin sin 2 cos 2

1
cos cos 2 sin 2

2
cos sin

L L hk L g f hk g
s p

L L hk L f ghk f
s p

h L k L f h gk
s p


 


 



 
      

 
 
        
 
 
   
  

v

where

2 2 2

2 2 21

1 cos sin

h k

s h k

p
r

w

w f L g L

  

  



  

The system of first-order modified equinoctial equations of orbital motion are given by

2

t

dp p p
p

dt w 
  

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

page 17

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

2

cos
2

ndh p s
h L

dt w


 

2

sin
2

ndk p s
k L

dt w


 

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 

where , ,r t n   are non-two-body perturbations in the radial, tangential and normal directions,

respectively. The radial direction is along the radius vector of the spacecraft measured positive in a

direction away from the gravitational center, the tangential direction is perpendicular to this radius

vector measured positive in the direction of orbital motion, and the normal direction is positive along the

angular momentum vector of the spacecraft’s orbit.

The equations of orbital motion can also be expressed in vector form as follows:

  
d

dt
  

y
y A y P b

where

    

    

 

2

2

2
0 0

1
sin 1 cos sin cos

1
cos 1 sin sin cos

cos
0 0

2

sin
0 0

2

1
0 0 sin cos

p p

w

p p p g
L w L f h L k L

w w

p p p f
L w L g h L k L

w w

p s L

w

p s L

w

p
h L k L

w



  

  







 
 
 
 
    
 
 
    
  

  
 
 
 
 
 
 
 
 
  

A

and

2

0 0 0 0 0

T

w
p

p


  
   

   

b

page 18

The total non-two-body acceleration vector is given by ˆ ˆ ˆ
r r t t n n     P i i i .

where ˆ ˆ ˆ, and r t ni i i are unit vectors in the radial, tangential and normal directions. These unit vectors can

be computed from the inertial position vector r and velocity vector v according to

 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r

For unperturbed two-body motion, 0P and the first five equations of motion are simply

0p f g h k     . Therefore, for two-body motion these modified equinoctial orbital elements are

constant. The true longitude is often called the fast variable of this orbital element set.

Non-spherical Earth Gravity

The non-spherical gravitational acceleration vector can be expressed as

 ˆ ˆ
N N r rg g g i i

 where

 
 

ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ

T

N N r r

N
T

N N r r






e e i i
i

e e i i

and

  ˆ 0 0 1
T

N e

In these equations the north direction component is indicated by subscript N and the radial direction

component is subscript r.

The contributions due to the zonal gravity effects of 2 3 4, ,J J J are as follows:

4

'

2
2

cos
k

e
N k k

k

R
g P J

r r

 



 
   

 


  
4

2
2

1

k

e
r k k

k

R
g k P J

r r





 
    

 


 where

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k order Legendre polynomial

e

k

k

r

R

J

P

















page 19

For a zonal only Earth gravity model, the east component is identically zero.

Finally, the zonal gravity perturbation contribution is

 T

g a Q g

where ˆ ˆ ˆ r t n
 
 

Q i i i .

For
2J effects only, the three components are as follows:

 

 
2

22

2

24 2 2

12 sin cos3
1

2 1
r

e
J

h L k LJ R

r h k


 
    
  
 

   

 
2

2

2

24 2 2

sin cos cos sin12

1
t

e
J

h L k L h L k LJ R

r h k


  
   
  
 

  

 
2

2 22

2

24 2 2

1 sin cos6

1
n

e
J

h k h L k LJ R

r h k


   
   
  
 

Propulsive Thrust

The acceleration due to propulsive thrust can be expressed as

 

ˆ
T T

T

m t
a u

where T is the thrust magnitude, m is the spacecraft mass and ˆ
r t n

T

T T T Tu u u   u is the unit pointing

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system. The

components of this unit vector are the control variables.

The propellant mass flow rate is determined from

sp

dm T
m

dt g I
 

where g is the acceleration of gravity and spI is the specific impulse of the propulsive system. The

product spg I is also called the exhaust velocity.

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt  where

iscm is the initial

mass of the spacecraft and m is the propellant flow rate.

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle  and

the out-of-plane yaw angle  as follows:

page 20

 sin cos cos cos sin
r t nT T Tu u u      

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector

according to

 

 

1

1

sin

tan ,

r

n t

T

T T

u

u u













Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located

at the spacecraft. The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane

yaw angle is positive in the direction of the angular momentum vector. The inverse tangent calculation

in the second equation is a four quadrant operation.

The rendezvous_ocs software provides the steering angles and the components of the unit thrust

vector in both the inertial and modified equinoctial coordinate systems. The following section

summarizes the inertial-to/from-modified equinoctial coordinate transformations and the calculation of

the inertial unit thrust vector in terms of right ascension and declination angles.

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu and the corresponding

unit thrust vector in the modified equinoctial system ˆ
MEETu is given by

 ˆ ˆ ˆˆ ˆ
ECI MEET r t n T

 
 

u i i i u

where

 ˆ ˆ ˆ ˆ ˆˆˆ

r n t n r

 
      

 

r v rr r v
i r i h i i i

r r v r v r

This relationship can also be expressed as

  

 

 

 

ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ECI MEE MEE

x x
x

T T y y T
y

z z
z

Q

 
 
 

  
 
 

  

r h r h

u u r h r h u

r h r h

In these equations, r is the inertial position vector and v is the inertial velocity vector of the spacecraft.

In the rendezvous_ocs computer program, the components of the inertial unit thrust vector are

defined in terms of the right ascension  and the declination angle  as follows:

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u      

page 21

Finally, the right ascension and declination angles can be determined from the components of the ECI

unit thrust vector according to

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u   

where the calculation for right ascension is a four quadrant inverse tangent operation.

Algorithm Resources

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“Optimal Interplanetary Orbit Transfers by Direct Transcription”, John T. Betts, The Journal of the

Astronautical Sciences, Vol. 42, No. 3, July-September 1994, pp. 247-268.

“Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, 20-22 August 1990.

“Optimal Low Thrust Trajectories to the Moon”, John T. Betts and Sven O. Erb, SIAM Journal on

Applied Dynamical Systems, Vol. 2, No. 2, pp. 144-170, 2003.

page 22

APPENDIX A

Contents of the Simulation Summary and CSV Files

This appendix is a brief summary of the information contained in the simulation summary screen

displays and the CSV data files produced by the rendezvous_ocs software.

The simulation summary screen display contains the following information:

mission elapsed time = simulation time since beginning of the mission (hh:mm:ss.sss)

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per

second

spacecraft mass = current spacecraft mass in kilograms

propellant mass = expended propellant mass in kilograms

phase duration = current phase duration in seconds and minutes

thrust duration = maneuver duration in seconds

delta-v = scalar magnitude of the maneuver in meters/seconds

The accumulated delta-v is determined using a cubic spline integration of the thrust acceleration data at

each collocation node.

The comma-separated-variable disk file is created by the odeprt subroutine and contains the following

information:

page 23

time (sec) = simulation time since ignition in seconds

semimajor axis (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argument of perigee (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

period (min) = orbital period in minutes

mass = spacecraft mass in kilograms

thracc = thrust acceleration in meters/second**2

yaw = thrust vector yaw angle in degrees

pitch = thrust vector pitch angle in degrees

perigee altitude = perigee altitude in kilometers

apogee altitude = apogee altitude in kilometers

ut-radial = radial component of unit thrust vector

ut-tangential = tangential component of unit thrust vector

ut-normal = normal component of unit thrust vector

semi-parameter = orbital semiparameter in kilometers

f equinoctial element = modified equinoctial orbital element

g equinoctial element = modified equinoctial orbital element

h equinoctial element = modified equinoctial orbital element

k equinoctial element = modified equinoctial orbital element

true longitude = true longitude in degrees

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

fpa (deg) = flight path angle in degrees

deltav (mps) = accumulative delta-v in meters per second

The orbits.csv file contains the following information:

time (seconds) = simulation time since ignition in seconds

rp1-x (er) = x-component of the initial orbit position vector in earth radii

rp1-y (er) = y-component of the initial orbit position vector in earth radii

rp1-z (er) = z-component of the initial orbit position vector in earth radii

rp2-x (er) = x-component of the final orbit position vector in earth radii

rp2-y (er) = y-component of the final orbit position vector in earth radii

page 24

rp2-z (er) = z-component of the final orbit position vector in earth radii

page 25

APPENDIX B

Example Flyby Trajectory Analysis

This appendix summarizes a flyby mission from LEO to MEO. This example starts and ends at the

same orbits as the previous example. However, the propulsive thrust is 5000 Newtons and the total

simulation time is fixed to 100 minutes. Furthermore, since this is a flyby trajectory, the orbit transfer

only matches the three components of the position vector of the final mission orbit at the final time.

Here’s the initial part of the simulation definition input file for this example.

** finite-burn earth-orbit rendezvous

** trajectory optimization

** program rendezvous_ocs

** leo2meo_flyby.in - April 10, 2012

trajectory type (1 = flyby, 2 = rendezvous)

1

initial guess for total simulation duration (minutes)

95.0

lower bound for total simulation duration (minutes)

100.0

upper bound for total simulation duration (minutes)

100.0

initial spacecraft mass (kilograms)

8000.0

type of propulsive maneuver initial guess

1 = thrust duration

2 = delta-v magnitude

2

propulsive maneuver

thrust magnitude (newtons)

5000.0

specific impulse (seconds)

350.0

initial guess for delta-v (meters/second)

2925.0

initial guess for thrust duration (seconds)

170.0

lower bound for throttle setting

0.0

upper bound for throttle setting

1.0

page 26

Here’s the program output for this example.

 program rendezvous_ocs

 ======================

 input file ==> leo2meo_flyby.in

 flyby trajectory

 oblate earth gravity model

 beginning of maneuver phase

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.800000000000D+04 0.150000000000D-01 0.285000000000D+02 0.100000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200000000000D+02 0.300000000000D+02 0.130000000000D+03 0.118684693004D+03

 rx (km) ry (km) rz (km) rmag (km)

 -.658713032027D+04 0.325905620287D+04 0.288604970418D+04 0.789563272225D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.381028378016D+01 -.564780744839D+01 -.217399960475D+01 0.715138208606D+01

 end of maneuver phase

 mission elapsed time 01:10:11.736

 sma (km) eccentricity inclination (deg) argper (deg)

 0.898711286539D+04 0.235466089640D+00 0.350916114708D+02 0.903365417492D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.625248414158D+02 0.172979511791D+03 0.263316053540D+03 0.141315573076D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.739228594994D+04 -.529738113942D+04 -.632512076131D+04 0.110776934037D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.298144849526D+01 0.430206674637D+01 -.463960881703D+00 0.525471912855D+01

 spacecraft mass 3343.59238906710 kilograms

 propellant mass 4656.40761093290 kilograms

 phase duration 4211.73581241822 seconds

 70.1955968736369 minutes

 delta-v 2994.34791421085 meters/second

 beginning of coast phase

 mission elapsed time 01:10:11.736

page 27

 sma (km) eccentricity inclination (deg) argper (deg)

 0.898711286539D+04 0.235466089640D+00 0.350916114708D+02 0.903365417492D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.625248414158D+02 0.172979511791D+03 0.263316053540D+03 0.141315573076D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.739228594994D+04 -.529738113942D+04 -.632512076131D+04 0.110776934037D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.298144849526D+01 0.430206674637D+01 -.463960881703D+00 0.525471912855D+01

 end of coast phase

 mission elapsed time 01:40:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.898867629134D+04 0.235360368321D+00 0.351008512173D+02 0.903369639672D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.624745498836D+02 0.223728548707D+03 0.314065512674D+03 0.141352450221D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.862186499607D+04 0.353038894193D+04 -.422710739886D+04 0.102307692308D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.192043174636D+01 0.473402281402D+01 0.273461673498D+01 0.579458012140D+01

 coast duration 1788.26418758178 seconds

 29.8044031263631 minutes

 SIMULATION SUMMARY

 ==================

 initial mass 8000.00000000000 kilograms

 total propellant mass 4656.40761093290 kilograms

 final spacecraft mass 3343.59238906710 kilograms

 total delta-v 2994.34791421085 meters/second

 total sim duration 6000.00000000000 seconds

 100.000000000000 minutes

 verification of optimal control solution

 ==

 final mass 3343.59248030948 kilograms

 propellant mass 4656.40751969052 kilograms

 delta-v 2994.34782001675 meters/second

 final mission orbit

 mission elapsed time 01:40:00.000

page 28

 sma (km) eccentricity inclination (deg) argper (deg)

 0.898867644662D+04 0.235360359825D+00 0.351008505110D+02 0.903369671277D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.624745489581D+02 0.223728544739D+03 0.314065511867D+03 0.141352453884D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.862186536286D+04 0.353038874660D+04 -.422710749938D+04 0.102307695140D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.192043150637D+01 0.473402286160D+01 0.273461656678D+01 0.579458000135D+01

Here are plots of the behavior of the control variables and throttle setting for this example.

page 29

APPENDIX C

Typical Sparse Optimization Suite Configuration File

The rendezvous_ocs computer progran can read and use a user-defined configuration file. A

description of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms

for Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization of the

Sparse Optimization Suite user’s manual. Please note that the rendezvous_ocs software can read and

use a subset of the information in this file. For example, a subset configuration file might contain only

the following information;

ODETOL=0.1D-06

INSNLP:IOFLAG=5

SOCOUT=I4K4

The following is a typical “full version” configuration file created during the execution of the

rendezvous_ocs software.

AEQTOL=0.1000000000000000D-02

DTAUX=0.0000000000000000D+00

OBJCTL=0.1000000000000000D-04

ODETOL=0.1000000011686097D-06

PGDCTL=0.1000000000000000D-02

PRTMSD=0.1490116119384766D-07

PRTMXD=0.1000000000000000D-02

PRTSFD=0.1000000000000000D-04

QDRTOL=0.1000000000000000D-02

RESTOL=0.1000000000000000D-04

SMLTOL=0.1490116119384766D-10

TOLJSD=0.1000000000000000D-05

TOLM5A=0.1490116119384766D-07

TOLM5R=0.1490116119384766D-07

IDSCPH=0

IDSCND=0

IDSCVR=0

IDSCFN=0

IDTSFD=-1

IPFAUX=0

IPFSFD=0

IPRSFD=1

IPGRD=0

IPNLP=10

IPODE=0

IPUAUX=0

IPUOCP=6

IRSTRT=2

ISCALE=0

ISFHES=41

ISFINP=42

ISFRST=43

ISFSCL=44

ITSWCH=2

M5DTYP=0

MITODE=20

MTSWCH=-1

MXDATA=0

MXPARM=10

MXPCON=20

MXSTAT=20

MXTERM=50

NPTAUX=100

NSSWCH=-1

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0

SPRTHS=SPARSE

NLPALG=SNLPMN

NLPOMR=M

KEYDPL=.lueiLUE

page 30

RHSTMP=RHSTMPLT

RSTFIL=tlto1.rsbin

SCLFIL=scalewgt.fil

INSNLP:ALFLWR=0.0000000000000000D+00

INSNLP:ALFUPR=0.1000000000000000D+01

INSNLP:CONTOL=0.1490116119384766D-07

INSNLP:EPSRLF=0.1490116119384766D-07

INSNLP:OBJTOL=0.9999999747378752D-05

INSNLP:PGDTOL=0.1000000000000000D-04

INSNLP:SLPTOL=0.9000000000000000D+00

INSNLP:SFZTOL=0.1000000000000000D-01

INSNLP:TOLFIL=0.2000000000000000D+01

INSNLP:TOLKTC=0.1110953834938985D+26

INSNLP:TOLPVT=0.1000000000000000D-02

INSNLP:IHESHN=0

INSNLP:IOFLAG=5

INSNLP:IOFLIN=-1

INSNLP:IOFMFR=0

INSNLP:IOFPAT=0

INSNLP:IOFSHR=0

INSNLP:IOFSRC=0

INSNLP:IPUDRF=0

INSNLP:IPUFZF=0

INSNLP:IPUMF1=11

INSNLP:IPUMF2=12

INSNLP:IPUMF3=13

INSNLP:IPUMF4=14

INSNLP:IPUMF5=15

INSNLP:IPUMF6=16

INSNLP:IPUMF7=17

INSNLP:IPUNLP=6

INSNLP:IPUSTF=0

INSNLP:IRELAX=1

INSNLP:ITDRQP=-1

INSNLP:ITFZQP=-1

INSNLP:IT1MAX=20

INSNLP:JACPRM=0

INSNLP:LYNFNC=0

INSNLP:LYNOUT=0

INSNLP:LYNPLT=0

INSNLP:LYNPNT=101

INSNLP:LYNVAR=0

INSNLP:MAXLYN=5

INSNLP:MAXNFE=50000

INSNLP:MNSAME=2

INSNLP:NEWTON=0

INSNLP:NITMAX=1000

INSNLP:NITMIN=0

INSNLP:NORMAL=0

INSNLP:ALGOPT=FM

INSNLP:KTOPTN=SMALL

INSNLP:QPOPTN=SPARSE

INSNLP:BIGCON=-0.1000000000000000D+01

INSNLP:FEATOL=0.1000000000000000D-01

INSNLP:PMULWR=0.1000000000000000D+00

INSNLP:PTHTOL=0.1000000000000000D+02

INSNLP:RHOLWR=0.1000000000000000D+03

INSNLP:IMAXMU=10

INSNLP:MUCALC=3

INSNLP:MXQPIT=1

Orbital Mechanics with MATLAB

Low-Thrust Orbital Transfer with Solar-Electric Propulsion

This document describes an interactive MATLAB script (sep_ltot.m) which can be used to
determine the characteristics of continuous, low-thrust orbital transfer between two nonplanar
circular orbits using solar-electric propulsion (SEP). The numerical method used in this script is
described in Chapter 14 of the book Orbital Mechanics by V. Chobotov and the technical paper
“The Reformulation of Edelbaum's Low-thrust Transfer Problem Using Optimal Control
Theory” by Jean. A. Kechichian, AIAA-92-4576-CP. The original Edelbaum algorithm is
described in “Propulsion Requirements for Controllable Satellites”, ARS Journal, August 1961,
pp. 1079-1089.

This algorithm is valid for total inclination changes ∆i given by . This algorithm
assumes that the thrust acceleration magnitude and spacecraft mass are both constant during the
orbit transfer. Earth shadow effects on the orbital transfer are ignored in this MATLAB script.

0 114i< ∆ < .6

The propulsive thrust provided by an SEP system is given by

 2

sp

PT
gI
η

=

where η is the non-dimensional propulsive efficiency, P is the input power in kilowatts, g is the
acceleration of gravity in meters/second and spI is the specific impulse in seconds. The quantity

spgI is also called the exhaust velocity. Note that with these metric units the thrust will be in
milli-newtons. The thrust acceleration required in the equations to follow is equal to Ta T m=
where m is the mass of the spacecraft.

The initial thrust vector yaw angle β0 is given by the following expression

 0
0

sin
2tan

cos
2f

i

V i
V

π

β
π

⎛ ⎞∆⎜ ⎟
⎝ ⎠=

⎛ ⎞− ∆⎜ ⎟
⎝ ⎠

where the speed on the initial circular orbit is 0V µ= 0r and the speed on the final circular

orbit is f fV µ= r 0. In these equations 0 er r h= + is the geocentric radius of the initial orbit,

f er r h= + f is the geocentric radius of the final orbit, re is the radius of the Earth and µ is the
gravitational constant of the Earth. The initial circular orbit altitude is h , the final circular orbit
altitude is h , and is the total orbital inclination change.

0

f i∆

page 1

Orbital Mechanics with MATLAB

The total velocity change required for a low-thrust orbit transfer is given by

 0 0
0 0

0

sincos
tan

2

VV V
i

ββ
π β

∆ = −
⎛ ⎞∆ +⎜ ⎟
⎝ ⎠

The total transfer time is given by Tt V a= ∆ where is the thrust acceleration. The time
evolution of the out-of-plane yaw angle, speed and inclination change are given by the following
three expressions:

Ta

 () 1 0 0

0 0

sintan
cos T

Vt
V a

ββ
β

− ⎛ ⎞
= ⎜ ⎟−⎝ ⎠t

 () 2 2

0 0 02 cosT TV t V V a t a tβ= − + 2

 () 1 0 0
0

0 0

2 costan
sin 2

Ta t Vi t
V

β π β
π β

−⎡ ⎤⎛ ⎞−
∆ = + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

Finally, the propellant mass required for the maneuver can be determined from the ideal
rocket equation as follows:

pm

 ()1 spV gI
p im m e−∆= −

where is the initial spacecraft mass. im

This MATLAB script will prompt you for the initial and final altitudes and orbital inclinations,
and the SEP propulsive characteristics. The following is a typical user interaction with this
script. It illustrates an orbital transfer from a low Earth orbit (LEO) with an inclination of 28.5°
to a geosynchronous Earth orbit (GSO) with an orbital inclination of 0°.

 SEP Low-thrust Orbit Transfer Analysis

please input the initial altitude (kilometers)
? 621.86

please input the final altitude (kilometers)
? 35787.86

please input the initial orbital inclination (degrees)
(0 <= inclination <= 180)
? 28.5

please input the final orbital inclination (degrees)
(0 <= inclination <= 180)
? 0

page 2

Orbital Mechanics with MATLAB

please input the initial spacecraft mass (kilograms)
? 1147.732571

please input the SEP propulsive efficiency (non-dimensional)
? .65

please input the SEP input power (kilowatts)
? 10

please input the SEP specific impulse (seconds)
? 3300

The following is the output created for this example.

initial orbit altitude 621.8600 kilometers

initial orbit inclination 28.5000 degrees

initial orbit velocity 7546.0538 meters/second

final orbit altitude 35787.8600 kilometers

final orbit inclination 0.0000 degrees

final orbit velocity 3074.5936 meters/second

propulsive efficiency 0.6500

input power 10.0000 kilowatts

specific impulse 3300.0000 seconds

thrust 0.4017 newtons

initial spacecraft mass 1147.7326 kilograms

final spacecraft mass 959.8933 kilograms

propellant mass 187.8393 kilograms

total inclination change 28.5000 degrees

total delta-v 5783.7751 meters/second

thrust duration 191.2624 days

initial yaw angle 21.9850 degrees

thrust acceleration 0.000350 meters/second^2

page 3

Orbital Mechanics with MATLAB

The software will also graphically display the time evolution of the thrust vector yaw angle,
spacecraft speed, inclination change and semimajor axis. The graphics for this example are as
follows:

0 20 40 60 80 100 120 140 160 180 200
20

30

40

50

60

70
SEP Low−thrust Orbit Transfer

Y
aw

 A
ng

le
 (

de
g)

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

Simulation Time (days)

In
cl

in
at

io
n

(d
eg

)

0 20 40 60 80 100 120 140 160 180 200
3000

4000

5000

6000

7000

8000
SEP Low−thrust Orbit Transfer

V
el

oc
ity

 (
m

/s
)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5
x 10

4

Simulation Time (days)

S
em

im
aj

or
 A

xi
s

(k
ilo

m
et

er
s)

page 4

Orbital Mechanics with MATLAB

page 1

Solar Sail Trajectory Analysis with MATLAB

This document describes an interactive MATLAB script named ss2d_opt.m that can be used to

analyze and optimize two-dimensional, heliocentric solar sail trajectories between the orbits of Earth and

Venus and between the Earth and Mars. In this script, the heliocentric planet orbits are assumed to be

circular and coplanar. The optimal steering angles for minimum transfer time are modeled as piecewise-

linear variations as suggested in “Near Minimum-Time Trajectories for Solar Sails”, by Michiel Otten

and Colin R. McInnes, AIAA Journal of Guidance, Control and Dynamics, Vol. 24, No. 3.

The optimization of these steering angles is performed using the SNOPT nonlinear programming (NLP)

algorithm. MATLAB versions of SNOPT for several computer platforms can be found at Professor

Philip Gill’s web site which is located at http://scicomp.ucsd.edu/~peg/. Professor Gill’s web site also

includes a PDF version of the SNOPT software user’s guide.

This MATLAB script solves the problem of transferring from the Earth’s orbit and arriving at the orbit

of either Venus or Mars with the proper distance and velocity. It does not attempt to solve the

rendezvous problem between the actual or ephemeris locations of each planet. The ss2d_opt script

provides both numerical and graphical information about the trajectory analysis.

Interacting with the script

To execute the ss2d_opt script, log into the directory containing the source code and type ss2d_opt

in the MATLAB command window.

The ss2d_opt MATLAB script is “data driven” by a simple text file created by the user. The script

will prompt the user for the name of the data file with a screen similar to

The file type defaults to names with a *.dat filename extension. However, you can select any

compatible ASCII data file by selecting the Files of type: field or by typing the name of the file directly

in the File name: field.

http://scicomp.ucsd.edu/~peg/

Orbital Mechanics with MATLAB

page 2

The following are the contents of a typical ss2d_opt compatible input data file. Please note the proper

units. User input is denoted in bold font.

* input data file for ss2d_opt.m

* Earth-to-Mars trajectory - ideal sail

number of trajectory segments

25

characteristic acceleration (meters/second**2)

0.001

optical force model coefficient b1 (b1 = 0 = ideal)

0.0

optical force model coefficient b2 (b2 = 1 = ideal)

1.0

optical force model coefficient b3 (b3 = 0 = ideal)

0.0

target planet (1 = Venus, 2 = Mars)

2

initial guess for mission duration (days)

400

lower bound for mission duration (days)

250

upper bound for mission duration (days)

500

initial guess for steering angles (degrees)

20.0

lower bound for steering angles (degrees)

0.0

upper bound for steering angles (degrees)

90.0

The following is the numerical information output by the script for this example.

program ss2d_opt - Earth-to-Mars

 number of segments 25

 initial state vector

 radius 1.00000000 (AU)

 radial velocity 0.00000000 (AU/day)

 transverse velocity 1.00000000 (AU/day)

 final state vector

 radius 1.52368000 (AU)

Orbital Mechanics with MATLAB

page 3

 radial velocity 0.00000000 (AU/day)

 transverse velocity 0.81012702 (AU/day)

 total transfer time 7.01572813 (non-dimensional)

 total transfer time 407.84140084 days

The following is a plot of the optimal piecewise-linear steering angles during the transfer.

This plot illustrates the transfer trajectory between the Earth (blue) and Mars (red). The beginning and

end of the transfer is marked with a small o. Please note the scale for the x- and y-coordinates are

Astronomical Units.

Orbital Mechanics with MATLAB

page 4

The following two plots illustrate the behavior of the radial distance and polar angle during the mission.

The scale for the radial distance is Astronomical Units and the polar angle scale is degrees.

These next two plots illustrate the behavior of the radial and tangential or transverse velocities during

the transfer. The scale for both velocity plots is AU/day.

The ss2d_opt MATLAB script will create color Postscript disk files of these graphic images. These

images include a TIFF preview and are created with MATLAB code similar to

print -depsc -tiff -r300 polar_angle.eps

Additional script examples can be found in Appendix A.

Technical Discussion

This trajectory optimization problem is modeled in a two-dimensional polar coordinate system. The

planets are assumed to be in circular and coplanar heliocentric orbits. No allowance is made for the

eccentricity or orbital inclination of the planetary orbits. Therefore, all orbital motion is confined to the

ecliptic plane.

Orbital Mechanics with MATLAB

page 5

The following diagram illustrates the geometry of this coordinate system along with the orientation of

the steering angle.

In this diagram, r is the heliocentric distance of the solar sail,  is the polar angle, v is the transverse or

tangential component of the velocity, u is the radial component of the solar sail’s velocity and  is the

steering or solar sail orientation angle. The steering angle is measured relative to the tangential direction

and is positive in the counter-clockwise direction.

Solar radiation pressure

Space travel by solar sail is made possible by solar radiation pressure (SRP). The solar radiation force

results from the impingement of photons on the reflective, Sun-facing surface of the solar sail.

The solar radiation pressure at any heliocentric distance r is given by

2 2

0r S r
P P

r c r

 


   
    

   

 where

2

2

0

4.563 = SRP at 1 AU

1368 at 1 AU

 distance at 1 AU

 speed of light

P N m

S w m

r

c













0 





Orbital Mechanics with MATLAB

page 6

Dimensional analysis

To “streamline” the numerical calculations, the fundamental distance, velocity and time in the equations

of motion are normalized. In this MATLAB script, all heliocentric distances are normalized with

respect to the Astronomical Unit which is equal to 149597870.691 kilometers. Likewise, all velocity

values are normalized with respect to the “local circular velocity” at the heliocentric distance of the

Earth’s circular orbit, 0r . Therefore, the velocity unit is 0r   since 0r is equal to 1 AU.

Finally, all time values are normalized with respect to 3

0 1r    since again 0r is equal to 1

AU. In these equations,  is the gravitational constant of the Sun. The corresponding value for this

astronomical constant is 3 20.0002959122082855912 AU day  .

Equations of motion

The two-dimensional equations of motion in the polar coordinate system are given by

 

 

2
2

1 2 32 2

2 32

1
cos cos cos

cos sin cos

r u

v

r

v a
u b b b

r r r

uv a
v b b

r r



  

  





 
     

 

 
    

 

 where

1 2 3

 radial distance

 polar angle

 radial velocity

 transverse (tangential) velocity

 solar sail steering angle

 acceleration ratio

, , sail optical properties

r

u

v

a

b b b



















The acceleration ratio is the ratio of the of the acceleration due to SRP and the acceleration due to the

point-mass gravity of the Sun, both evaluated at a distance of 1 AU. The SRP acceleration is also called

the characteristic acceleration which is defined to be the acceleration experienced by an ideal solar sail

oriented perpendicular to the direction of the Sun at a heliocentric distance of 1 AU.

Orbital Mechanics with MATLAB

page 7

Therefore, the acceleration ratio  is equal to
ca a

 where
ca is the characteristic acceleration and a

is the solar acceleration. Values for the characteristic acceleration are typically 0.5 to 1.0 millimeters

per second
2
. The acceleration due to the Sun is equal to 2r . If we convert the characteristic

acceleration in meters per second to normalized units according to

 

2

2

86400

1000 149597870.691
c

s daym
a

s m km km AU

 
  

  

we will have characteristic acceleration in units of AU per day. Likewise, we can convert the solar

acceleration to the same unit according to

   

23 2

2 2 2

86400

149597870.691

km s s daykm
a

r km s km AU




 
    

 

The sail optical properties are a function of the method and material used to manufacture the sail. For an

ideal solar sail, 1 3 0b b  and 2 1b  . According to “Solar sail trajectories with piecewise-constant

steering laws”, by Giovanni Mengali and Alessandro A. Quarta, Aerospace Science and Technology, 13

(2009) 431-441, the values for a solar sail with a highly reflective aluminum-coated front side and a

highly emissive chromium-coated back side are 1 20.0864, 0.8272b b  and 3 0.00545b   .

Trajectory optimization

A trajectory optimization problem can be described by a system of dynamic variables

 

 

t

t

 
  
 

y
z

u

consisting of the state variables y and the control variables u for any time t. In this discussion vectors

are denoted in bold.

The system dynamics are defined by a vector system of ordinary differential equations called the state

equations that can be represented as follows:

    , , ,
d

t t t
dt

    
y

y f y u p

where p is a vector of problem parameters that is not time dependent.

The initial dynamic variables at time 0t are defined by    0 0 0 0, ,t t t   ψ ψ y u and the terminal

conditions at the final time ft are defined by    , ,f f f ft t t   ψ ψ y u . These conditions are called the

boundary values of the trajectory problem. The problem may also be subject to path constraints of the

form    , , 0t t t   g y u .

Orbital Mechanics with MATLAB

page 8

For any mission time t there are also simple bounds on the state variables

  l ut y y y

the control variables

  l ut u u u

and the problem parameters

  l ut p p p

The basic nonlinear programming problem (NLP is to determine the control vector history and problem

parameters that minimize the scalar performance index or objective function given by

    0 0, , , ,f fJ t t t t    y y p

while satisfying all the user-defined mission constraints.

In this MATLAB script, the total transfer time is the objective function which we are attempting to

minimize. The control variables are the steering angles in each time segment. The final boundary

conditions or equality constraints are the heliocentric distance and velocities at the destination planet.

The initial conditions are fixed to the normalized values 0 0 0 01, 0, 1, 0r u v     . The final boundary

conditions are 0.723331fr  for Venus, 1.52368fr  for Mars, 0, 1f f fu v r  . The final polar

angle is not constrained since we are solving a minimum time orbital transfer problem.

The following is the MATLAB source code that initializes the optimization problem. It establishes the

proper initial and final conditions, calculates initial guesses for the steering angles and objective

function, and also sets lower and upper bounds on the final dynamic variables and objective function.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% initial and final times and states

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% define state vector at initial time

xinitial(1) = 1.0d0;

xinitial(2) = 0.0d0;

xinitial(3) = 1.0d0;

xinitial(4) = 0.0;

% final conditions

if (iplanet == 1)

 % Venus

 xfinal(1) = 0.723331;

Orbital Mechanics with MATLAB

page 9

else

 % Mars

 xfinal(1) = 1.52368d0;

end

xfinal(2) = 0.0d0;

xfinal(3) = sqrt(1.0d0 / xfinal(1));

% initial guess for non-dimensional transfer time

xg(1) = time_g / tfactor;

% initial guess for steering angles (radians)

xg(2:nsegments + 1) = alpha_g;

% transpose initial guess

xg = xg';

% upper and lower bounds for non-dimensional transfer time

xlb(1) = time_lb / tfactor;

xub(1) = time_ub / tfactor;

% upper and lower bounds for steering angles (radians)

xlb(2:nsegments + 1) = alpha_lb;

xub(2:nsegments + 1) = alpha_ub;

% transpose bounds

xlb = xlb';

xub = xub';

% define lower and upper bounds on objective function (transfer time)

flow(1) = 0.0d0;

fupp(1) = +Inf;

% define bounds on final state vector equality constraints

flow(2) = xfinal(1);

fupp(2) = xfinal(1);

flow(3) = xfinal(2);

fupp(3) = xfinal(2);

flow(4) = xfinal(3);

fupp(4) = xfinal(3);

Orbital Mechanics with MATLAB

page 10

flow = flow';

fupp = fupp';

The following is the call to the SNOPT algorithm to solve the problem.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% solve solar sail shooting problem

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

snscreen('on');

[x, f, inform, xmul, fmul] = snopt(xg, xlb, xub, flow, fupp, 'ss2d_shoot');

The following is the MATLAB source code for the function that performs the shooting calculations.

This function starts with the initial conditions and integrates the equations of motion along each

trajectory segment using the current values of the steering angles for each segment.

function [f, g] = ss2d_shoot (x)

% objective function and equality constraints

% simple shooting method

% inputs

% x(1) = current value of transfer time (objective function)

% x(2, nsegments) = current values of steering angle alpha

% outputs

% f = vector of equality constraints and

% objective function evaluated at x

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global tfactor nsegments alpha_wrk xinitial

% compute duration of each time interval (non-dimensional)

deltat = x(1) / nsegments;

% specify number of differential equations

neq = 4;

% truncation error tolerance

tetol = 1.0e-10;

% initialize initial time

ti = -deltat;

% total non-dimensional time of flight

Orbital Mechanics with MATLAB

page 11

tof = x(1);

% set initial conditions

yi(1) = xinitial(1);

yi(2) = xinitial(2);

yi(3) = xinitial(3);

yi(4) = xinitial(4);

% step size guess (non-dimensional time)

h = (1200.0 / 86400.0) / tfactor;

% integrate for all segments

for i = 1:1:nsegments

 alpha_wrk = x(i + 1);

 % increment initial and final times

 ti = ti + deltat;

 tf = ti + deltat;

 % integrate from current ti to tf

 yfinal = rkf78('ss2d_eqm_opt', neq, ti, tf, h, tetol, yi);

 % reset integration vector

 yi = yfinal;

 % check for end of simulation

 if (tf >= tof)

 break;

 end

end

% objective function (minimize non-dimensional transfer time)

f(1) = x(1);

% compute equality constraints (final state boundary conditions)

f(2) = yfinal(1);

f(3) = yfinal(2);

f(4) = yfinal(3);

% transpose

Orbital Mechanics with MATLAB

page 12

f = f';

% no derivatives

g = [];

The following is the MATLAB function that evaluates the two-dimensional equations of motion.

function ydot = ss2d_eqm_opt (t, y)

% two-dimensional solar sail polar equations of motion

% required by ss2d_opt.m

% input

% t = non-dimensional simulation time

% y(1) = radial distance (r)

% y(2) = radial component of velocity (u)

% y(3) = tangential component of velocity (v)

% y(4) = polar angle (radians)

% output

% ydot(1) = r-dot

% ydot(2) = u-dot

% ydot(3) = v-dot

% ydot(4) = theta-dot

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global b1 b2 b3 acc_srp alpha_wrk

% evaluate equations of motion at current conditions

r = y(1);

u = y(2);

v = y(3);

afactor = (acc_srp / r^2) * cos(alpha_wrk);

% r-dot

ydot(1) = u;

% u-dot

ydot(2) = (v^2 / r) - (1.0 / r^2) + afactor * (b1 + b2 * cos(alpha_wrk)^2 ...

 + b3 * cos(alpha_wrk));

% v-dot

ydot(3) = -(u * v / r) + afactor * sin(alpha_wrk) * (b2 * cos(alpha_wrk) + b3);

Orbital Mechanics with MATLAB

page 13

% theta-dot

ydot(4) = v / r;

Algorithm resources

Colin R. McInnes, Solar Sailing:Technology, Dynamics and Mission Applications, Springer-Verlag,

Berlin, 1999.

J. L. Wright, Space Sailing, Gordon and Breach, New York, 1992.

C. G. Sauer, Jr., “Optimum Solar Sail Interplanetary Trajectories”, AIAA Paper 76-0792, 1976.

Kirill Simon and Yuri Zakharov, “Optimization of Interplanetary Trajectories with Solar Sail”, IAF-95-

A.2.08.

Bernd Dachwald, “Optimal Solar Sail Trajectories for Mission to the Outer Solar System”, AIAA

Journal of Guidance, Control and Dynamics, Vol. 28, No. 1, 2005, pp. 173-177.

Giovanni Mengali and Alessandro A. Quarta, “Semi-Analytical Method for the Analysis of Solar Sail

Heliocentric Orbit Raising”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1,

January-February 2012.

Giovanni Mengali and Alessandro A. Quarta, “Optimal Three-Dimensional Interplanetary Rendezvous

Using Nonideal Solar Sail”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1,

January-February 2005.

Bernd Dachwald and Malcolm Macdonald, “Parametric Model and Optimal Control of Solar Sails with

Optical Degradation”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, September-

October 2006.

Guido Colasurdo and Lorenzo Casalino, “Optimal Control for Interplanetary Trajectories with Nonideal

Solar Sail”, AIAA Journal of Spacecraft and Rockets, Vol. 40, No. 2, March-April 2003.

Victoria L. Coverstone and John E. Prussing, “Technique for Escape from Geosynchronous Transfer

Orbit Using a Solar Sail, AIAA Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, July-

August 2003.

Orbital Mechanics with MATLAB

page 14

Appendix A

Additional Script Examples

This appendix summarizes input data files and script results for two additional examples. The first

example is an Earth-to-Venus transfer with an ideal solar sail and the second example illustrates an

Earth-to-Mars mission with a non-ideal solar sail.

Earth-to-Venus with ideal solar sail

For this example, the steering angles are negative since they are bounded by 90 0   . These

bounds force the script to fly an interplanetary transfer to an inner planet.

**

* input data file for ss2d_opt.m

* Earth-to-Venus trajectory - ideal sail

**

number of trajectory time segments

35

characteristic acceleration (meters/second**2)

0.001

optical force model coefficient b1 (b1 = 0 = ideal)

0.0

optical force model coefficient b2 (b2 = 1 = ideal)

1.0

optical force model coefficient b3 (b3 = 0 = ideal)

0.0

target planet (1 = Venus, 2 = Mars)

1

initial guess for mission duration (days)

200

lower bound for mission duration (days)

150

upper bound for mission duration (days)

250

initial guess for steering angles (degrees)

-20.0

lower bound for steering angles (degrees)

-90.0

upper bound for steering angles (degrees)

0.0

The following is the script output for this example.

program ss2d_opt - Earth-to-Venus

 number of segments 35

Orbital Mechanics with MATLAB

page 15

 initial state vector

 radius 1.00000000 (AU)

 radial velocity 0.00000000 (AU/day)

 transverse velocity 1.00000000 (AU/day)

 final state vector

 radius 0.72333100 (AU)

 radial velocity -0.00000001 (AU/day)

 transverse velocity 1.17579460 (AU/day)

 total transfer time 3.52308069 (non-dimensional)

 total transfer time 204.80527993 days

Orbital Mechanics with MATLAB

page 16

Earth-to-Mars with optical solar sail

This example uses 50 trajectory segments and models a typical non-ideal solar sail.

* input data file for ss2d_opt.m

* Earth-to-Mars trajectory – non-ideal sail

number of trajectory segments

50

characteristic acceleration (meters/second**2)

0.001

optical force model coefficient b1 (b1 = 0 = ideal)

0.0864

optical force model coefficient b2 (b2 = 1 = ideal)

0.8272

optical force model coefficient b3 (b3 = 0 = ideal)

-5.45e-3

target planet (1 = Venus, 2 = Mars)

2

initial guess for mission duration (days)

400

lower bound for mission duration (days)

250

upper bound for mission duration (days)

500

initial guess for steering angles (degrees)

20.0

lower bound for steering angles (degrees)

0.0

upper bound for steering angles (degrees)

90.0

The following is the script output for this example.

program ss2d_opt - Earth-to-Mars

 number of segments 50

 initial state vector

 radius 1.00000000 (AU)

 radial velocity 0.00000000 (AU/day)

 transverse velocity 1.00000000 (AU/day)

 final state vector

 radius 1.52367998 (AU)

Orbital Mechanics with MATLAB

page 17

 radial velocity 0.00000000 (AU/day)

 transverse velocity 0.81012702 (AU/day)

 total transfer time 7.70083775 (non-dimensional)

 total transfer time 447.66849522 days

Orbital Mechanics with MATLAB

page 1

Bi-elliptic Transfer Between Coplanar Circular Orbits

This document describes a MATLAB script called bielliptic.m that can be used to determine the

characteristics of a time-free, three impulse bi-elliptic transfer between two coplanar circular orbits. The

impulsive V assumption means that the velocity, but not the position, of the space vehicle is changed

instantaneously. This script also creates graphic displays of the three-dimensional orbits and transfer

trajectory, and the evolution of the primer vector and its derivative.

For the coplanar bi-elliptic transfer, all three velocity impulses are confined to the orbital planes of the

initial and final orbits. The first impulse creates an elliptical transfer orbit with a perigee altitude equal

to the altitude of the initial circular orbit and an apogee altitude well beyond the altitude of the final

orbit. The second impulse creates a second transfer ellipse with an apogee radius equal to that of the

first transfer ellipse and a perigee radius identical to the value of the final orbit radius.

The third impulsive maneuver circularizes the second transfer orbit at perigee of the transfer orbit. The

first two impulses are posigrade which means that they are in the direction of orbital motion. The third

impulse is retrograde since it must slow down the spacecraft for insertion into the final mission orbit.

For final to initial radius ratios greater than 15.58, the bi-elliptic transfer requires less total propulsive

energy than the Hohmann transfer. It can also be shown that an outer (intermediate apogee altitude

greater than the final orbit altitude) bi-elliptic transfer is more efficient than an inner transfer.

Interacting with the script

The following is a typical user interaction with this script. User inputs to the script are in bold font.

Please note that the script will either accept a user-defined intermediate altitude or calculate the

optimum value using Brent’s root-finding algorithm.

Bi-elliptic Orbit Transfer Analysis

please input the initial altitude (kilometers)

? 300.0

please input the final altitude (kilometers)

? 5000.0

type of intermediate altitude computation

 <1> optimal

 <2> user-defined

 selection (1 or 2)

? 2

please input the bi-elliptic altitude (kilometers)

? 10000.0

Orbital Mechanics with MATLAB

page 2

The following is the script output created for this example.

Bi-elliptic Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers

initial orbit radius 6678.1363 kilometers

initial orbit velocity 7725.7606 meters/second

first ellipse perigee altitude 300.0000 kilometers

first ellipse perigee radius 6678.1363 kilometers

first ellipse apogee altitude 10000.0000 kilometers

first ellipse apogee radius 16378.1363 kilometers

first ellipse perigee velocity 9208.6069 meters/second

first ellipse apogee velocity 3754.7820 meters/second

first ellipse eccentricity 0.42070981

second ellipse perigee altitude 5000.0000 kilometers

second ellipse perigee radius 11378.1363 kilometers

second ellipse apogee altitude 10000.0000 kilometers

second ellipse apogee radius 16378.1363 kilometers

second ellipse perigee velocity 6429.8373 meters/second

second ellipse apogee velocity 4466.9042 meters/second

second ellipse eccentricity 0.18013946

final orbit altitude 5000.0000 kilometers

final orbit radius 11378.1363 kilometers

final orbit velocity 5918.7953 meters/second

first delta-v 1482.8463 meters/second

second delta-v 712.1221 meters/second

third delta-v 511.0420 meters/second

total delta-v 2706.0105 meters/second

first ellipse transfer time 1.7109 hours

 0.0713 days

second ellipse transfer time 2.2598 hours

 0.0942 days

total transfer time 3.9707 hours

 0.1654 days

Orbital Mechanics with MATLAB

page 3

The bielliptic MATLAB script will also create graphic displays of the three-dimensional initial,

final and transfer trajectory and the evolution of the primer vector and its derivative. The first graphic

image is a three-dimensional display of the solution. In this image, the initial orbit is red, the final orbit

is green, and the transfer trajectory is blue. The dimensions are Earth radii (ER) and the plot is labeled

with an ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis. The

interactive graphic features of MATLAB allow the user to rotate and zoom the display. These

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer.

These next two plots illustrate the evolution of the primer vector and its derivative as a function of time,

in days, since the first impulse. The location of each impulse is marked with a small red circle.

The bielliptic MATLAB script will also create color Postscript disk files of these graphic images.

Each image includes a TIFF preview and is created with MATLAB source code similar to

print -depsc -tiff -r300 bielliptic1.eps

Orbital Mechanics with MATLAB

page 4

For comparison, here are the characteristics of this mission using a two impulse Hohmann transfer.

Hohmann Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers

initial orbit radius 6678.1363 kilometers

initial orbit inclination 0.0000 degrees

initial orbit velocity 7725.7606 meters/second

final orbit altitude 5000.0000 kilometers

final orbit radius 11378.1363 kilometers

final orbit inclination 0.0000 degrees

final orbit velocity 5918.7953 meters/second

first inclination change 0.0000 degrees

second inclination change 0.0000 degrees

total inclination change 0.0000 degrees

first delta-v 947.4074 meters/second

second delta-v 828.2781 meters/second

total delta-v 1775.6855 meters/second

transfer orbit semimajor axis 9028.1363 kilometers

transfer orbit eccentricity 0.26029736

transfer orbit inclination 0.0000 degrees

transfer orbit perigee velocity 8673.1680 meters/second

transfer orbit apogee velocity 5090.5171 meters/second

transfer orbit coast time 4268.5281 seconds

 71.1421 minutes

 1.1857 hours

Since the radius ratio  f ir r for this example is less than 15.58, the Hohmann orbit transfer is more

efficient, in terms of the total V required, than the bi-elliptic transfer.

The following is the script output for this same example where we allow the software to compute the

optimal intermediate altitude. Since the radius ratio is less than 15.58, the script finds a two impulse

Hohmann transfer. For this situation, the apogee altitude of the intermediate transfer ellipses is equal to

the altitude of the final circular orbit.

Orbital Mechanics with MATLAB

page 5

Bi-elliptic Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers

initial orbit radius 6678.1363 kilometers

initial orbit velocity 7725.7606 meters/second

first ellipse perigee altitude 300.0000 kilometers

first ellipse perigee radius 6678.1363 kilometers

first ellipse apogee altitude 5000.0003 kilometers

first ellipse apogee radius 11378.1366 kilometers

first ellipse perigee velocity 8673.1680 meters/second

first ellipse apogee velocity 5090.5170 meters/second

first ellipse eccentricity 0.26029737

second ellipse perigee altitude 5000.0000 kilometers

second ellipse perigee radius 11378.1363 kilometers

second ellipse apogee altitude 5000.0003 kilometers

second ellipse apogee radius 11378.1366 kilometers

second ellipse perigee velocity 5918.7953 meters/second

second ellipse apogee velocity 5918.7952 meters/second

second ellipse eccentricity 0.00000001

final orbit altitude 5000.0000 kilometers

final orbit radius 11378.1363 kilometers

final orbit velocity 5918.7953 meters/second

first delta-v 947.4074 meters/second

second delta-v 828.2781 meters/second

third delta-v 0.0000 meters/second

total delta-v 1775.6856 meters/second

first ellipse transfer time 1.1857 hours

 0.0494 days

second ellipse transfer time 1.6776 hours

 0.0699 days

total transfer time 2.8633 hours

 0.1193 days

Orbital Mechanics with MATLAB

page 6

Here’s the script output and primer plots for an orbit transfer example where we allow the software to

compute the optimal apogee altitude of the two intermediate transfer ellipses. For this example, the

altitude of the initial circular orbit is 300 kilometers and the altitude of the final circular orbit is 100,000

kilometers  15.929f ir r  .

Bi-elliptic Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers

initial orbit radius 6678.1363 kilometers

initial orbit velocity 7725.7606 meters/second

first ellipse perigee altitude 300.0000 kilometers

first ellipse perigee radius 6678.1363 kilometers

first ellipse apogee altitude 10631435.2731 kilometers

first ellipse apogee radius 10637813.4094 kilometers

first ellipse perigee velocity 10922.4475 meters/second

first ellipse apogee velocity 6.8568 meters/second

first ellipse eccentricity 0.99874524

second ellipse perigee altitude 100000.0000 kilometers

second ellipse perigee radius 106378.1363 kilometers

second ellipse apogee altitude 10631435.2731 kilometers

second ellipse apogee radius 10637813.4094 kilometers

second ellipse perigee velocity 2723.9367 meters/second

second ellipse apogee velocity 27.2394 meters/second

second ellipse eccentricity 0.98019802

final orbit altitude 100000.0000 kilometers

final orbit radius 106378.1363 kilometers

final orbit velocity 1935.7207 meters/second

first delta-v 3196.6869 meters/second

second delta-v 20.3825 meters/second

third delta-v 788.2160 meters/second

total delta-v 4005.2855 meters/second

first ellipse transfer time 16971.5253 hours

 707.1469 days

Orbital Mechanics with MATLAB

page 7

second ellipse transfer time 17210.5245 hours

 717.1052 days

total transfer time 34182.0498 hours

 1424.2521 days

Here’s the Hohmann transfer solution for this example. Since the radius ratio for this example is greater

than 15.58, the bi-elliptic orbit transfer is more efficient than the Hohmann transfer.

Hohmann Orbit Transfer Analysis

initial orbit altitude 300.0000 kilometers

initial orbit radius 6678.1363 kilometers

initial orbit inclination 0.0000 degrees

initial orbit velocity 7725.7606 meters/second

final orbit altitude 100000.0000 kilometers

final orbit radius 106378.1363 kilometers

final orbit inclination 0.0000 degrees

final orbit velocity 1935.7207 meters/second

first inclination change 0.0000 degrees

second inclination change 0.0000 degrees

total inclination change 0.0000 degrees

first delta-v 2872.5124 meters/second

second delta-v 1270.3893 meters/second

total delta-v 4142.9017 meters/second

transfer orbit semimajor axis 56528.1363 kilometers

Orbital Mechanics with MATLAB

page 8

transfer orbit eccentricity 0.88186173

transfer orbit inclination 0.0000 degrees

transfer orbit perigee velocity 10598.2730 meters/second

transfer orbit apogee velocity 665.3314 meters/second

transfer orbit coast time 66877.1857 seconds

 1114.6198 minutes

 18.5770 hours

Technical Discussion

The following diagram (not to scale) illustrates the geometry of the coplanar bi-elliptic orbit transfer. In

this figure,
ir is the geocentric radius of the initial circular orbit,

ar is the apogee radius of the two

transfer ellipses, and fr is the radius of the final circular orbit. The locations and directions of the first,

second and third impulsive maneuvers are labeled 1 2,V V  and 3V , respectively.

1V

2V

3V

i
r

f
r

ar

The total impulsive delta-v for a bi-elliptic orbital transfer is a function of the initial, intermediate and

final orbital altitudes. The relationship between geocentric radius and orbital altitude is as follows:

 i e i a e a f e fr r h r r h r r h     

Orbital Mechanics with MATLAB

page 9

where ri is the geocentric radius of the initial circular park orbit,
ar is the radius at the intermediate

impulse, and rf is the radius of the final circular mission orbit. In these equations, , and i a fh h h are the

corresponding altitudes and re is the radius of the Earth.

The magnitude of the first impulse is

11 p iV v v  

and is simply the difference between the speed on the initial circular orbit and the perigee speed of the

first transfer ellipse. The scalar magnitude of the second impulse is

 2 2 1a a
V v v  

which is the difference between the speed at apogee of the first transfer ellipse and the apogee speed of

the second transfer ellipse.

Finally, the scalar magnitude of the final delta-v is

3 2pfV v v  

which is the speed difference between the final circular orbit and the speed at perigee of the second

transfer ellipse.

The orbital speeds required for these computations can be determined from

i f

i f

v v
r r

 
 

1 1

1 1

2 2
p a

i a

v v
r a r a

   
   

2 2

2 2

2 2
p a

f a

v v
r a r a

   
   

In these equations,  is the gravitational constant of the central body, and the semimajor axis of each

transfer ellipse is computed from

1 2

2 2

a fi a
r rr r

a a


 

The transfer time from the first impulse to the final impulse is equal to the sum of the half orbital periods

of the two transfer ellipses according to

3 3

1 2a a
  

 
 

Orbital Mechanics with MATLAB

page 10

Software implementation

For the optimal intermediate altitude script option, the software calls the built-in bounded

minimization MATLAB algorithm to solve for the intermediate apogee altitude that minimizes the total

delta-v required for the mission.

The call to the algorithm is as follows:

[x, fx, exitflag] = fminbnd('befunc', xmin, xmax);

where befunc is the objective function for this problem. In the argument list, xmin and xmax are the

lower and upper bounds for the intermediate radius, x is the solved-for intermediate altitude, and fx is

the corresponding total delta-v. In this script, they are equal to the radius of the final orbit and one

hundred times this radius as follows

xmin = rf;

xmax = 100.0 * rf;

The following is the MATLAB source code for the objective function.

function fx = befunc (x)

% bi-elliptic radius objective function

% required by bielliptic.m

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global mu ri rf

% semimajor axes of the transfer orbits (kilometers)

sma1 = (ri + x) / 2.0;

sma2 = (x + rf) / 2.0;

% initial orbit velocity (kilometers/second)

vi = sqrt(mu / ri);

% first transfer ellipse periapsis velocity (kilometers/second)

vt1a = sqrt((2.0 * mu / ri) - (mu / sma1));

% first transfer ellipse apoapsis velocity (kilometers/second)

vt1b = sqrt((2.0 * mu / x) - (mu / sma1));

% second transfer ellipse periapsis velocity (kilometers/second)

vt2b = sqrt((2.0 * mu / x) - (mu / sma2));

Orbital Mechanics with MATLAB

page 11

% second transfer ellipse periapsis velocity (kilometers/second)

vt2c = sqrt((2.0 * mu / rf) - (mu / sma2));

% final orbit velocity (kilometers/second)

vf = sqrt(mu / rf);

% compute delta-v contibutions (kilometers/second)

dva = abs(vt1a - vi);

dvb = abs(vt2b - vt1b);

dvc = abs(vf - vt2c);

% calculate objective function value

fx = dva + dvb + dvc;

The classic bi-elliptic technical paper is “The Bi-elliptical Transfer Between Co-planar Circular Orbits”

by Rudolf F. Hoelker and Robert Silber which was published in Advances in Ballistic Missiles and

Space Technology, Volume 3, Pergamon, Oxford, 1961.

An excellent document that describes impulsive orbital transfers is “Optimal Impulsive Maneuvers in

Orbital Transfers” by Silvano Sgubini and Paolo Teofilatto. A PDF version of this document can be

downloaded from http://naca.central.cranfield.ac.uk/dcsss/2002/E05a_sgubini.pdf.

Additional information can also be found in Chapter 6 of “Fundamentals of Astrodynamics and

Applications” by David A. Vallado, Microcosm Press, 2007.

Primer Vector Analysis

This section summarizes the primer vector analysis included with this MATLAB script. The term

primer vector was invented by Derek F. Lawden and represents the adjoint vector for velocity. A

technical discussion about primer theory can be found in Lawden’s classic text, Optimal Trajectories for

Space Navigation, Butterworths, London, 1963. Another excellent resource is “Primer Vector Theory

and Applications”, Donald J. Jezewski, NASA TR R-454, November 1975, along with “Optimal, Multi-

burn, Space Trajectories”, also by Jezewski.

As shown by Lawden, the following four necessary conditions must be satisfied in order for an

impulsive orbital transfer to be locally optimal:

(1) the primer vector and its first derivative are everywhere continuous

(2) whenever a velocity impulse occurs, the primer is a unit vector aligned with the impulse and

has unit magnitude  ˆ ˆ and 1T  p p u p

(3) the magnitude of the primer vector may not exceed unity on a coasting arc  1p p

http://naca.central.cranfield.ac.uk/dcsss/2002/E05a_sgubini.pdf

Orbital Mechanics with MATLAB

page 12

(4) at all interior impulses (not at the initial or final times) 0p p ; therefore, 0d dt p at the

intermediate impulses

Furthermore, the scalar magnitudes of the primer vector derivative at the initial and final impulses

provide information about how to improve the nominal transfer trajectory by changing the endpoint

times and/or moving the impulse times. These four cases for non-zero slopes are summarized as

follows;

 If
0 0p  and 0fp   perform an initial coast before the first impulse and add a final coast

after the second impulse

 If 0 0p  and 0fp   perform an initial coast before the first impulse and move the second

impulse to a later time

 If 0 0p  and 0fp   perform the first impulse at an earlier time and add a final coast after the

second impulse

 If 0 0p  and 0fp   perform the first impulse at an earlier time and move the second

impulse to a later time

The primer vector analysis of a two impulse orbital transfer involves the following steps.

First partition the two-body state transition matrix as follows:

   0 0 11 12

0

21 22

0 0

,
rr rv

vr vv

t t

  
        
                
   

r r

r v

v v

r v

where

0 0 0

11 0 0 0

0

0 0 0

/ / /

/ / /

/ / /

x x x y x z

y x y y y z

z x z y z z

      
               

       

r

r

and so forth.

The value of the primer vector at any time t along a two body trajectory is given by

      11 0 0 12 0 0, ,t t t t t p p p

and the value of the primer vector derivative is

      21 0 0 22 0 0, ,t t t t t p p p

which can also be expressed as

Orbital Mechanics with MATLAB

page 13

   0

0

0

,t t
  

    
   

pp

pp

The primer vector boundary conditions at the initial and final impulses are as follows:

    0
0 0

0

f

f f

f

t t


   
 

VV
p p p p

V V

These two conditions illustrate that at the locations of velocity impulses, the primer vector is a unit

vector in the direction of the corresponding impulse.

The value of the primer vector derivative at the initial time is

       1

0 0 12 0 11 0 0, ,f f ft t t t t  p p p p

provided the 12 sub-matrix is non-singular.

The scalar magnitude of the derivative of the primer vector can be determined from

  
2d d

dt dt
 

p p p
p p

p

As noted by D. J. Jezewski, the primer vector is sometimes called the Lagrange multiplier, costate vector

or perhaps an adjoint variable.

page 1

Program oneburn_ocs

Single Maneuver, Finite-Burn Trajectory Optimization

This document is the user’s manual for a Fortran computer program called oneburn_ocs that uses the

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve an Earth orbit transfer

trajectory optimization problem. The software models the trajectory as a single, finite-burn propulsive

maneuver followed by a user-defined, time-bounded final coast phase. This computer program attempts

to maximize the final spacecraft mass. Since this simulation involves a single continuous maneuver, this

is equivalent to minimizing the required propellant mass.

The important features of this scientific simulation are as follows:

 single, continuous thrust orbital maneuver

 variable inertial attitude steering

 constant propulsive thrust magnitude

 modified equinoctial equations of motion with oblate Earth gravity model

 user-specified final coast phase

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of

trajectory optimization problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in the Sparse

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org).

The oneburn_ocs software consists of Fortran routines that perform the following tasks:

 set algorithm control parameters and call the transcription/optimal control subroutine

 define the problem structure and perform initialization related to scaling, lower and upper

bounds, initial conditions, etc.

 compute the right-hand-side differential equations

 evaluate any point and path constraints

 display the optimal solution results and create an output file

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.

The oneburn_ocs software allows the user to select the type of initial guess, collocation method, and

other important algorithm control parameters.

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/

page 2

Program Execution

An input file created by the user can be run from the command line or a simple batch file with a

statement similar to the following:

oneburn_ocs leo2gto.in

If the software is executed without an input file on the command line, the computer program will display

the following information screen and file name prompt:

*************************************'

* program oneburn_ocs *'

* *'

* single maneuver, finite-burn *'

* trajectory optimization *'

* *'

* February 20, 2012 *'

*************************************'

please input the name of the simulation definition file

The user should respond to this prompt with the name of a compatible input data file including the

filename extension.

The screen output created by the oneburn_ocs computer program can be re-directed to a text file with

a command line similar to

oneburn_ocs leo2gto.in >leo2gto.txt

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories

and finally Command Prompt. The size, font and other characteristics of the screen can be controlled

by the user with the c:\ icon in the upper left corner of the window. To log into the subdirectory created

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is

the name of the subdirectory created by the user.

The DOS command line prompt looks similar to C:\oneburn_ocs>_.

Input File Format and Contents

The oneburn_ocs software is “data-driven” by a user-created text file. This text file should be simple

ASCII format with no special characters.

The following is a typical input file used by this computer program. In the following discussion the

actual input file contents are in courier font and all explanations are in times italic font. This example

attempts to optimize the maneuver required to transfer a spacecraft from a circular low Earth orbit

(LEO) to a typical elliptical geosynchronous transfer orbit (GTO).

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

page 3

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

The first six lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with six and only six initial text lines.

**

** earth-orbit trajectory optimization

** single finite-burn maneuver with final coast

** program oneburn_ocs

** leo2gto.in – February 20, 2012

**

The first three inputs define the initial mass prior to the propulsive maneuver, and the thrust magnitude

and specific impulse of the upper stage or spacecraft propulsion system.

initial spacecraft mass (kilograms)

10000.0

thrust magnitude (newtons)

99200.0

specific impulse (seconds)

450.0

This next integer input defines the type of initial guess for the propulsive maneuver.

type of propulsive initial guess

1 = thrust duration

2 = delta-v

2

The next two numeric inputs define either the user’s initial guess for the delta-v magnitude or the

maneuver duration, and should be consistent with the previous input.

initial guess for delta-v (meters/second)

2800.0

initial guess for thrust duration (seconds)

550.0

The next two inputs define the lower and upper bounds for the thrust duration. These inputs are

required for either type of propulsive initial guess.

lower bound for thrust duration (seconds)

0.01

upper bound for thrust duration (seconds)

10000.0

The next section of the input data file lets the user define the characteristics of a final coast phase that

follows the propulsive maneuver. These three inputs define an initial guess for the coast duration as

well as lower and upper bounds on the coast duration.

coast maneuver

page 4

initial guess for coast duration (seconds)

20.0

lower bound for coast duration (seconds)

1.0

upper bound for coast duration (seconds)

2000.0

The next six inputs define the classical orbital elements of the initial park orbit. These elements are

defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* INITIAL ORBIT *

semimajor axis (kilometers)

6563.14d0

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5d0

argument of perigee (degrees)

0.0

right ascension of the ascending node (degrees)

0.0d0

true anomaly (degrees)

0.0

This next integer input allows the user to define the type of initial orbit constraints to use during the

simulation.

initial orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all initial orbital elements

3 = option 2 with unconstrained true longitude

--

3

The next six inputs define the classical orbital elements of the final mission orbit. These elements are

defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* FINAL ORBIT *

semimajor axis (kilometers)

24364.8d0

orbital eccentricity (non-dimensional)

0.73062206d0

orbital inclination (degrees)

26.3355d0

argument of perigee (degrees)

270.0d0

page 5

right ascension of the ascending node (degrees)

0.0d0

true anomaly (degrees)

0.0d0

This next integer input allows the user to define the type of final orbit constraints to use during the

simulation.

final orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all final orbital elements

3 = option 2 with unconstrained true longitude

--

1

This integer input specifies the type of gravity model to use during the simulation. Option 2 will use a

2J gravity model in the spacecraft equations of motion.

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

This next input defines the type of initial guess to use. Please see the technical discussion section for

information about how the first option is modeled. Option 2 requires either a binary restart file created

from a previous run using either initial guess option 1 or an updated binary restart file. This feature is

described in the next two sections.

* initial guess options *

 1 = numerical integration

 2 = binary data file

1

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input

specifies the name of the file to use.

name of binary initial guess data file

leo2gto.rsbin

The following input can be used to create or update an initial guess binary file. The creation or update

process uses the filename defined above. For initial guess option 1, the software will create a binary

restart file. For initial guess option 2, an input of yes to this item will update the binary file used to

initialize the simulation.

* binary restart file option *

create/update binary data file (yes or no)

no

page 6

This next input specifies the type of solution data file to create.

**

* type of comma-delimited solution data file *

**

 1 = OCS-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

2

For options 2 or 3, this input defines either the number of data points or the time step size of the data

output in the solution file.

number of user-defined nodes or print step size in solution data file

100

The name of the comma-separated-variable solution data file is defined in this next line.

name of solution output file

leo2gto.csv

The next series of program inputs are algorithm control options and parameters for the Sparse

Optimization Suite. The first input is an integer that specifies the type of collocation method to use

during the solution process. For most simulations, the trapezoidal method is recommended.

* algorithm control parameters *

discretization/collocation method

 1 = trapezoidal

 2 = separated Hermite-Simpson

 3 = compressed Hermite-Simpson

1

The next input defines the relative error in the objective function.

relative error in the objective function (performance index)

1.0d-5

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations

1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations

20

The next input is an integer that defines the maximum number of function evaluations.

maximum number of function evaluations

50000

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations

10000

page 7

The level of output from the Sparse Optimization Suite NLP algorithm is controlled with the following

integer input.

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the

following integer input. Please note that option 4 will create lots of information.

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled

with the following integer input. Please note that option 5 will create lots of information.

differential equation output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program option

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s

manual. To ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0

The last series of inputs allow the reading and writing of configuration input files. The user should

create a configuration file before attempting to read one. These configuration files are simple text files

which can be edited external to the oneburn_ocs software. Please consult Appendix C.

* optimal control configuration options

read an optimal control configuration file (yes or no)

no

page 8

name of optimal control configuration file

leo2gto_config.txt

create an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2gto_config1.txt

Optimal control solution

The following is the optimal control solution for this example. This example used variable attitude

steering during the propulsive maneuver, and a final bounded coast. The output includes the time and

orbital characteristics at the beginning and end of the propulsive maneuver. This example optimizes the

maneuver required to transfer from a circular low Earth orbit (LEO) to a typical elliptical

geosynchronous transfer orbit (GTO). Appendix A contains a brief summary of this information.

 program oneburn_ocs

 ===================

 input file ==> leo2gto.in

 oblate earth gravity model

 beginning of finite burn

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.656314000000D+04 0.303099251680D-16 0.285000000000D+02 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.343626272476D+03 0.284333562833D+03 0.284333562833D+03 0.881915957810D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.164199672837D+02 -.581964995764D+04 -.303417392626D+04 0.656314000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.772230207356D+01 -.501755544829D+00 0.920593794451D+00 0.779315089527D+01

 end of finite burn

 mission elapsed time 00:03:29.965

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243647798517D+05 0.730621883714D+00 0.263354841203D+02 0.269999803084D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.125070318737D-03 0.159279650912D+02 0.285927768175D+03 0.630817068563D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.183083308977D+04 -.574950274971D+04 -.284601509915D+04 0.667147162297D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.100245469314D+02 0.145694376803D+01 0.721178679773D+00 0.101555071272D+02

page 9

The following program output is the final spacecraft mass, the propellant mass consumed, the actual

thrust duration for the maneuver, and the accumulated delta-v.

 final mass 5280.17375040397 kilograms

 propellant mass 4719.82624959603 kilograms

 thrust duration 209.965300814227 seconds

 delta-v 2818.25253032923 meters/second

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at

each collocation node or user-defined step size.

This section of the numeric results summarizes the time and orbital conditions at the beginning and end

of the final coast.

 beginning of coast maneuver

 mission elapsed time 00:03:29.965

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243647798517D+05 0.730621883714D+00 0.263354841203D+02 0.269999803084D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.125070318734D-03 0.159279650912D+02 0.285927768175D+03 0.630817068563D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.183083308977D+04 -.574950274971D+04 -.284601509915D+04 0.667147162297D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.100245469314D+02 0.145694376803D+01 0.721178679773D+00 0.101555071272D+02

 end of coast maneuver

 mission elapsed time 00:03:30.965

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243648000000D+05 0.730622060000D+00 0.263355000000D+02 0.270000000000D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.360000000000D+03 0.160144835450D+02 0.286014483545D+03 0.630817851038D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.184085640569D+04 -.574804194749D+04 -.284529200486D+04 0.667266252177D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.100220828732D+02 0.146465973235D+01 0.725009431797D+00 0.101544577367D+02

 coast duration 1.00000000000151 seconds

 1.666666666669177E-002 minutes

page 10

The following plots illustrate the evolution of the inertial right ascension, declination and pitch and yaw

angles during this finite-burn maneuver.

The next two plots illustrate the evolution of the semimajor axis and orbital eccentricity of the transfer

orbit during this finite-burn maneuver.

These final two plots illustrate the behavior of the radial, tangential and radial components of the unit

thrust vector, and the accumulated delta-v during the propulsive maneuver.

page 11

The following is a graphics display of the initial (red trace) and final orbits (blue trace).

page 12

Verification of the optimal control solution

The optimal control solution determined by the Sparse Optimization Suite can be verified by

numerically integrating the orbital equations of motion with the OC-computed initial park orbit

conditions and the optimal control solution. This is equivalent to solving an initial value problem (IVP)

that uses the optimal unit thrust vector solution. This part of the oneburn_ocs computer program uses

a Runge-Kutta-Fehlberg 7(8) variable step size method to integrate the orbital equations of motion.

The following is a display of the final solution computed using this explicit numerical integration

method.

 ==

 verification of optimal control solution

 ==

 end of finite burn

 mission elapsed time 00:03:29.965

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243647798517D+05 0.730621883714D+00 0.263354841203D+02 0.269999803084D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.125070318737D-03 0.159279650912D+02 0.285927768175D+03 0.630817068563D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.183083308977D+04 -.574950274971D+04 -.284601509915D+04 0.667147162297D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.100245469314D+02 0.145694376803D+01 0.721178679773D+00 0.101555071272D+02

 final mass 5280.17375040377 kilograms

 propellant mass 4719.82624959623 kilograms

 thrust duration 209.965300814227 seconds

 delta-v 2818.25213904842 meters/second

 final mission orbit

 mission elapsed time 00:03:30.965

 sma (km) eccentricity inclination (deg) argper (deg)

 0.243648000037D+05 0.730622059923D+00 0.263355000035D+02 0.270000000226D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.359999999997D+03 0.160144833255D+02 0.286014483551D+03 0.630817851180D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.184085640604D+04 -.574804194714D+04 -.284529200507D+04 0.667266252165D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.100220828707D+02 0.146465974729D+01 0.725009439586D+00 0.101544577369D+02

page 13

In additional to the user-defined solution output file, the oneburn_ocs program will create two

additional comma-separated-variable data files named orbits.csv and maneuver.csv. The first file

contains the position vectors of the initial and final orbits normalized with respect to the radius of the

Earth. The second data file contains the information described in Appendix A starting at ignition and

ending at burnout of the propulsive maneuver.

Creating an initial guess

The software allows the user to input either a delta-v or thrust duration initial guess. For a delta-v initial

guess, the software estimates the thrust duration using the rocket equation. For either type of initial

guess, the user should also provide lower and upper bounds for the total thrust duration.

An estimate of the thrust duration can be determined from the following expression:

sp p p ex

d

I m g m V
t

F F
 

The propellant mass required for a given V is a function of the initial (or final) mass of the spacecraft

and the exhaust velocity as follows:

 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

In these equations

 initial mass

 final mass

 propellant mass

 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i

f

p

ex sp

sp

m

m

m

V g I

I

V

F

g







 



 





The software requires an initial guess for the thrust duration. The user should also provide lower and

upper bounds for the total thrust duration. All of these inputs should be in seconds. If the Sparse

Optimization Suite cannot find a feasible solution, try increasing the guess for thrust duration.

The software uses a tangential thrusting steering method to generate an initial guess for the optimal

trajectory. For tangential thrusting, the unit thrust vector in the modified equinoctial frame at all times is

simply  0 1 0
T

T u . Please note that this type of steering method creates a coplanar initial guess.

It works best when the initial and final orbits are nearly coplanar.

The dynamic variables at each grid point of the initial guess are determined by setting the initial guess

option INIT(1) = 6 with INIT(2) = 2 within the odeinp subroutine for this aerospace trajectory

page 14

optimization problem. These program options create an initial guess from the numerical integration of

the equations of motion coded in the oderhs subroutine. The INIT(1) = 6 program option tells the

Sparse Optimization Suite to construct an initial guess by solving an initial value problem (IVP) with a

linear control approximation. The INIT(2) = 2 program option tells the program to use the Dormand-

Prince variable step size numerical method to solve the initial value problem.

Binary restart data files can also be used to initialize a oneburn_ocs simulation. A typical scenario is

1. Create a binary restart file from a converged and optimized simulation

2. Modify the original input file with slightly different spacecraft characteristics, propulsive

parameters or perhaps final mission targets and/or constraints

3. Use the previously created binary restart file as the initial guess for the new simulation

This techniques works well provided the two simulations are not dramatically different. Sometimes it

may be necessary to make successive small changes in the mission definition and run multiples

simulations to eventually reach the final desired solution.

Problem setup

This part of the user’s manual provides details about the software implementation within

oneburn_ocs. It defines such things as point and path constraints (boundary conditions), bounds on

the dynamic variables, and the performance index or objective function.

(1) Point functions – initial orbit constraints

The software allows the user to select one of the following initial orbit constraint options:

1) constrain semimajor axis, eccentricity and inclination

2) constrain all initial orbital elements

3) option 2 with unconstrained true longitude

For option 1, the initial orbit inclination is constrained by enforcing

 2 2 tan
2

i
h k

 
   

 

where i is the initial orbit inclination.

If the initial orbit is circular, the software enforces the following two equality constraints:

 0 and 0f g 

Otherwise, for an elliptical initial orbit, the single equality constraint

2 2f g e 

is enforced, where e is the initial orbit eccentricity.

page 15

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal

to the initial modified equinoctial orbital elements as follows:

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

Option 3 is identical to option 2 with the initial true longitude unbounded.

In optimal control terminology, these derived constraints or boundary conditions are called point

functions.

(2) Performance index – maximize final spacecraft mass

The objective function or performance index J for this simulation is the mass of the spacecraft at

burnout or termination of the propulsive maneuver. This is simply

 fJ m

The value of the maxmin indicator in the Sparse Optimization Suite algorithm tells the software whether

the user is minimizing or maximizing the performance index. The spacecraft mass at the initial time is

fixed to the user-defined initial value.

(3) Path constraint – unit thrust vector scalar magnitude

For a variable steering trajectory, the scalar magnitude of the components of the unit thrust vector at any

time during the simulation is constrained as follows:

 2 2 2 1
r t nT T T Tu u u   u

(4) Point functions – final mission orbit constraints

The software allows the user to select one of the following final orbit constraint options:

1) constrain semimajor axis, eccentricity and inclination

2) constrain all final orbital elements

3) option 2 with unconstrained true longitude

For option 1, the final orbit inclination is constrained by enforcing

page 16

 2 2 tan
2

i
h k

 
   

 

where i is the mission orbit inclination.

If the final orbit is circular, the software enforces the following two equality constraints:

 0 and 0f g 

Otherwise, for an elliptical mission orbit, the single equality constraint

 2 2f g e 

is enforced, where e is the park orbit eccentricity.

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal

to the user-defined final modified equinoctial orbital elements as follows:

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

Option 3 is identical to option 2 with the final true longitude unbounded.

Bounds on the dynamic variables

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial

dynamic variables during the orbital transfer.

0.05 1.05

100 0.8

1 1

1 1

1 1

1 1

i isc sc sc

f i

m m m

p p p

f

g

h

k

 

 

   

   

   

   

where
iscm is the initial spacecraft mass.

Finally, the three components of the unit thrust vector are constrained as follows

page 17

1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

Technical Discussion

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These equations

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees. However,

two components of the orbital element set are singular for an orbital inclination of 180 degrees.

The relationship between direct modified equinoctial and classical orbital elements is defined by the

following definitions

     

   

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

     

     

 where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





The relationship between classical and modified equinoctial orbital elements is summarized as follows:

semimajor axis
2 21

p
a

f g


 

orbital eccentricity
2 2e f g 

orbital inclination  1 2 22 tani h k 

argument of periapsis    1 1tan tang f k h   

right ascension of the ascending node  1tan k h 

true anomaly    1tanL L g f      

page 18

The mathematical relationships between an inertial state vector and the corresponding modified

equinoctial elements are summarized as follows:

position vector

 

 

 

2

2

2

2

2

cos cos 2 sin

sin sin 2 cos

2
sin cos

r
L L hk L

s

r
L L hk L

s

r
h L k L

s





 
  

 
   
 
 
 
  

r

velocity vector

 

 

 

2 2

2

2 2

2

2

1
sin sin 2 cos 2

1
cos cos 2 sin 2

2
cos sin

L L hk L g f hk g
s p

L L hk L f ghk f
s p

h L k L f h gk
s p


 


 



 
      

 
 
        
 
 
   
  

v

where

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     

   

The system of first-order modified equinoctial equations of orbital motion are given by

2

t

dp p p
p

dt w 
  

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

2

cos
2

ndh p s
h L

dt w


 

2

sin
2

ndk p s
k L

dt w


 

page 19

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 

where , ,r t n   are non-two-body perturbations in the radial, tangential and normal directions,

respectively. The radial direction is along the radius vector of the spacecraft measured positive in a

direction away from the gravitational center, the tangential direction is perpendicular to this radius

vector measured positive in the direction of orbital motion, and the normal direction is positive along the

angular momentum vector of the spacecraft’s orbit.

The equations of orbital motion can also be expressed in vector form as follows:

  
d

dt
  

y
y A y P b

where

    

    

 

2

2

2
0 0

1
sin 1 cos sin cos

1
cos 1 sin sin cos

cos
0 0

2

sin
0 0

2

1
0 0 sin cos

p p

w

p p p g
L w L f h L k L

w w

p p p f
L w L g h L k L

w w

p s L

w

p s L

w

p
h L k L

w



  

  







 
 
 
 
    
 
 
    
  

  
 
 
 
 
 
 
 
 
  

A

and

2

0 0 0 0 0

T

w
p

p


  
   

   

b

The total non-two-body acceleration vector is given by

 ˆ ˆ ˆ
r r t t n n     P i i i

where ˆ ˆ ˆ, and r t ni i i are unit vectors in the radial, tangential and normal directions. These unit vectors can

be computed from the inertial position vector r and velocity vector v according to

page 20

 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r

For unperturbed two-body motion, 0P and the first five equations of motion are simply

0p f g h k     . Therefore, for two-body motion these modified equinoctial orbital elements are

constant. The true longitude is often called the fast variable of this orbital element set.

Non-spherical Earth Gravity

The non-spherical gravitational acceleration vector can be expressed as

 ˆ ˆ
N N r rg g g i i

 where

 
 

ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ

T

N N r r

N
T

N N r r






e e i i
i

e e i i

and

  ˆ 0 0 1
T

N e

In these equations the north direction component is indicated by subscript N and the radial direction

component is subscript r.

The contributions due to the zonal gravity effects of 2 3 4, ,J J J are as follows:

4

'

2
2

cos
k

e
N k k

k

R
g P J

r r

 



 
   

 


  
4

2
2

1

k

e
r k k

k

R
g k P J

r r





 
    

 


 where

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k order Legendre polynomial

e

k

k

r

R

J

P

















For a zonal only Earth gravity model, the east component is identically zero.

Finally, the zonal gravity perturbation contribution is T

g a Q g where ˆ ˆ ˆ r t n
 
 

Q i i i .

page 21

For
2J effects only, the three components are as follows:

 

 
2

22

2

24 2 2

12 sin cos3
1

2 1
r

e
J

h L k LJ R

r h k


 
    
  
 

   

 
2

2

2

24 2 2

sin cos cos sin12

1
t

e
J

h L k L h L k LJ R

r h k


  
   
  
 

  

 
2

2 22

2

24 2 2

1 sin cos6

1
n

e
J

h k h L k LJ R

r h k


   
   
  
 

Propulsive Thrust

The acceleration due to propulsive thrust can be expressed as

 

ˆ
T T

T

m t
a u

where T is the thrust magnitude, m is the spacecraft mass and ˆ
r t n

T

T T T Tu u u   u is the unit pointing

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system. The

components of this unit vector are the control variables.

The propellant mass flow rate is determined from

sp

dm T
m

dt g I
 

where g is the acceleration of gravity and spI is the specific impulse of the propulsive system. The

product spg I is also called the exhaust velocity.

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt  where

iscm is the initial

mass of the spacecraft and m is the propellant flow rate.

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle  and

the out-of-plane yaw angle  as follows:

 sin cos cos cos sin
r t nT T Tu u u      

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector

according to

page 22

 

 

1

1

sin

tan ,

r

n t

T

T T

u

u u













Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located

at the spacecraft. The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane

yaw angle is positive in the direction of the angular momentum vector. The inverse tangent calculation

in the second equation is a four quadrant operation.

The oneburn_ocs software provides the steering angles and the components of the unit thrust vector in

both the inertial and modified equinoctial coordinate systems. The following section summarizes the

inertial-to/from-modified equinoctial coordinate transformations and the calculation of the inertial unit

thrust vector in terms of right ascension and declination angles.

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu and the corresponding

unit thrust vector in the modified equinoctial system ˆ
MEETu is given by

 ˆ ˆ ˆˆ ˆ
ECI MEET r t n T

 
 

u i i i u

where

 ˆ ˆ ˆ ˆ ˆˆˆ

r n t n r

 
      

 

r v rr r v
i r i h i i i

r r v r v r

This relationship can also be expressed as

  

 

 

 

ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ECI MEE MEE

x x
x

T T y y T
y

z z
z

Q

 
 
 

  
 
 

  

r h r h

u u r h r h u

r h r h

In these equations, r is the inertial position vector and v is the inertial velocity vector of the spacecraft.

In the oneburn_ocs computer program, the components of the inertial unit thrust vector are defined in

terms of the right ascension  and the declination angle  as follows:

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u      

Finally, the right ascension and declination angles can be determined from the components of the ECI

unit thrust vector according to

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u   

where the calculation for right ascension is a four quadrant inverse tangent operation.

page 23

Algorithm Resources

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of Guidance,

Control and Dynamics, Vol. 21, No. 2, March-April 1998.

“Optimal Interplanetary Orbit Transfers by Direct Transcription”, John T. Betts, The Journal of the

Astronautical Sciences, Vol. 42, No. 3, July-September 1994, pp. 247-268.

“Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, 20-22 August 1990.

“Optimal Low Thrust Trajectories to the Moon”, John T. Betts and Sven O. Erb, SIAM Journal on

Applied Dynamical Systems, Vol. 2, No. 2, pp. 144-170, 2003.

An Introduction to the Mathematics and Methods of Astrodynamics, Richard H. Battin, AIAA Education

Series, 1987.

Analytical Mechanics of Space Systems, Hanspeter Schaub and John L. Junkins, AIAA Education

Series, 2003.

Spacecraft Mission Design, Charles D. Brown, AIAA Education Series, 1992.

Orbital Mechanics, Vladimir A. Chobotov, AIAA Education Series, 2002.

page 24

APPENDIX A

Contents of the Simulation Summary and CSV Files

This appendix is a brief summary of the information contained in the simulation summary screen

displays and the CSV data files produced by the oneburn_ocs software.

The simulation summary screen display contains the following information:

mission elapsed time = simulation time since beginning of maneuver (hh:mm:ss.sss)

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per

second

final mass = final spacecraft mass in kilograms

propellant mass = expended propellant mass in kilograms

thrust duration = maneuver duration in seconds

delta-v = scalar magnitude of the maneuver in meters/seconds

The delta-v magnitude is determined using a cubic spline integration of the thrust acceleration data at

each collocation node or user-defined step size.

The user-defined comma-separated-variable (csv) disk file is created by the odeprt subroutine and

contains the following information:

time (sec) = simulation time since ignition in seconds

page 25

time (min) = simulation time since ignition in minutes

semimajor axis (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

arg of perigee (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

period (min) = orbital period in minutes

mass (kg) = spacecraft mass in kilograms

thracc (mps/s) = thrust acceleration in meters/second**2

perigee altitude = perigee altitude in kilometers

apogee altitude = apogee altitude in kilometers

ut-radial = radial component of unit thrust vector

ut-tangential = tangential component of unit thrust vector

ut-normal = normal component of unit thrust vector

ut-eci-x = x-component of eci unit thrust vector

ut-eci-y = y-component of eci unit thrust vector

ut-eci-z = z-component of eci unit thrust vector

semi-parameter = orbital semiparameter in kilometers

f equinoctial element = modified equinoctial orbital element

g equinoctial element = modified equinoctial orbital element

h equinoctial element = modified equinoctial orbital element

k equinoctial element = modified equinoctial orbital element

true longitude = true longitude in degrees

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

rmag (km) = magnitude of spacecraft’s position vector in kilometers

vx (km) = x-component of the spacecraft’s velocity vector in kilometers/second

vy (km) = y-component of the spacecraft’s velocity vector in kilometers/second

vz (km) = z-component of the spacecraft’s velocity vector in kilometers/second

vmag (km) = magnitude of spacecraft’s velocity vector in kilometers/second

rasc (deg) = inertial right ascension of the unit thrust vector in degrees

decl (deg) = inertial declination of the unit thrust vector in degrees

page 26

yaw (deg) = out-of-plane yaw angle of the unit thrust vector in degrees

pitch (deg) = in-plane pitch angle of the unit thrust vector in degrees

fpa (deg) = inertial flight path angle in degrees

deltav (mps) = accumulative delta-v in meters per second

The orbits.csv file contains the following information:

time (seconds) = simulation time since ignition in seconds

rp1-x (er) = x-component of the initial orbit position vector in earth radii

rp1-y (er) = y-component of the initial orbit position vector in earth radii

rp1-z (er) = z-component of the initial orbit position vector in earth radii

rp2-x (er) = x-component of the final orbit position vector in earth radii

rp2-y (er) = y-component of the final orbit position vector in earth radii

rp2-z (er) = z-component of the final orbit position vector in earth radii

page 27

APPENDIX B

Example LEO-to-LEO Orbit Transfer

This appendix illustrates the orbit transfer for a non-coplanar LEO-to-LEO example. For this example,

all the orbital elements except true longitude for both the initial and final orbits are fixed.

The main portion of the simulation definition file for this example is as follows:

**

** earth-orbit trajectory optimization

** single finite-burn maneuver with final coast

** program oneburn_ocs

** leo2leo.in - February 21, 2012

**

initial spacecraft mass (kilograms)

10000.0

thrust magnitude (newtons)

99200.0

specific impulse (seconds)

450.0

type of propulsive initial guess

1 = thrust duration

2 = delta-v

2

initial guess for delta-v (meters/second)

5800.0d0

initial guess for thrust duration (seconds)

4550.0

lower bound for thrust duration (seconds)

0.01

upper bound for thrust duration (seconds)

10000.0

coast maneuver

initial guess for coast duration (seconds)

10.0

lower bound for coast duration (seconds)

1.0

upper bound for coast duration (seconds)

200.0

* INITIAL ORBIT *

semimajor axis (kilometers)

6563.14

page 28

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5d0

argument of perigee (degrees)

0.0

right ascension of the ascending node (degrees)

20.0d0

true anomaly (degrees)

0.0d0

initial orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all initial orbital elements

3 = option 2 with unconstrained true longitude

--

3

* FINAL ORBIT *

semimajor axis (kilometers)

6728.14d0

orbital eccentricity (non-dimensional)

0.0d0

orbital inclination (degrees)

51.6d0

argument of perigee (degrees)

0.0d0

right ascension of the ascending node (degrees)

20.0d0

true anomaly (degrees)

0.0d0

final orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all final orbital elements

3 = option 2 with unconstrained true longitude

--

3

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

* initial guess options *

page 29

 1 = numerical integration

 2 = binary data file

1

name of binary initial guess data file

leo2leo.rsbin

* binary restart file option *

create/update binary restart file (yes or no)

no

**

* type of comma-delimited solution data file *

**

 1 = OCS-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

1

number of user-defined nodes or print step size in solution data file

100

name of solution output file

leo2leo.csv

* algorithm control parameters *

discretization/collocation method

 1 = trapezoidal

 2 = separated Hermite-Simpson

 3 = compressed Hermite-Simpson

1

relative error in the objective function (performance index)

1.0d-5

relative error in the solution of the differential equations

1.0d-7

maximum number of mesh refinement iterations

20

maximum number of function evaluations

500000

maximum number of algorithm iterations

10000

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

page 30

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

differential equation output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The following is the graphics display for this example. The initial orbit trace is blue, the final orbit is

red and the transfer maneuver trace is black.

page 31

Here are the numerical results created by the oneburn_ocs program for this example.

 program oneburn_ocs

 ===================

 input file ==> leo2leo.in

 oblate earth gravity model

 beginning of finite burn

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.656314000000D+04 0.231260711765D-15 0.285000000000D+02 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200000000000D+02 0.349632240730D+03 0.349632240730D+03 0.881915957810D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.642165842152D+04 0.123266976185D+04 -.563591195034D+03 0.656314000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.986248713166D+00 0.681033027729D+01 0.365785673126D+01 0.779315089527D+01

 end of finite burn

 mission elapsed time 00:04:19.701

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672939043691D+04 0.346714306486D-03 0.516042165183D+02 0.315662746264D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200014039317D+02 0.513704955945D+02 0.703324185873D+01 0.915636904293D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.609955227473D+04 0.276472241466D+04 0.645646678312D+03 0.672793338370D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.250687876646D+01 0.413739153123D+01 0.598798676484D+01 0.769795007313D+01

 final mass 4162.16070871686 kilograms

 propellant mass 5837.83929128314 kilograms

 thrust duration 259.701018232233 seconds

 delta-v 3868.21300678244 meters/second

 beginning of coast maneuver

 mission elapsed time 00:04:19.701

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672939043691D+04 0.346714306485D-03 0.516042165183D+02 0.315662746264D+03

page 32

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200014039317D+02 0.513704955945D+02 0.703324185873D+01 0.915636904293D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.609955227473D+04 0.276472241466D+04 0.645646678312D+03 0.672793338370D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.250687876646D+01 0.413739153123D+01 0.598798676484D+01 0.769795007313D+01

 end of coast maneuver

 mission elapsed time 00:07:39.701

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672814000000D+04 0.351002915346D-15 0.516000000000D+02 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200000000000D+02 0.201443655965D+02 0.201443655965D+02 0.915381704433D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.544337714471D+04 0.351284568192D+04 0.181588224703D+04 0.672814000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.402604621147D+01 0.331121293169D+01 0.566309181054D+01 0.769699863782D+01

 coast duration 200.000000000023 seconds

 3.33333333333372 minutes

 ==

 verification of optimal control solution

 ==

 end of finite burn

 mission elapsed time 00:04:19.701

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672939043691D+04 0.346714306486D-03 0.516042165183D+02 0.315662746264D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.200014039317D+02 0.513704955945D+02 0.703324185873D+01 0.915636904293D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.609955227473D+04 0.276472241466D+04 0.645646678312D+03 0.672793338370D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.250687876646D+01 0.413739153123D+01 0.598798676484D+01 0.769795007313D+01

 final mass 4162.16070871692 kilograms

 propellant mass 5837.83929128308 kilograms

 thrust duration 259.701018232233 seconds

 delta-v 3868.21189633888 meters/second

page 33

 final mission orbit

 mission elapsed time 00:07:39.701

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672814024373D+04 0.364896455298D-07 0.515999998019D+02 0.490431457999D+01

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.199999999785D+02 0.152400513000D+02 0.201443658800D+02 0.915381754174D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.544337713202D+04 0.351284570367D+04 0.181588226839D+04 0.672814000686D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.402604625682D+01 0.331121302687D+01 0.566309190148D+01 0.769699876939D+01

page 34

APPENDIX C

Typical Sparse Optimization Suite Configuration File

The oneburn_ocs computer progran can read and use a user-defined configuration file. A description

of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms for

Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization of the Sparse

Optimization Suite user’s manual. Please note that the oneburn_ocs software can read and use a

subset of the information in this file. For example, a subset configuration file might contain only the

following information;

ODETOL=0.1D-06

INSNLP:IOFLAG=5

SOCOUT=I4K4

The following is a typical “full version” configuration file created during the execution of the

oneburn_ocs software.

AEQTOL=0.1000000000000000D-02

DTAUX=0.0000000000000000D+00

OBJCTL=0.1000000000000000D-04

ODETOL=0.1000000011686097D-06

PGDCTL=0.1000000000000000D-02

PRTMSD=0.1490116119384766D-07

PRTMXD=0.1000000000000000D-02

PRTSFD=0.1000000000000000D-04

QDRTOL=0.1000000000000000D-02

RESTOL=0.1000000000000000D-04

SMLTOL=0.1490116119384766D-10

TOLJSD=0.1000000000000000D-05

TOLM5A=0.1490116119384766D-07

TOLM5R=0.1490116119384766D-07

IDSCPH=0

IDSCND=0

IDSCVR=0

IDSCFN=0

IDTSFD=-1

IPFAUX=0

IPFSFD=0

IPRSFD=1

IPGRD=0

IPNLP=10

IPODE=0

IPUAUX=0

IPUOCP=6

IRSTRT=2

ISCALE=0

ISFHES=41

ISFINP=42

ISFRST=43

ISFSCL=44

ITSWCH=2

M5DTYP=0

MITODE=20

MTSWCH=-1

MXDATA=0

MXPARM=10

MXPCON=20

MXSTAT=20

MXTERM=50

NPTAUX=100

NSSWCH=-1

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0

SPRTHS=SPARSE

NLPALG=SNLPMN

NLPOMR=M

KEYDPL=.lueiLUE

page 35

RHSTMP=RHSTMPLT

RSTFIL=tlto1.rsbin

SCLFIL=scalewgt.fil

INSNLP:ALFLWR=0.0000000000000000D+00

INSNLP:ALFUPR=0.1000000000000000D+01

INSNLP:CONTOL=0.1490116119384766D-07

INSNLP:EPSRLF=0.1490116119384766D-07

INSNLP:OBJTOL=0.9999999747378752D-05

INSNLP:PGDTOL=0.1000000000000000D-04

INSNLP:SLPTOL=0.9000000000000000D+00

INSNLP:SFZTOL=0.1000000000000000D-01

INSNLP:TOLFIL=0.2000000000000000D+01

INSNLP:TOLKTC=0.1110953834938985D+26

INSNLP:TOLPVT=0.1000000000000000D-02

INSNLP:IHESHN=0

INSNLP:IOFLAG=5

INSNLP:IOFLIN=-1

INSNLP:IOFMFR=0

INSNLP:IOFPAT=0

INSNLP:IOFSHR=0

INSNLP:IOFSRC=0

INSNLP:IPUDRF=0

INSNLP:IPUFZF=0

INSNLP:IPUMF1=11

INSNLP:IPUMF2=12

INSNLP:IPUMF3=13

INSNLP:IPUMF4=14

INSNLP:IPUMF5=15

INSNLP:IPUMF6=16

INSNLP:IPUMF7=17

INSNLP:IPUNLP=6

INSNLP:IPUSTF=0

INSNLP:IRELAX=1

INSNLP:ITDRQP=-1

INSNLP:ITFZQP=-1

INSNLP:IT1MAX=20

INSNLP:JACPRM=0

INSNLP:LYNFNC=0

INSNLP:LYNOUT=0

INSNLP:LYNPLT=0

INSNLP:LYNPNT=101

INSNLP:LYNVAR=0

INSNLP:MAXLYN=5

INSNLP:MAXNFE=50000

INSNLP:MNSAME=2

INSNLP:NEWTON=0

INSNLP:NITMAX=1000

INSNLP:NITMIN=0

INSNLP:NORMAL=0

INSNLP:ALGOPT=FM

INSNLP:KTOPTN=SMALL

INSNLP:QPOPTN=SPARSE

INSNLP:BIGCON=-0.1000000000000000D+01

INSNLP:FEATOL=0.1000000000000000D-01

INSNLP:PMULWR=0.1000000000000000D+00

INSNLP:PTHTOL=0.1000000000000000D+02

INSNLP:RHOLWR=0.1000000000000000D+03

INSNLP:IMAXMU=10

INSNLP:MUCALC=3

INSNLP:MXQPIT=1

page 1

Program twoburn_ocs

Two Maneuver, Finite-Burn Trajectory Optimization

This document is the user’s manual for a Fortran computer program called twoburn_ocs that uses the

Sparse Optimization Suite distributed by Applied Mathematical Analysis to solve the classic orbit

transfer trajectory optimization problem. The software models the trajectory as a three phase mission in

the sequence burn-coast-burn. The two burns are simulated as constant-thrust, finite-burn propulsive

maneuvers. This computer program attempts to maximize the spacecraft mass at the end of the final

propulsive maneuver.

The important features of this scientific simulation are as follows:

 two finite-burn, continuous thrust orbital maneuvers

 variable attitude steering

 constant propulsive thrust magnitude and specific impulse

 modified equinoctial equations of motion with oblate Earth gravity model

 user-specified initial and final orbit constraints

The Sparse Optimization Suite is a direct transcription method that can be used to solve a variety of

trajectory optimization problems using the following combination of numerical methods:

 collocation and implicit integration

 adaptive mesh refinement

 sparse nonlinear programming

Additional information about the mathematical techniques and numerical methods used in the Sparse

Optimization Suite can be found in the book, Practical Methods for Optimal Control and Estimation

Using Nonlinear Programming by John. T. Betts, SIAM, 2010 (www.siam.org).

The twoburn_ocs software consists of Fortran routines that perform the following tasks:

 set algorithm control parameters and call the transcription/optimal control subroutine

 define the problem structure and perform initialization related to scaling, lower and upper

bounds, initial conditions, etc.

 compute the right-hand-side differential equations

 evaluate any point and path constraints

 display the optimal solution results and create an output file

The Sparse Optimization Suite will use this information to automatically transcribe the user’s optimal

control problem and perform the optimization using a sparse nonlinear programming (NLP) method.

The twoburn_ocs software allows the user to select the type of initial guess, collocation method, and

other important algorithm control parameters.

http://www.appliedmathematicalanalysis.com/
http://www.siam.org/

page 2

Program execution

An input file created by the user can be run from the command line or a simple batch file with a

statement similar to the following:

twoburn_ocs leo2geo.in

If the software is executed without an input file on the command line, the computer program will display

the following information screen and file name prompt:

* program twoburn_ocs *

* *

* two-maneuver, finite-burn *

* trajectory optimization *

* *

* April 15, 2012 *

please input the name of the simulation definition file

The user should respond to this prompt with the name of a compatible input data file including the

filename extension.

The screen output created by the twoburn_ocs computer program can be re-directed to a text file with

a command line similar to

twoburn_ocs leo2geo.in >leo2geo.txt

To create a DOS command window in Windows 7, select start, then All Programs, then Accessories

and finally Command Prompt. The size, font and other characteristics of the screen can be controlled

by the user with the c:\ icon in the upper left corner of the window. To log into the subdirectory created

during the installation of the Fortran executable and support files, type root:\ and then cd subdirectory

from the DOS command line where root is the name of the root directory, usually c:, and subdirectory is

the name of the subdirectory created by the user.

The DOS command line prompt looks similar to C:\twoburn_ocs>_.

Input file format and contents

The twoburn_ocs software is “data-driven” by a user-created text file. The following is a typical input

file used by this computer program. In the following discussion the actual input file contents are in

courier font and all explanations are in times italic font. This example attempts to optimize the

maneuvers required to transfer a spacecraft from a near circular low Earth orbit (LEO) to a typical

geosynchronous Earth orbit (GEO).

Each data item within an input file is preceded by one or more lines of annotation text. Do not delete

any of these annotation lines or increase or decrease the number of lines reserved for each comment.

However, you may change them to reflect your own explanation. The annotation line also includes the

correct units and when appropriate, the valid range of the input. ASCII text input is not case sensitive

but must be spelled correctly.

page 3

The first six lines of any input file are reserved for user comments. These lines are ignored by the

software. However the input file must begin with six and only six initial text lines.

**

** two maneuver, finite-burn earth-orbit

** trajectory optimization

** program twoburn_ocs

** leo2geo.in - April 15, 2012

**

The first input is the initial mass of the entire spacecraft in kilograms.

initial spacecraft mass (kilograms)

15000.0

This next integer input defines the type of initial guess for the propulsive maneuver.

type of propulsive initial guess

1 = thrust duration

2 = delta-v magnitude

2

The next four inputs define the thrust magnitude and the specific impulse of the upper stage or

spacecraft propulsion system, and the user’s initial guess for either the delta-v or thrust duration for the

first maneuver.

first propulsive maneuver

thrust magnitude (newtons)

25000.0

specific impulse (seconds)

400.0

initial guess for delta-v (meters/second)

2480.0

initial guess for thrust duration (seconds)

170.0

The next four inputs define the thrust magnitude and the specific impulse of the upper stage or

spacecraft propulsion system, and the user’s initial guess for either the delta-v or thrust duration for the

second maneuver.

second propulsive maneuver

thrust magnitude (newtons)

5000.0

specific impulse (seconds)

350.0

initial guess for delta-v (meters/second)

1790.0

initial guess for thrust duration (seconds)

170.0

page 4

The next three inputs define the user’s initial guess for the duration of the coast phase along with a

lower and upper bound for the coast duration.

coast phase

initial guess for coast duration (minutes)

315.0

lower bound for coast duration (minutes)

200.0

upper bound for coast duration (minutes)

400.0

The next six inputs define the classical orbital elements of the initial park orbit. These elements are

defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* INITIAL ORBIT *

semimajor axis (kilometers)

6563.14

orbital eccentricity (non-dimensional)

0.015

orbital inclination (degrees)

28.5

argument of perigee (degrees)

120.0

right ascension of the ascending node (degrees)

100.0

true anomaly (degrees)

0.0

This next integer input allows the user to define the type of initial orbit constraints to use during the

simulation. Please see the “Problem setup” section later in this document for information about this

program option.

initial orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all initial orbital elements

3 = option 2 with unconstrained true longitude

--

1

The next six inputs define the classical orbital elements of the final mission orbit. These elements are

also defined with respect to an Earth-centered-inertial (ECI) coordinate system.

* FINAL ORBIT *

semimajor axis (kilometers)

42166.263

page 5

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

2.5

argument of perigee (degrees)

300.0

right ascension of the ascending node (degrees)

120.0

true anomaly (degrees)

0.0

This next integer input allows the user to define the type of final orbit constraints to use during the

simulation. Please see the “Problem setup” section later in this document for information about this

program option.

final orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all final orbital elements

3 = option 2 with unconstrained true longitude

--

3

This integer input specifies the type of gravity model to use during the simulation. Option 2 will use a

2J gravity model in the spacecraft equations of motion.

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

This next input defines the type of initial guess to use. Please see the technical discussion section for

information about how the first option is modeled. Option 2 requires either a binary restart file created

from a previous run using either initial guess option 1 or an updated binary restart file. This feature is

described in the next two sections.

* initial guess options *

 1 = numerical integration

 2 = binary data file

1

If the user elects to use a binary data file (option 2 above) for the initial guess, the following text input

specifies the name of the file to use.

name of binary initial guess data file

leo2geo.rsbin

The following input can be used to create or update an initial guess binary file. The creation or update

process uses the filename defined above. For initial guess option 1, the software will create a binary

page 6

restart file. For initial guess option 2, an input of yes to this item will update the binary file used to

initialize the simulation.

* binary restart file option *

create/update binary data file (yes or no)

no

This next input specifies the type of solution data file to create.

**

* type of comma-delimited solution data file *

**

 1 = OC-defined nodes

 2 = user-defined nodes

 3 = user-defined step size

1

For options 2 or 3, this input defines either the number of data points or the time step size of the data

output in the solution file.

number of user-defined nodes or print step size in solution data file

25

The name of the comma-separated-variable solution data file is defined in this next line.

name of solution output file

leo2geo.csv

The next series of program inputs are algorithm control options and parameters for the Sparse

Optimization Suite. The first input is an integer that specifies the type of collocation method to use

during the solution process. For most simulations, the trapezoidal method is recommended.

* algorithm control parameters *

discretization/collocation method

 1 = trapezoidal

 2 = separated Hermite-Simpson

 3 = compressed Hermite-Simpson

1

The next input defines the relative error in the objective function.

relative error in the objective function (performance index)

1.0d-5

The next input defines the relative error in the solution of the differential equations.

relative error in the solution of the differential equations

1.0d-7

The next input is an integer that defines the maximum number of mesh refinement iterations.

maximum number of mesh refinement iterations

20

page 7

The next input is an integer that defines the maximum number of function evaluations.

maximum number of function evaluations

10000

The next input is an integer that defines the maximum number of algorithm iterations.

maximum number of algorithm iterations

10000

The level of output from the Sparse Optimization Suite NLP algorithm is controlled with the following

integer input.

sparse NLP iteration output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

2

The level of output from the Sparse Optimization Suite optimal control algorithm is controlled with the

following integer input. Please note that option 4 will create lots of information.

optimal control output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

1

The level of output from the Sparse Optimization Suite differential equations algorithm is controlled

with the following integer input. Please note that option 5 will create lots of information.

differential equation output

 1 = none

 2 = terse

 3 = standard

 4 = interpretive

 5 = diagnostic

1

The level of output can be further controlled by the user with this final text input. This program option

sets the value of the SOCOUT character variable described in the Sparse Optimization Suite user’s

manual. To ignore this special output control, input the simple character string no.

user-defined output

input no to ignore

a0b0c0d0e0f0g0h0i0j2k0l0m0n0o0p0q0r0

page 8

The last series of inputs allow the reading and writing of configuration input files. The user should

create a configuration file before attempting to read one. These configuration files are simple text files

which can be edited external to the rendezvous_ocs software. Please consult Appendix C.

* optimal control configuration options

read an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2geo_config.txt

create an optimal control configuration file (yes or no)

no

name of optimal control configuration file

leo2geo_config1.txt

Optimal control solution

The following is the twoburn_ocs solution for this example. The output includes the time and orbital

characteristics at the beginning and end of each mission phase.

 program twoburn_ocs

 ===================

 input file ==> leo2geo.in

 numerical integration initial guess

 oblate earth gravity model

 beginning of first propulsive maneuver

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.656314000000D+04 0.150000000004D-01 0.285000000000D+02 0.179196327908D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.119947466863D+03 0.318037646103D+03 0.137233974011D+03 0.881916022527D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.977069953510D+03 -.606099670550D+04 0.210248702383D+04 0.648928335362D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.708880451413D+01 -.202549730354D+01 -.278600998827D+01 0.788134762721D+01

 end of first propulsive maneuver

 mission elapsed time 00:18:38.659

page 9

 sma (km) eccentricity inclination (deg) argper (deg)

 0.244711724047D+05 0.725948454612D+00 0.264721389995D+02 0.179895113440D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.119828797416D+03 0.407077273961D+02 0.220602840836D+03 0.634953461869D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.659297946572D+04 -.275407175855D+04 -.216599500646D+04 0.746617866480D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.487228379563D+01 0.718704821378D+01 -.388504453231D+01 0.951243304473D+01

The following program output is the spacecraft mass, the propellant mass consumed, the actual thrust

duration for the maneuver, and the accumulated delta-v for the first maneuver.

 spacecraft mass 7870.53129355029 kilograms

 propellant mass 7129.46870644971 kilograms

 thrust duration 1118.65926864158 seconds

 18.6443211440263 minutes

 delta-v 2529.82034928729 meters/second

This section of the numeric results summarizes the time and orbital conditions at the beginning and end

of the transfer orbit coast.

 beginning of coast phase

 mission elapsed time 00:18:38.659

 sma (km) eccentricity inclination (deg) argper (deg)

 0.244711724047D+05 0.725948454612D+00 0.264721389995D+02 0.179895113440D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.119828797416D+03 0.407077273961D+02 0.220602840836D+03 0.634953461869D+03

 rx (km) ry (km) rz (km) rmag (km)

 0.659297946572D+04 -.275407175855D+04 -.216599500646D+04 0.746617866480D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.487228379563D+01 0.718704821379D+01 -.388504453231D+01 0.951243304473D+01

 end of coast phase

 mission elapsed time 05:07:30.284

 sma (km) eccentricity inclination (deg) argper (deg)

 0.244242477038D+05 0.725339679047D+00 0.264690756581D+02 0.179961581757D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.119758219971D+03 0.177464376454D+03 0.357425958210D+03 0.633128004987D+03

 rx (km) ry (km) rz (km) rmag (km)

 -.193739413380D+05 0.372905472704D+05 -.841352842717D+03 0.420314452916D+05

page 10

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.137738985018D+01 -.487203868378D+00 0.715777169774D+00 0.162693188718D+01

 coast duration 17331.6249596538 seconds

 288.860415994230 minutes

 4.81434026657050 hours

 beginning of second propulsive maneuver

 mission elapsed time 05:07:30.284

 sma (km) eccentricity inclination (deg) argper (deg)

 0.244242477038D+05 0.725339679047D+00 0.264690756581D+02 0.179961581757D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.119758219971D+03 0.177464376454D+03 0.357425958210D+03 0.633128004987D+03

 rx (km) ry (km) rz (km) rmag (km)

 -.193739413380D+05 0.372905472704D+05 -.841352842717D+03 0.420314452916D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.137738985018D+01 -.487203868378D+00 0.715777169774D+00 0.162693188718D+01

 end of second propulsive maneuver

 mission elapsed time 05:43:11.886

 sma (km) eccentricity inclination (deg) argper (deg)

 0.421662630000D+05 0.157018823694D-15 0.250000000000D+01 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.120000000000D+03 0.383296455222D+01 0.383296455222D+01 0.143617512421D+04

 rx (km) ry (km) rz (km) rmag (km)

 -.234747395985D+05 0.350273495880D+05 0.122951225622D+03 0.421662630000D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.255141829470D+01 -.171038725638D+01 0.133811476571D+00 0.307458377550D+01

The following program output is the propellant mass consumed, the actual thrust duration for the

maneuver, and the accumulated delta-v for the second maneuver.

 propellant mass 3119.75087432484 kilograms

 thrust duration 2141.60134383684 seconds

 35.6933557306139 minutes

 delta-v 1732.69627276496 meters/second

After the simulation is complete, the software will display a simulation summary similar to the

following;

 SIMULATION SUMMARY

page 11

 initial spacecraft mass 15000.0000000000 kilograms

 total propellant mass 10249.2195807745 kilograms

 final spacecraft mass 4750.78041922545 kilograms

 total delta-v 4262.51662205225 meters/second

 total thrust duration 3260.26061247841 seconds

 54.3376768746402 minutes

The following two plots illustrate the evolution of the pitch and yaw steering angles during the first and

second finite-burn maneuver.

The next pair of plots illustrate the behavior of the semimajor axis and orbital eccentricity during the

first and second maneuvers.

The next pair of plots illustrate the behavior of the orbital inclination and right ascension of the

ascending node (RAAN) during the first and second maneuvers.

page 12

The following two plots illustrate the evolution of the geocentric radius and velocity during the each

finite-burn maneuver.

All of these plots were created using the Grapher scientific plotting program (www.goldensoftware.com)

and the contents of the simulation summary data file described in Appendix A.

The twoburn_ocs computer program will also create three output files named orbit1.csv,

orbit2.csv and orbit3.csv. This file contains the Earth-centered inertial position vectors of the

park, transfer and final mission orbit. The twoburn_ocs software package includes a MATLAB script

called oplot.m that can be used to create trajectory graphic displays using these data files. The

interactive graphic features of MATLAB allow the user to rotate and zoom the displays. These

capabilities allow the user to interactively find the best viewpoint as well as verify basic three-

dimensional geometry of the orbital transfer.

The following is the graphics display for this example. The initial orbit trace is red, the transfer orbit is

blue and the final mission orbit is black. The dimensions are Earth radii (ER) and the plot is labeled

with an ECI coordinate system where green is the x-axis, red is the y-axis and blue is the z-axis.

http://www.goldensoftware.com/

page 13

Verification of the optimal control solution

The optimal control solution determined by the Sparse Optimization Suite software can be verified by

numerically integrating the orbital equations of motion with the optimal control solution and the initial

park orbit conditions determined by the software. This is equivalent to solving an initial value problem

(IVP) that uses the optimal unit thrust vector solution.

This part of the twoburn_ocs computer program uses a Runge-Kutta-Fehlberg 7(8) variable step size

method to integrate the orbital equations of motion.

The following is a display of the final solution computed using this explicit numerical integration

method.

 ==

 verification of optimal control solution

 ==

 final mission orbit

 mission elapsed time 05:43:11.886

 sma (km) eccentricity inclination (deg) argper (deg)

 0.421662635019D+05 0.160175963159D-07 0.250000121139D+01 0.127337790391D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.119999993671D+03 0.351099192462D+03 0.383297150142D+01 0.143617514985D+04

page 14

 rx (km) ry (km) rz (km) rmag (km)

 -.234747398791D+05 0.350273491999D+05 0.122951507257D+03 0.421662628346D+05

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.255141829452D+01 -.171038730613D+01 0.133811541581D+00 0.307458380586D+01

 right ascension 123.829327888839 degrees

 declination 0.167067507520765 degrees

 final spacecraft mass 4750.78041919988 kilograms

 first delta-v 2529.82005790686 meters/second

 second delta-v 1732.69612356106 meters/second

 total delta-v 4262.51618146792 meters/second

Creating an initial guess

The software allows the user to input either a delta-v or thrust duration initial guess. For a delta-v initial

guess, the software estimates the thrust duration using the rocket equation. An estimate of the thrust

duration can be determined from the following expression:

sp p p ex

d

I m g m V
t

F F
 

The propellant mass required for a given V is a function of the initial (or final) mass of the spacecraft

and the exhaust velocity as follows:

 1 1ex ex

V V

V V

p i fm m e m e

    
      

   
   

In these equations

 initial mass

 final mass

 propellant mass

 exhaust velocity

 specific impulse

 impulsive velocity increment

 thrust

 acceleration of gravity

i

f

p

ex sp

sp

m

m

m

V g I

I

V

F

g







 



 





For the thrust duration initial guess option, the software requires an initial guess for the thrust duration

for each propulsive maneuver. All of these inputs should be in seconds. If the twoburn_ocs computer

program cannot find a feasible solution, try increasing the guess for thrust duration.

page 15

The software uses a tangential thrusting steering method to generate an initial guess for the optimal

trajectory. For tangential thrusting, the unit thrust vector in the modified equinoctial frame at all times is

simply  0 1 0
T

T u . Please note that this type of steering method creates a coplanar initial guess.

The dynamic variables and control variables at each grid point are determined by the Sparse

Optimization Suite by setting the initial guess option INIT(1) = 6 with INIT(2) = 4. These

program options create an initial guess from the numerical integration of the equations programmed in

the oderhs subroutine. The number and location of the initial collocation nodes are determined from

the variable step-size numerical integration.

Problem setup

This section provides additional details about the software implementation. It explains such things as

point and path constraints, the performance index and the numerical technique used to create an initial

guess for the software.

(1) Point functions – initial orbit constraints

The software allows the user to select one of the following initial orbit constraint options:

1) constrain semimajor axis, eccentricity and inclination

2) constrain all initial orbital elements

3) option 2 with unconstrained true longitude

For option 1, the initial orbit inclination is constrained by enforcing

 2 2 tan
2

i
h k

 
   

 

where i is the park orbit inclination.

If the park orbit is circular, the software enforces the following two equality constraints:

 0 and 0f g 

Otherwise, for an elliptical park orbit, the single equality constraint

 2 2f g e 

is enforced, where e is the user-defined park orbit eccentricity.

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal

to the initial modified equinoctial orbital elements as follows:

page 16

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

Option 3 is identical to option 2 with the initial true longitude unbounded.

In optimal control terminology, these derived constraints or boundary conditions are called point

functions.

(2) Performance index – maximize final spacecraft mass

The objective function or performance index J for this simulation is the mass of the spacecraft at

burnout or termination of the propulsive maneuver. This is simply

 fJ m

The value of the maxmin indicator in the Sparse Optimization Suite algorithm tells the software whether

the user is minimizing or maximizing the performance index. The spacecraft mass at the initial time is

fixed to the user-defined initial value.

(3) Path constraint – unit thrust vector scalar magnitude

For the variable steering program option, the scalar magnitude of the components of the unit thrust

vector at any time during the simulation is constrained as follows:

 2 2 2 1
r t nT T T Tu u u   u

(4) Point functions – final mission orbit constraints

The software allows the user to select one of the following final orbit constraint options:

4) constrain semimajor axis, eccentricity and inclination

5) constrain all final orbital elements

6) option 2 with unconstrained true longitude

For option 1, the final orbit inclination is constrained by enforcing

 2 2 tan
2

i
h k

 
   

 

where i is the mission orbit inclination.

page 17

If the final orbit is circular, the software enforces the following two equality constraints:

 0 and 0f g 

Otherwise, for an elliptical mission orbit, the single equality constraint

 2 2f g e 

is enforced, where e is the user-defined mission orbit eccentricity.

For program option 2, both lower and upper bounds for all modified equinoctial elements are set equal

to the user-defined final modified equinoctial orbital elements as follows:

L U i

L U i

L U i

L U i

L U i

p p p

f f f

g g g

h h h

k k k

 

 

 

 

 

Option 3 is identical to option 2 with the final true longitude unbounded.

Bounds on the dynamic variables

The following lower and upper bounds are applied to the spacecraft mass and the modified equinoctial

dynamic variables during the orbital transfer.

0.05 1.05

100 0.8

1 1

1 1

1 1

1 1

i isc sc sc

f i

m m m

p p p

f

g

h

k

 

 

   

   

   

   

where
iscm is the initial spacecraft mass.

Finally, the three components of the unit thrust vector are constrained as follows:

page 18

1.1 1.1

1.1 1.1

1.1 1.1

r

t

n

u

u

u

   

   

   

Technical Discussion

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory

analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These equations

exhibit no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees. However,

two components of the orbital element set are singular for an orbital inclination of 180 degrees.

The relationship between direct modified equinoctial and classical orbital elements is defined by the

following definitions

     

   

21 cos sin

tan 2 cos tan 2 sin

p a e f e g e

h i k i L

 

 

     

     

 where

 semiparameter

 semimajor axis

 orbital eccentricity

 orbital inclination

 argument of periapsis

 right ascension of the ascending node

 true anomaly

 true longitude

p

a

e

i

L















 





The relationship between classical and modified equinoctial orbital elements is summarized as follows:

semimajor axis
2 21

p
a

f g


 

orbital eccentricity 2 2e f g 

orbital inclination  1 2 22 tani h k 

argument of periapsis    1 1tan tang f k h   

right ascension of the ascending node  1tan k h 

true anomaly    1tanL L g f      

page 19

The mathematical relationships between an inertial state vector and the corresponding modified

equinoctial elements are summarized as follows:

position vector

 

 

 

2

2

2

2

2

cos cos 2 sin

sin sin 2 cos

2
sin cos

r
L L hk L

s

r
L L hk L

s

r
h L k L

s





 
  

 
   
 
 
 
  

r

velocity vector

 

 

 

2 2

2

2 2

2

2

1
sin sin 2 cos 2

1
cos cos 2 sin 2

2
cos sin

L L hk L g f hk g
s p

L L hk L f ghk f
s p

h L k L f h gk
s p


 


 



 
      

 
 
        
 
 
   
  

v

where

2 2 2 2 2 21

1 cos sin

h k s h k

p
r w f L g L

w

     

   

The system of first-order modified equinoctial equations of orbital motion are given by

2

t

dp p p
p

dt w 
  

    sin 1 cos sin cost n
r

df p g
f L w L f h L k L

dt w w

  
           

    cos 1 sin sin cost n
r

dg p f
g L w L g h L k L

dt w w

  
           

2

cos
2

ndh p s
h L

dt w


 

2

sin
2

ndk p s
k L

dt w


 

page 20

  
2

1
sin cos n

dL w p
L p h L k L

dt p w




 
     

 

where , ,r t n   are non-two-body perturbations in the radial, tangential and normal directions,

respectively. The radial direction is along the radius vector of the spacecraft measured positive in a

direction away from the gravitational center, the tangential direction is perpendicular to this radius

vector measured positive in the direction of orbital motion, and the normal direction is positive along the

angular momentum vector of the spacecraft’s orbit.

The equations of orbital motion can also be expressed in vector form as follows:

  
d

dt
  

y
y A y P b

where

    

    

 

2

2

2
0 0

1
sin 1 cos sin cos

1
cos 1 sin sin cos

cos
0 0

2

sin
0 0

2

1
0 0 sin cos

p p

w

p p p g
L w L f h L k L

w w

p p p f
L w L g h L k L

w w

p s L

w

p s L

w

p
h L k L

w



  

  







 
 
 
 
    
 
 
    
  

  
 
 
 
 
 
 
 
 
  

A

and

2

0 0 0 0 0

T

w
p

p


  
   

   

b

The total non-two-body acceleration vector is given by

 ˆ ˆ ˆ
r r t t n n     P i i i

where ˆ ˆ ˆ, and r t ni i i are unit vectors in the radial, tangential and normal directions. These unit vectors can

be computed from the inertial position vector r and velocity vector v according to

page 21

 ˆ ˆ ˆ ˆ ˆ

r n t n r

 
    

 

r v rr r v
i i i i i

r r v r v r

For unperturbed two-body motion, 0P and the first five equations of motion are simply

0p f g h k     . Therefore, for two-body motion these modified equinoctial orbital elements are

constant. The true longitude is often called the fast variable of this orbital element set.

Non-spherical Earth Gravity

The non-spherical gravitational acceleration vector can be expressed as

 ˆ ˆ
N N r rg g g i i

 where

 
 

ˆ ˆˆ ˆ
ˆ

ˆ ˆˆ ˆ

T

N N r r

N
T

N N r r






e e i i
i

e e i i

and

  ˆ 0 0 1
T

N e

In these equations the north direction component is indicated by subscript N and the radial direction

component is subscript r.

The contributions due to the zonal gravity effects of 2 3 4, ,J J J are as follows:

4

'

2
2

cos
k

e
N k k

k

R
g P J

r r

 



 
   

 


  
4

2
2

1

k

e
r k k

k

R
g k P J

r r





 
    

 


 where

th

 gravitational constant

 geocentric distance of the spacecraft

 equatorial radius of the Earth

 geocentric latitude

 zonal gravity coefficient

 k order Legendre polynomial

e

k

k

r

R

J

P

















For a zonal only Earth gravity model, the east component is identically zero.

Finally, the zonal gravity perturbation contribution is T

g a Q g where ˆ ˆ ˆ r t n
 
 

Q i i i .

page 22

For
2J effects only, the three components are as follows:

 

 
2

22

2

24 2 2

12 sin cos3
1

2 1
r

e
J

h L k LJ R

r h k


 
    
  
 

   

 
2

2

2

24 2 2

sin cos cos sin12

1
t

e
J

h L k L h L k LJ R

r h k


  
   
  
 

  

 
2

2 22

2

24 2 2

1 sin cos6

1
n

e
J

h k h L k LJ R

r h k


   
   
  
 

Propulsive Thrust

The acceleration due to propulsive thrust can be expressed as

 

ˆ
T T

T

m t
a u

where T is the thrust magnitude, m is the spacecraft mass and ˆ
r t n

T

T T T Tu u u   u is the unit pointing

thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate system. The

components of this unit vector are the control variables.

The propellant mass flow rate is determined from

sp

dm T
m

dt g I
 

where g is the acceleration of gravity and spI is the specific impulse of the propulsive system. The

product spg I is also called the exhaust velocity.

The spacecraft mass at any mission elapsed time t is given by  
iscm t m mt  where

iscm is the initial

mass of the spacecraft and m is the propellant flow rate.

The components of the unit thrust vector can also be defined in terms of the in-plane pitch angle  and

the out-of-plane yaw angle  as follows:

 sin cos cos cos sin
r t nT T Tu u u      

Finally, the pitch and yaw angles can be determined from the components of the unit thrust vector

according to

page 23

 

 

1

1

sin

tan ,

r

n t

T

T T

u

u u













Both steering angles are defined with respect to a local-vertical, local-horizontal (LVLH) system located

at the spacecraft. The in-plane pitch angle is positive above the “local horizontal” and the out-of-plane

yaw angle is positive in the direction of the angular momentum vector. The inverse tangent calculation

in the second equation is a four quadrant operation.

The twoburn_ocs software provides the steering angles and the components of the unit thrust vector in

both the inertial and modified equinoctial coordinate systems. The following section summarizes the

inertial-to/from-modified equinoctial coordinate transformations and the calculation of the inertial unit

thrust vector in terms of right ascension and declination angles.

The relationship between a unit thrust vector in the ECI coordinate system ˆ
ECITu and the corresponding

unit thrust vector in the modified equinoctial system ˆ
MEETu is given by

 ˆ ˆ ˆˆ ˆ
ECI MEET r t n T

 
 

u i i i u

where

 ˆ ˆ ˆ ˆ ˆˆˆ

r n t n r

 
      

 

r v rr r v
i r i h i i i

r r v r v r

This relationship can also be expressed as

  

 

 

 

ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ECI MEE MEE

x x
x

T T y y T
y

z z
z

Q

 
 
 

  
 
 

  

r h r h

u u r h r h u

r h r h

In these equations, r is the inertial position vector and v is the inertial velocity vector of the spacecraft.

In the twoburn_ocs computer program, the components of the inertial unit thrust vector are defined in

terms of the right ascension  and the declination angle  as follows:

 cos cos sin cos sin
ECI ECI ECIx y z

T T Tu u u      

Finally, the right ascension and declination angles can be determined from the components of the ECI

unit thrust vector according to

    1 1tan , sin
ECI ECI ECIy x z

T T Tu u u   

where the calculation for right ascension is a four quadrant inverse tangent operation.

page 24

Algorithm Resources

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.

303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial

Mechanics, Vol. 36, pp. 409-419, 1985.

“Optimal Interplanetary Orbit Transfers by Direct Transcription”, John T. Betts, The Journal of the

Astronautical Sciences, Vol. 42, No. 3, July-September 1994, pp. 247-268.

“Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA

90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, 20-22 August 1990.

“Optimal Low Thrust Trajectories to the Moon”, John T. Betts and Sven O. Erb, SIAM Journal on

Applied Dynamical Systems, Vol. 2, No. 2, pp. 144-170, 2003.

page 25

APPENDIX A

Contents of the Simulation Summary and CSV Files

This appendix is a brief summary of the information contained in the simulation summary screen

displays and the CSV data files produced by the twoburn_ocs software.

The simulation summary screen display contains the following information:

mission elapsed time = simulation time since the beginning of the simulation

sma (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argper (deg) = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

arglat (deg) = argument of latitude in degrees. The argument of latitude is the sum of

true anomaly and argument of perigee.

period (min) = orbital period in minutes

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

rmag (km) = scalar magnitude of the spacecraft’s position vector in kilometers

vx (km/sec) = x-component of the spacecraft’s velocity vector in kilometers per second

vy (km/sec) = y-component of the spacecraft’s velocity vector in kilometers per second

vz (km/sec) = z-component of the spacecraft’s velocity vector in kilometers per second

vmag (km/sec) = scalar magnitude of the spacecraft’s velocity vector in kilometers per

second

spacecraft mass = current spacecraft mass in kilograms

propellant mass = expended propellant mass in kilograms

thrust duration = maneuver duration in seconds

delta-v = scalar magnitude of the maneuver in meters/seconds

The delta-v is determined using a cubic spline integration of the thrust acceleration data at each

collocation node.

The comma-separated-variable disk file is created by the odeprt subroutine and contains the following

information:

time (sec) = mission elapsed time in seconds

page 26

time (min) = mission elapsed time in minutes

semimajor axis (km) = semimajor axis in kilometers

eccentricity = orbital eccentricity (non-dimensional)

inclination (deg) = orbital inclination in degrees

argument of perigee = argument of perigee in degrees

raan (deg) = right ascension of the ascending node in degrees

true anomaly (deg) = true anomaly in degrees

period (min) = orbital period in minutes

mass (kg) = spacecraft mass in kilograms

thracc (mps/s) = thrust acceleration in meters/second**2

yaw (deg) = thrust vector yaw angle in degrees

pitch (deg) = thrust vector pitch angle in degrees

rasc (deg) = inertial right ascension in degrees

decl (deg) = inertial declination in degrees

perigee altitude = perigee altitude in kilometers

apogee altitude = apogee altitude in kilometers

ut-radial = radial component of unit thrust vector

ut-tangential = tangential component of unit thrust vector

ut-normal = normal component of unit thrust vector

semi-parameter = orbital semiparameter in kilometers

f equinoctial element = modified equinoctial orbital element

g equinoctial element = modified equinoctial orbital element

h equinoctial element = modified equinoctial orbital element

k equinoctial element = modified equinoctial orbital element

true longitude = true longitude in degrees

rx (km) = x-component of the spacecraft’s position vector in kilometers

ry (km) = y-component of the spacecraft’s position vector in kilometers

rz (km) = z-component of the spacecraft’s position vector in kilometers

fpa (deg) = flight path angle in degrees

rmag (km) = geocentric radius in kilometers

vmag (kps) = velocity in kilometers per second

deltav1 (mps) = first maneuver accumulative delta-v in meters per second

deltav2 (mps) = second maneuver accumulative delta-v in meters per second

dvacc (mps) = total accumulative delta-v in meters per second

page 27

APPENDIX B

Example LEO-to-ISS Orbit Transfer

This appendix illustrates the twoburn_ocs solution and trajectory graphics for a variable attitude,

medium-thrust LEO-to-ISS (International Space Station) orbit transfer. For this example, the impulsive

delta-v’s were determined using the hohmann.exe computer program which can be found at The

Celestial and Orbital Mechanics Website (www.cdeagle.com). The hohmann.exe software

computes a Hohmann transfer solution for this problem.

The following is the first part of the input data file for this example.

**

** two maneuver, finite-burn earth-orbit

** trajectory optimization

** program twoburn_ocs

** leo2iss.in - April 16, 2012

**

initial spacecraft mass (kilograms)

8000.0

type of propulsive maneuver initial guess

1 = thrust duration

2 = delta-v magnitude

2

first propulsive maneuver

thrust magnitude (newtons)

5000.0

specific impulse (seconds)

300.0

initial guess for delta-v (meters/second)

180.0

initial guess for thrust duration (seconds)

170.0

second propulsive maneuver

thrust magnitude (newtons)

10000.0

specific impulse (seconds)

350.0

initial guess for delta-v (meters/second)

2905.0

initial guess for thrust duration (seconds)

80.0

http://www.cdeagle.com/

page 28

coast phase

initial guess for coast duration (minutes)

45.0

lower bound for coast duration (minutes)

20.0

upper bound for coast duration (minutes)

60.0

* INITIAL ORBIT *

semimajor axis (kilometers)

6563.14

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

28.5

argument of perigee (degrees)

0.0

right ascension of the ascending node (degrees)

100.0

true anomaly (degrees)

0.0

initial orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all initial orbital elements

3 = option 2 with unconstrained true longitude

--

1

* FINAL ORBIT *

semimajor axis (kilometers)

6728.14

orbital eccentricity (non-dimensional)

0.0

orbital inclination (degrees)

51.6

argument of perigee (degrees)

0.0

right ascension of the ascending node (degrees)

100.0

true anomaly (degrees)

0.0

page 29

final orbit constraint options

1 = constrain semimajor axis, eccentricity and inclination

2 = constrain all final orbital elements

3 = option 2 with unconstrained true longitude

--

3

* type of gravity model *

1 = spherical Earth

2 = oblate gravity model

2

The following are plots of the trajectory characteristics for this example.

page 30

Here’s the main program output and verification for this example.

 program twoburn_ocs

 ===================

 input file ==> leo2iss.in

 numerical integration initial guess

 oblate earth gravity model

 beginning of first propulsive maneuver

 mission elapsed time 00:00:00.000

 sma (km) eccentricity inclination (deg) argper (deg)

 0.656314000000D+04 0.110612553947D-15 0.285000000000D+02 0.000000000000D+00

page 31

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.100363294121D+03 0.326736552541D+03 0.326736552541D+03 0.881916022527D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.212477171977D+04 0.596738793323D+04 -.171768246564D+04 0.656314000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.640214595143D+01 0.317457253705D+01 0.310930995346D+01 0.779315032339D+01

 end of first propulsive maneuver

 mission elapsed time 00:15:23.359

 sma (km) eccentricity inclination (deg) argper (deg)

 0.667754855184D+04 0.165328254596D-01 0.329474801412D+02 0.355233433521D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.100255885100D+03 0.345888894857D+02 0.298223230068D+02 0.905076548286D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.372197737672D+04 0.513323822355D+04 0.178135829385D+04 0.658608287403D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.495861875658D+01 -.479160585935D+01 0.371527030388D+01 0.783266366668D+01

 spacecraft mass 6430.72714842286 kilograms

 propellant mass 1569.27285157714 kilograms

 thrust duration 923.358576595192 seconds

 15.3893096099199 minutes

 delta-v 642.396161808662 meters/second

 beginning of coast phase

 mission elapsed time 00:15:23.359

 sma (km) eccentricity inclination (deg) argper (deg)

 0.667754855184D+04 0.165328254596D-01 0.329474801412D+02 0.355233433521D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.100255885100D+03 0.345888894857D+02 0.298223230068D+02 0.905076548286D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.372197737672D+04 0.513323822355D+04 0.178135829385D+04 0.658608287403D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 -.495861875657D+01 -.479160585935D+01 0.371527030388D+01 0.783266366668D+01

 end of coast phase

 mission elapsed time 00:42:01.551

page 32

 sma (km) eccentricity inclination (deg) argper (deg)

 0.667584555215D+04 0.152066565657D-01 0.329380649128D+02 0.355274673206D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.100057403600D+03 0.140887797298D+03 0.136162470504D+03 0.904730332878D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.301488941672D+04 -.548245175517D+04 0.254353639062D+04 0.675399236106D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.544260814774D+01 -.446092094692D+01 -.296721491969D+01 0.763715676965D+01

 coast duration 1598.19246759981 seconds

 26.6365411266635 minutes

 0.443942352111059 hours

 beginning of second propulsive maneuver

 mission elapsed time 00:42:01.551

 sma (km) eccentricity inclination (deg) argper (deg)

 0.667584555215D+04 0.152066565657D-01 0.329380649128D+02 0.355274673206D+03

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.100057403600D+03 0.140887797298D+03 0.136162470504D+03 0.904730332878D+02

 rx (km) ry (km) rz (km) rmag (km)

 -.301488941672D+04 -.548245175517D+04 0.254353639062D+04 0.675399236106D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.544260814774D+01 -.446092094692D+01 -.296721491969D+01 0.763715676965D+01

 end of second propulsive maneuver

 mission elapsed time 01:02:59.702

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672814000000D+04 0.135806524537D-15 0.516000000000D+02 0.000000000000D+00

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.100000000000D+03 0.213965850265D+03 0.213965850265D+03 0.915381771606D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.326840206482D+04 -.508989721860D+04 -.294590599076D+04 0.672814000000D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.315821923111D+01 0.492352099988D+01 -.500283635428D+01 0.769699807300D+01

 propellant mass 3490.78368184216 kilograms

 thrust duration 1198.15128277386 seconds

 19.9691880462309 minutes

 delta-v 2686.47371008881 meters/second

page 33

 SIMULATION SUMMARY

 initial spacecraft mass 8000.00000000000 kilograms

 total propellant mass 5060.05653341929 kilograms

 final spacecraft mass 2939.94346658071 kilograms

 total delta-v 3328.86987189747 meters/second

 total thrust duration 2121.50985936905 seconds

 35.3584976561508 minutes

 ==

 verification of optimal control solution

 ==

 final mission orbit

 mission elapsed time 01:02:59.702

 sma (km) eccentricity inclination (deg) argper (deg)

 0.672813998828D+04 0.600936604302D-08 0.516000000807D+02 0.204587101726D+02

 raan (deg) true anomaly (deg) arglat (deg) period (min)

 0.999999996116D+02 0.193507139109D+03 0.213965849282D+03 0.915381769214D+02

 rx (km) ry (km) rz (km) rmag (km)

 0.326840199228D+04 -.508989733617D+04 -.294590593112D+04 0.672814002759D+04

 vx (kps) vy (kps) vz (kps) vmag (kps)

 0.315821930073D+01 0.492352086106D+01 -.500283638807D+01 0.769699803473D+01

 right ascension 302.705946066975 degrees

 declination -25.9666865187013 degrees

 final spacecraft mass 2939.94346658047 kilograms

 first delta-v 642.396149630716 meters/second

 second delta-v 2686.47335229412 meters/second

 total delta-v 3328.86950192484 meters/second

page 34

APPENDIX C

Typical Sparse Optimization Suite Configuration File

The twoburn_ocs computer progran can read and use a user-defined configuration file. A description

of each element in this file can be found in the INSOCX routine in section 6.2, Subprograms for

Optimal Control, and the INSNLP routine in Section 2.2, Subprograms for Optimization of the Sparse

Optimization Suite user’s manual. Please note that the twoburn_ocs software can read and use a

subset of the information in this file. For example, a subset configuration file might contain only the

following information;

ODETOL=0.1D-06

INSNLP:IOFLAG=5

SOCOUT=I4K4

The following is a typical “full version” configuration file created during the execution of the

twoburn_ocs software.

AEQTOL=0.1000000000000000D-02

DTAUX=0.0000000000000000D+00

OBJCTL=0.1000000000000000D-04

ODETOL=0.1000000011686097D-06

PGDCTL=0.1000000000000000D-02

PRTMSD=0.1490116119384766D-07

PRTMXD=0.1000000000000000D-02

PRTSFD=0.1000000000000000D-04

QDRTOL=0.1000000000000000D-02

RESTOL=0.1000000000000000D-04

SMLTOL=0.1490116119384766D-10

TOLJSD=0.1000000000000000D-05

TOLM5A=0.1490116119384766D-07

TOLM5R=0.1490116119384766D-07

IDSCPH=0

IDSCND=0

IDSCVR=0

IDSCFN=0

IDTSFD=-1

IPFAUX=0

IPFSFD=0

IPRSFD=1

IPGRD=0

IPNLP=10

IPODE=0

IPUAUX=0

IPUOCP=6

IRSTRT=2

ISCALE=0

ISFHES=41

ISFINP=42

ISFRST=43

ISFSCL=44

ITSWCH=2

M5DTYP=0

MITODE=20

MTSWCH=-1

MXDATA=0

MXPARM=10

MXPCON=20

MXSTAT=20

MXTERM=50

NPTAUX=100

NSSWCH=-1

SOCOUT=A0B0C0D0E0F0G0H0I0J2K0L0M0N0O0P0Q0R0S1T0U0V0W0X0Y0Z0

SPRTHS=SPARSE

NLPALG=SNLPMN

NLPOMR=M

KEYDPL=.lueiLUE

page 35

RHSTMP=RHSTMPLT

RSTFIL=tlto1.rsbin

SCLFIL=scalewgt.fil

INSNLP:ALFLWR=0.0000000000000000D+00

INSNLP:ALFUPR=0.1000000000000000D+01

INSNLP:CONTOL=0.1490116119384766D-07

INSNLP:EPSRLF=0.1490116119384766D-07

INSNLP:OBJTOL=0.9999999747378752D-05

INSNLP:PGDTOL=0.1000000000000000D-04

INSNLP:SLPTOL=0.9000000000000000D+00

INSNLP:SFZTOL=0.1000000000000000D-01

INSNLP:TOLFIL=0.2000000000000000D+01

INSNLP:TOLKTC=0.1110953834938985D+26

INSNLP:TOLPVT=0.1000000000000000D-02

INSNLP:IHESHN=0

INSNLP:IOFLAG=5

INSNLP:IOFLIN=-1

INSNLP:IOFMFR=0

INSNLP:IOFPAT=0

INSNLP:IOFSHR=0

INSNLP:IOFSRC=0

INSNLP:IPUDRF=0

INSNLP:IPUFZF=0

INSNLP:IPUMF1=11

INSNLP:IPUMF2=12

INSNLP:IPUMF3=13

INSNLP:IPUMF4=14

INSNLP:IPUMF5=15

INSNLP:IPUMF6=16

INSNLP:IPUMF7=17

INSNLP:IPUNLP=6

INSNLP:IPUSTF=0

INSNLP:IRELAX=1

INSNLP:ITDRQP=-1

INSNLP:ITFZQP=-1

INSNLP:IT1MAX=20

INSNLP:JACPRM=0

INSNLP:LYNFNC=0

INSNLP:LYNOUT=0

INSNLP:LYNPLT=0

INSNLP:LYNPNT=101

INSNLP:LYNVAR=0

INSNLP:MAXLYN=5

INSNLP:MAXNFE=50000

INSNLP:MNSAME=2

INSNLP:NEWTON=0

INSNLP:NITMAX=1000

INSNLP:NITMIN=0

INSNLP:NORMAL=0

INSNLP:ALGOPT=FM

INSNLP:KTOPTN=SMALL

INSNLP:QPOPTN=SPARSE

INSNLP:BIGCON=-0.1000000000000000D+01

INSNLP:FEATOL=0.1000000000000000D-01

INSNLP:PMULWR=0.1000000000000000D+00

INSNLP:PTHTOL=0.1000000000000000D+02

INSNLP:RHOLWR=0.1000000000000000D+03

INSNLP:IMAXMU=10

INSNLP:MUCALC=3

INSNLP:MXQPIT=1

Orbital Mechanics with MATLAB

page 1

Relative Motion Between Two Earth Satellites

This document describes a MATLAB script that can be used to design and analyze relative

motion trajectories between two Earth satellites in circular orbits. The algorithms in this section

are based on the techniques described in the classic paper, “Terminal Guidance System for

Satellite Rendezvous”, by W. H. Clohessy and R. S. Wiltshire, Journal of the Aerospace

Sciences, Vol. 27, 1960.

In the following discussion the passive satellite is called the target and the active or maneuvering

satellite is called the chaser. The state vector of the chaser satellite is defined with respect to a

local vertical-local horizontal (LVLH) coordinate system centered at the target satellite.

The relationship between the chaser vehicle state vector , , , , and x y z x y z at any time t to the

initial state vector 0 0 0 0 0 0, , , , and x y z x y z at time t0 is given by the following state transition

matrix for unperturbed relative motion:

   

 

 

0

0

4 2
1 6 sin 0 3 sin 1 cos 0

2 1
0 4 3cos 0 1 cos sin 0

1
0 0 cos 0 0 sin

0 6 1 cos 0 3 4cos 2sin 0

0 3 sin 0 2sin cos 0

0 0 sin 0 0 cos

t t t t t
xx

yy t t t

z

t tx

y t t t

z t t t

t t

   
 

  
 

 


   

   

  

 
      

   
    
   
   

   
   
     
   
   

  

0

0

0

0

z

x

y

z

 
 
 
 
 
 
 
 
 

where  
3

/ / er r  is the orbital rate of the target’s circular orbit with r equal to the radius

of the target’s orbit and re equal to the radius of the Earth. In this equation,  is the

gravitational constant of the Earth.

The x, y and z position components of the chaser satellite as a function of time are given by the

following three expressions:

   0 0 0
0 0 0 0

2
3 6 2 cos 4 6 sin

y y x
x t x x y t t y t  

  

     
                 

  0 0 0
0 02 4 2 3 cos sin

x x y
y t y y t t 

  

     
               

  0
0 cos sin

z
z t z t t 


 

Orbital Mechanics with MATLAB

page 2

grmotion.m – relative motion of two Earth satellites in circular orbits

This MATLAB script calculates and graphically displays the relative Keplerian motion between

two satellites in circular Earth orbits. This script provides the following user options:

 user input of initial conditions

 calculate and display synchronous orbit

 calculate and display two impulse rendezvous orbit

This MATLAB script displays two-dimensional motion in the x-y or orbit plane.

User input of initial conditions

This program option allows the user to input the initials conditions of the chaser vehicle relative

to the target. The user can graphically display the relative trajectory for either one orbital period

or a user-defined duration.

The following is a typical user interaction with this script and this option.

 graphics display of relative motion

 relative motion menu

 <1> user input of initial conditions

 <2> calculate and display synchronous orbit

 <3> calculate and display rendezvous orbit

 selection (1, 2 or 3)

? 1

please input the altitude of the target satellite (kilometers)

? 350

please input the initial x-position of the chaser satellite (kilometers)

? 10

please input the initial y-position of the chaser satellite (kilometers)

? 10

please input delta-vx of the chaser satellite (meters/second)

? -3

please input delta-vy of the chaser satellite (meters/second)

? 5

Orbital Mechanics with MATLAB

page 3

 user-defined orbit

target altitude 350.0000 kilometers

chaser x distance 10.0000 kilometers

chaser y distance 10.0000 kilometers

vx prior to maneuver -17.1600 meters/second

vy prior to maneuver 0.0255 meters/second

maneuver delta-vx -3.0000 meters/second

maneuver delta-vy 5.0000 meters/second

total delta-v 5.8310 meters/second

the orbital period is 91.5382 minutes

 simulation time menu

 <1> user input of simulation time

 <2> simulate for one orbital period

selection (1 or 2)

? 2

please input the plot step size (minutes)

? 1

The following is the companion graphics display for this example. The orbital motion of the

target satellite is to the right. The target satellite is labeled with the letter T and the chaser

satellite is labeled with the letter C. The chaser trajectory is displayed at the time interval input

by the user.

Orbital Mechanics with MATLAB

page 4

The relative motion trajectory of the chaser spacecraft is a “drifting” ellipse with its center

located at  ,c d where

 0
0 0 0

0
0

2 3 6

2
4

y
c x x y t

x
d y






   

 

The semimajor axis of this dynamic ellipse is given by

2 2

0 0
02 2 3

x y
a y

 

     
       

     

and the semiminor axis is equal to 2a .

Synchronous orbit

The initial velocity components required for a chaser vehicle to be synchronous or “co-orbital”

with a target vehicle located in a user-defined circular orbit are given by

0 0

0

2

0

s

s

x y

y

 



The initial velocity components for any initial 0x and 0y position components are given by the

following two expressions:

0 0

0 0

0

0

3

2

3

2

eq

x y

x y
y

r
y

r





 





Therefore, the components of the initial velocity increment for a synchronous orbit are given by

0 0

0 0

s

s

x

y

V x x

V y y

  

  

Orbital Mechanics with MATLAB

page 5

The relative motion trajectory is an ellipse with its center located at  ,0c where

0
0 2

y
c x


 

The semimajor axis of this ellipse is given by

2

2 0
02

y
a y



 
    

and the semiminor axis is equal to 2a .

The following is a typical user interaction and data output for this program option.

graphics display of relative motion

 relative motion menu

 <1> user input of initial conditions

 <2> calculate and display synchronous orbit

 <3> calculate and display rendezvous orbit

 selection (1, 2 or 3)

? 2

please input the altitude of the target satellite (kilometers)

? 350

please input the initial x-position of the chaser satellite (kilometers)

? 10

please input the initial y-position of the chaser satellite (kilometers)

? 10

 synchronous orbit

target altitude 350.0000 kilometers

chaser x distance 10.0000 kilometers

chaser y distance 10.0000 kilometers

vx prior to maneuver -17.1600 meters/second

vy prior to maneuver 0.0255 meters/second

maneuver delta-vx -5.7200 meters/second

maneuver delta-vy -0.0255 meters/second

total delta-v 5.7201 meters/second

Orbital Mechanics with MATLAB

page 6

the orbital period is 91.5382 minutes

 simulation time menu

 <1> user input of simulation time

 <2> simulate for one orbital period

selection (1 or 2)

? 2

please input the plot step size (minutes)

? 1

The following is the companion graphics display of a synchronous orbit. The orbital motion of

the target satellite is to the right. The target satellite is labeled with the letter T and the chaser

satellite is labeled with the letter C. The chaser trajectory is displayed at the time interval input

by the user.

Two impulse rendezvous orbit

Orbital rendezvous is the process of bringing a chaser vehicle from some initial location to a

final location with zero relative velocity in a specified transfer time. This type of orbit transfer

involves an initial maneuver that starts the transfer and a second maneuver that stops the chaser

spacecraft at the final location. This program option of the grmotion script calculates the

Orbital Mechanics with MATLAB

page 7

magnitude and direction of these two impulsive maneuvers and graphically displays the transfer

trajectory.

The initial velocity components required for a rendezvous orbit are given by

   

 

0 0 0

0

14 1 cos 6 sin

8
3sin 1 cos

tpi

r r r

r r r

r

y t y t x t
x

t t t
t

  

 


  


 
  

 

   

 

0 0

0

3 cos 4sin 2 1 cos

8
3sin 1 cos

tpi

r r r r

r r r

r

y t t t x t
y

t t t
t

   

 


   


 
  

 

where tr is the transfer time.

The components of the terminal phase initiation V required to start the orbital rendezvous are

determined from the following equations

0 0

0 0

tpi

tpi

x

y

V x x

V y y

  

  

where 0x and 0y are the x and y velocity components of the chaser vehicle prior to this

impulsive maneuver.

The components of the V required to brake the vehicle at the target are given by

       

     

0 0

0

3 6 2 sin 4 6 cos

2 3 sin cos

b r tpi tpi r tpi r

b r tpi r tpi r

x t x y y t x y t

y t x y t y t

   

  

      

  

The following is a typical user interaction with this MATLAB script and this program option.

 relative motion menu

 <1> user input of initial conditions

 <2> calculate and display synchronous orbit

 <3> calculate and display rendezvous orbit

 selection (1, 2 or 3)

? 3

please input the altitude of the target satellite (kilometers)

? 300

Orbital Mechanics with MATLAB

page 8

please input the initial x-position of the chaser satellite (kilometers)

? 50

please input the initial y-position of the chaser satellite (kilometers)

? -100

please input the rendezvous time (minutes)

? 120

 rendezvous orbit

target altitude 300.0000 kilometers

chaser x distance 50.0000 kilometers

chaser y distance -100.0000 kilometers

time to rendezvous 120.0000 minutes

vx prior to tpi 173.5309 meters/second

vy prior to tpi -1.3190 meters/second

tpi delta-vx 94.6752 meters/second

tpi delta-vy -179.0340 meters/second

tpi delta-v 202.5255 meters/second

braking delta-vx 36.8316 meters/second

braking delta-vy 250.9074 meters/second

braking delta-v 253.5964 meters/second

total delta-v 456.1219 meters/second

please input the plot step size (minutes)

? 1

Orbital Mechanics with MATLAB

page 1

Circular Orbit Plane Change

This document presents the geometry and equations associated with the single impulse maneuver that

modifies the inclination and/or right ascension of the ascending node (RAAN) of circular orbits. It also

describes a MATLAB script that solves this classic astrodynamic problem.

The following diagram illustrates the geometry of this type of orbital maneuver.

In this picture the orbital inclinations of the initial and final orbits are ii and i f , respectively. The

RAAN of the initial orbit is i and  f is the RAAN of the final orbit. The right ascension of the

ascending node of an orbit is measured from the inertial x-axis along the equator in the direction of the

Earth's rotation. From spherical trigonometry relationships,  is the angle between the two orbit planes.

The next diagram illustrates the possible points of intersection. From this ground track schematic we

can see that there are two pairs of orbit intersections on both the initial and final orbits which depend on

the relative RAAN between these two orbits.

The total plane change angle due to the modification of inclination and RAAN can be expressed as

  1cos sin sin cos cos cosi f f i i fi i i i       

We can define an index imp that depends on the sign of the RAAN change    f i as follows

final orbit

imp=1 imp=2

imp=3
imp=4

equator

initial orbits

Orbital Mechanics with MATLAB

page 2

If  0 then imp = 1 and 3

or

If  0 then imp = 2 and 4.

It is convenient to define the location of impulses by their argument of latitude. The argument of

latitude is the angle from the ascending node, measured along the orbital plane, to the point of interest.

The argument of latitude is equal to the sum of the argument of perigee and true anomaly. Since for

circular orbits there is no argument of perigee, the argument of latitude and true anomaly are identical.

The two possible arguments of latitude on the initial orbit depend on the values of imp as follows

    integer / 2 1
imp

iu imp u  

where u is the impulse argument of latitude on the initial orbit given by

 1
cos sin cos

cos
sin sin

i f

i

i i
u

i 


 

  
 

We can determine the argument of latitude of an impulse on the final orbit by forming the unit position

vectors from the ascending node to the impulse. The argument of latitude of the first opportunity on the

final orbit is given by

  1

1 2cosu  U U

where U1 is the unit position vector of the impulse on the initial orbit and U2 is the unit position vector

to the ascending node of the final orbit. The argument of latitude of the second impulse opportunity on

the final orbit is equal to 180 degrees plus this value.

The maneuver V vector is given by the vector difference between the velocity vectors of the initial and

final orbits as follows

 f i  V V V

These velocity vectors are evaluated at the points of orbital intersection. The scalar magnitude of the

V is determined from the components of this vector according to

 2 2 2

x y zV V V V      

For the case where there is no RAAN change, the two impulse locations occur at the common ascending

and descending nodes of both the initial and final orbits. The arguments of latitude of these two orbital

points are 0 and 180 degrees, respectively.

The required V can also be determined using vector manipulation. Unit vectors normal to each orbit

plane can be defined as follows

Orbital Mechanics with MATLAB

page 3

sin sin sin sin

sin cos sin cos

cos cos

i i f f

i i i f f f

i f

i i

i i

i i

   
         
     

n n

A unit vector along the intersection of the initial and final orbit planes is given by

f i

f i






n n
m

n n

The velocity vector prior to the maneuver is calculated from

 i
i lc

i

V





n m
V

n m

The velocity vector after the maneuver is given by

f

f lc

f

V





n m
V

n m

where
lcV r is the local circular velocity at the maneuver altitude. In this equation,  is the

gravitational constant of the Earth and r is the geocentric radius of the circular orbit.

Finally, the maneuver V vector is determined from

 f i  V V V

The equations described here have been implemented in an interactive MATLAB script called

maneuver1.m. This script will prompt you for the altitude, inclination and RAAN of both the initial

and final orbits. A typical user interaction with this script along with the output is as follows.

 program maneuver1

 < one impulse transfer between circular orbits >

initial orbit

please input the circular orbit altitude (kilometers)

(altitude > 0)

? 300

please input the orbital inclination (degrees)

(0 <= inclination <= 180)

? 28.5

please input the right ascension of the ascending node (degrees)

(0 <= raan <= 360)

? 100

Orbital Mechanics with MATLAB

page 4

final orbit

please input the orbital inclination (degrees)

(0 <= inclination <= 180)

? 30

please input the right ascension of the ascending node (degrees)

(0 <= raan <= 360)

? 120

solution # 1

initial orbit true anomaly 90.1081 degrees

final orbit true anomaly 72.6145 degrees

delta-V required 1326.0778 meters/second

pitch angle 0.0000 degrees

yaw angle 94.9233 degrees

solution # 2

initial orbit true anomaly 270.1081 degrees

final orbit true anomaly 252.6145 degrees

delta-V required 1326.0778 meters/second

pitch angle -0.0000 degrees

yaw angle -94.9233 degrees

The pitch and yaw angles for each impulsive maneuver are computed and displayed in the local-vertical-

local horizontal (LVLH; also called the radial-tangential-normal RTN) coordinate system. The

following diagram illustrates the geometry of the pitch and yaw angles in this system. In this figure, the

radial direction is along the geocentric radius vector directed away from the Earth, the tangential

direction is tangent to the orbit in the direction of the orbital motion, and the normal direction is along

the angular momentum vector of the orbit. The pitch angle is positive above the local horizontal plane

formed by the tangential and normal directions, and the yaw angle is positive in the direction of the

angular momentum vector which is perpendicular to the orbit plane.

Tu

Ru

Nu





 pitch

= yaw







Orbital Mechanics with MATLAB

page 5

The maneuver1 script will also create a graphics display of the initial and final orbits for each solution.

The following is one of the graphic images for this example. The initial orbit trace is red and the final

mission orbit is blue. The dimensions are Earth radii (ER) and the plot is labeled with an Earth-

centered-inertial (ECI) coordinate system where green is the x-axis, red is the y-axis and blue is the z-

axis. The impulse location is marked with a small blue circle.

Trajectory image files are saved to disk in both encapsulated, color Postscript format and MATLAB fig

format with a file name indicating the solution number. For the first solution, the file names are

plane_change1.eps and plane_change1.fig. The interactive features of MATLAB graphics

allow the user to manipulate the fig version of the trajectory display. These capabilities allow the user

to interactively find the best viewpoint as well as verify basic three-dimensional geometry of the orbital

maneuver.

page 1

Targeting with Modified Equinoctial Orbital Elements

The modified equinoctial orbital elements are a set of orbital elements that are useful for trajectory
analysis and optimization. They are valid for circular, elliptic, and hyperbolic orbits. These direct
modified equinoctial equations exhibit no singularity for zero eccentricity and orbital inclinations equal
to 0 and 90 degrees. However, please note that two of the components are singular for an orbital
inclination of 180 degrees.

The modified equinoctial elements are defined in terms of the classical orbital elements as follows:

()
()

()

()

()

21

cos

sin

tan 2 cos

tan 2 sin

p a e

f e

g e

h i

k i

L

ω

ω

θ ω

= −

= +Ω

= +Ω

= Ω

= Ω

= + +Ω

where

 semiparameter
 semimajor axis
 orbital eccentricity
 orbital inclination
 argument of perigee
 right ascension of the ascending node
 true anomaly
 true longitude

p
a
e
i

L

ω

θ

=
=
=
=
=

Ω =
=
=

The classical orbital elements can be recovered from the modified equinoctial orbital elements with

semimajor axis

 2 21
pa

f g
=

− −

orbital eccentricity

 2 2e f g= +

orbital inclination

 ()1 2 22 tani h k−= +

page 2

argument of periapsis

 () ()1 1tan , tan ,g f k hω − −= −

()

sin
tan 2

g h f k
e i

ω −
=

()

cos
tan 2
f h g k

e i
ω +
=

right ascension of the ascending node

 ()1tan ,k h−Ω =

()

sin
tan 2

k
i

Ω =

()

cos
tan 2

h
i

Ω =

true anomaly

 () ()1tan ,L L g fθ ω −= − +Ω = −

()

()

1sin sin cos

1cos cos sin

f L g L
e

f L g L
e

θ

θ

= −

= +

In these expressions, an inverse tangent expression of the form ()1tan ,a bθ −= denotes a four quadrant
evaluation where sina θ= and cosb θ= .

Constraint formulations that enforce both the sine and cosine of a desired orbital element should be used
whenever possible. This approach involves a combination of equality and inequality constraints and
ensures that the “targeted” orbital element is in the correct quadrant.

To illustrate this technique, here are several examples for different values of argument of perigee and the
corresponding mission constraints:

 ()
sin 0 0

0 90
tan 2 cos
gh f k

f h g k e i
ω

ω
ω

> → − >⎧
< < → ⎨ + =⎩

page 3

sin 0 0

270
cos 0 0

gh f k
f h gk

ω
ω

ω
≤ → − ≤⎧

= → ⎨ = → + =⎩

 ()tan 2 sin
178

cos 0 0
g h f k e i

f h gk
ω

ω
ω
− =⎧

= → ⎨
≤ → + ≤⎩

The following is a sign table of the sine and cosine for each quadrant.

quadrant sine cosine
1 + +
2 + −
3 − −
4 − +

orbital eccentricity constraint

 2 2e f g= +

For a circular orbit, 0f g= = .

orbital inclination constraint

 2 2tan
2
i h k⎛ ⎞ = +⎜ ⎟

⎝ ⎠

For an equatorial orbit, 0h k= = .

argument of perigee constraints

 () ()
sin tan 2 sin

tan 2
g h f kg h f k e i
e i

ω ω −
− = → =

 () ()
cos tan 2 cos

tan 2
f h g kf h g k e i

e i
ω ω +

+ = → =

right ascension of the ascending node constraints

 () ()
tan 2 sin sin

tan 2
kk i
i

= Ω→ Ω =

 () ()
tan 2 cos cos

tan 2
hh i
i

= Ω→ Ω =

page 4

true anomaly constraints

 () ()1tan ,L L g fθ ω −= − +Ω = −

 In general,

()

()

1sin sin cos

1cos cos sin

f L g L
e

f L g L
e

θ

θ

= −

= +

For a circular orbit,

sin sin cos cos sin

cos cos cos sin sin

L L

L L

θ

θ

= Ω − Ω

= Ω + Ω

For a circular, equatorial orbit,

 Lθ = , sin sin Lθ = and cos cos Lθ = .

Targeting Example

For a user-defined semimajor axis, eccentricity and inclination, the set of modified equinoctial
constraints are as follows:
 p p=

 2 2f g e+ =

 ()2 2 tan 2h k i+ =

where the tilde indicates the value of the user-defined classical orbital element.

References

“On the Equinoctial Orbital Elements”, R. A. Brouke and P. J. Cefola, Celestial Mechanics, Vol. 5, pp.
303-310, 1972.

“A Set of Modified Equinoctial Orbital Elements”, M. J. H. Walker, B. Ireland and J. Owens, Celestial
Mechanics, Vol. 36, pp. 409-419, 1985.

“Equinoctial Orbit Elements: Application to Optimal Transfer Problems”, Jean A. Kechichian, AIAA
90-2976, AIAA/AAS Astrodynamics Conference, Portland, OR, August 20-22, 1990.

	sep_ltot_matlab.pdf
	Low-Thrust Orbital Transfer with Solar-Electric Propulsion

