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A MATLAB Script that Demonstrates Aerospace Trajectory 
Optimization Using Direct Transcription and Collocation 

 

This brief report describes a technical approach and MATLAB script that demonstrate the use of direct 

transcription and collocation to solve aerospace optimal control problems.  The computer program 

solves the problem described on pages 66-69 of the classic text, Applied Optimal Control, by Arthur E. 

Bryson, Jr. and Yu-Chi Ho. 

 

This problem is summarized in the text as follows: 
 

“Given a constant-thrust rocket engine, T = thrust, operating for a given length of time, t , we wish to 

find the thrust-direction history,  t , to transfer a rocket vehicle from a given initial circular orbit to 

the largest possible circular orbit.” 

 

In the language of optimal control theory, this problem is a “continuous system with functions of the 

state variables prescribed at a fixed terminal time”.  The numerical example given in the text is a 

continuous, low-thrust coplanar orbit transfer from Earth to “near” Mars.  The orbits of the planets are 

assumed to be circular and coplanar, and the total transfer time is about 193 days. 

 

Mathematical background 
 

A typical optimal control trajectory problem can be described by a system of dynamic variables 
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consisting of the state variables y  and the control variables u  for any time t.  In this discussion vectors 

are denoted in bold. 

 

The system dynamics are defined by a vector system of ordinary differential equations called the state 

equations that can be represented as follows: 
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where p is a vector of problem parameters that are time independent. 

 

The initial dynamic variables at time 0t  are defined by    0 0 0 0, ,t t t   ψ ψ y u  and the terminal 

conditions at the final time ft  are defined by    , ,f f f ft t t   ψ ψ y u .  These conditions are called the 

boundary values of the trajectory problem. 

 

The problem may also be subject to path constraints of the form    , , 0t t t   g y u . 

 

For any mission time t there are also simple bounds on the state variables 
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  l ut y y y  

 

and the control variables 

 

  l ut u u u  

 

The basic optimal control problem is to determine the control vector history that minimizes the scalar 

performance index or objective function given by 

 

    0 0, , , ,f fJ t t t t    y y p  

 

while satisfying all the user-defined mission constraints. 

 

Direct transcription 
 

The basic idea behind direct transcription involves discretizing the state and control representation of a 

continuous aerospace trajectory.  This technique allows the Optimal Control Problem (OCP) to be 

“transcribed” into a Nonlinear Programming Problem (NLP).  The OCP can be thought of as an NLP 

with an infinite number of controls and constraints. 

 

Each phase of an aerospace trajectory can be divided into segments or intervals such that 

 

 1 2I n Ft t t t t      

 

where It  is the initial time and Ft  is the final mission time.  The individual time points are called node, 

mesh or grid points.  The value of the state vector at a grid point or node is  k kty y  and the control 

vector is  k ktu u . 

 

In the direct transcription method, we treat the values of the states and controls at the nodes as a set of 

NLP variables.  Furthermore, the differential equations of the problem are represented by a system of 

defect equality constraints that are enforced at each discretization node.  In the direct transcription 

method the state and control variable bounds become simple bounds on the NLP variables.  The defect 

constraints and variable bounds are imposed at all the grid points.  If we represent the state defects by a 

Hermite-Simpson discretization method, these constraints and bounds are also imposed at the midpoints 

of each trajectory segment. 

 

The following diagram illustrates the geometry of trajectory and control discretization.  For this simple 

example we have divided the trajectory into 8 segments.  These 8 segments can be represented by 9 

discrete nodes with their corresponding times it , states iy  and controls iu .  A typical segment midpoint 

is also illustrated. 
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Figure 1  Trajectory and Control Discretization 
 

Collocation 
 

For the trapezoidal discretization method, the NLP variables are 

 

 0 0 1 1 0, , , , , , , , ,
T

f f ft t   x y u y u y u p  

 

The state equations are approximately satisfied by setting the defects 
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to zero for 1, , sk n .  The step size is denoted by 1k k kh t t   , and the right hand side of the 

differential equations are given by    , , ,k k k kt t t   f f y u p . 

 

For the compressed Hermite-Simpson discretization or collocation method, the NLP variables are 
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where 
1 2
, , .m m etcu u  are values of the controls at the midpoints of the discretization segments. 

The defects for this discretization algorithm are given by 
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where  ,f x u  represents the equations of motion evaluated at the nodes and midpoints. 

 

The state vector and equations of motion at the midpoint of a segment are given by 
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for 1, , 1Nk n   

 

In these equations kh  is the time interval between segments.  For equal duration segments kh  is equal to 

   1f i Nt t n   where Nn  is the number of nodes and 1Nn   is the number of segments. 

 

By treating the state vector defects as equality constraints, the NLP algorithm attempts to converge the 

trapezoidal approximation to the actual trajectory as defined by the right-hand-sides of the equations of 

motion.  Furthermore, driving the vector of defects to zero enforces continuity at the trajectory nodes. 

 

Implicit integration with the trapezoidal method 
 

The general form for integration from time nt  to time 1nt   is given by 
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The trapezoidal approximation can be written as 
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The defect condition is given by 
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which can also be expressed as 
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In these equations,  f x  is the first order equation of motion and 
1n nt t t    is the time increment 

between nodes. 

 

For example, a problem with 8 nodes (7 segments) can be written compactly as follows: 
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Chebyshev-Gauss-Lobatto grid points 
 

The location of the grid points in this MATLAB script is determined using a Chebyshev-Gauss-Lobatto 

(CGL) technique.  The CGL algorithm locates points evenly distributed in the interval  1, 1     

according to  

 cos 0, ,k

k
k N

N





   

 
 

 

where N is the total number of nodes. 

 

The actual time at individual grid points is determined from 

 

     0 0

1

2
k f k ft t t t t     

 

where 0t  is the initial time and ft  is the final time. 

 

Bryson-Ho problem description 
 

This trajectory optimization problem is modeled in a two-dimensional polar coordinate system.  This 

coordinate system is heliocentric (sun-centered) and all motion is confined to the ecliptic or fundamental 

plane.  The following diagram illustrates the geometry of this coordinate system along with the 

orientation of the steering angle. 

 

In this diagram, r is the heliocentric distance,   is the polar angle, v is the transverse or tangential 

component of the velocity, u is the radial component of the velocity and   is the steering or thrust 

orientation angle.  The steering angle is measured relative to the instantaneous tangential direction and is 

positive in the clockwise direction.  The direction of the propulsive thrust is denoted by the red vector. 
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The first-order, two-dimensional equations of motion for the Bryson-Ho Earth-to-Mars orbit transfer 

problem are given by 
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The thrust angle is defined relative to the “local horizontal” or tangential direction at the current 

position.  It is measured positive above the local horizontal plane and negative below.  The in-plane 

thrust angle   is the single control variable for this problem. 

 

The spacecraft mass at any elapsed time t is determined from 

 

    0 1m t m mt   

 

where m  is the propellant flow rate of the propulsive device and 0m  is the initial mass. 

 

The flight conditions in the initial circular orbit are as follows: 

 

 

 

 

 

0

0

0

0

0

0 0

0

r r

u u

v
r






 

 

 

 

The boundary conditions that create a circular orbit at the final time ft  are given by 

 

 

 

 
 

0

0

f f

f

f

u t u

v t
r t



 

 
 

 

The first equation states that the radial velocity should be zero and the second equation is a boundary 

condition that forces the final velocity to be equal to the local circular velocity at the final radial 

distance. 

 

The initial mass and propulsive characteristics for the Earth to Mars orbit transfer are as follows: 

 

 initial mass 0m  = 4535.9 kilograms  

 initial thrust T = 3.781 Newtons 

 propellant flow rate m  = 5.85 kilograms/day 

 

Dimensional analysis 

 

To “streamline” the numerical calculations, the fundamental distance, velocity and time in the equations 

of motion are normalized.  In this MATLAB script, all heliocentric distances are normalized with 

respect to the Astronomical Unit which is equal to 149597870.691 kilometers.  Likewise, all velocity 

values are normalized with respect to the “local circular velocity” at the heliocentric distance of the 

Earth’s circular orbit, 0r .  Therefore, the velocity unit is 0S Sr   since 0r  is equal to 1 AU. 
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Furthermore, all time values are normalized with respect to 3

0 1S Sr    since again 
0r  is equal to 1 

AU.  In these equations, 
S  is the gravitational constant of the Sun.  The corresponding value for this 

astronomical constant is equal to 0.0002959122082855912 AU
3
/day

2
. 

 

Finally, the acceleration is formulated as the ratio of the acceleration due to propulsive thrust and the 

acceleration due to the point-mass gravity of the Sun evaluated at a distance of 1 AU.  Therefore, the 

acceleration ratio   is equal to Ta a  where Ta  is the propulsive acceleration and a  is the solar 

acceleration.  The acceleration due to the Sun is equal to 2

0S r . 

 

For this problem, the non-dimensional acceleration ratio is given by 
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The non-dimensional flight time is given by f cft t  where ft   is the total flight time in days and cft  is 

the time conversion factor which is equal to 1 s  = 58.13244. 

 

If we normalize the dimensional propellant flow rate by the initial mass and apply the time conversion 

factor, the non-dimensional propellant flow rate is given by 

 

 
0
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m
m t

m
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This interplanetary mission requires about 1129 kilograms of propellant. 

 

With these conversions, the two-dimensional equations of motion are modeled as 
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In the second and third equations,  1a a mt  . 

 

For this problem we would like to maximize the radius of the final circular orbit.  Therefore the objective 

function is fJ r  . 
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Numerical solution of the optimal control problem 
 

In order to transcribe the optimal control problem (OCP) into a nonlinear programming problem (NLP) 

for computer solution, the user must provide an initial guess for the state and control vectors at the nodes 

and the following information and software components: 

 

(1) problem definition (number of trajectory states, number of discretization nodes, number of 

control variables, initial and final conditions, etc.) 
 

(2) right-hand-side of the equations of motion 
 

(3) state vector defect equality constraints 
 

(4) collocation method 
 

(5) scalar object function 
 

To demonstrate this process a MATLAB script called dto_trap was created to solve the Bryson-Ho 

example.  This section documents the construction and operation of this software. 

 

The software begins by defining such things as the total number of nodes, control variables and 

differential equations.  The following is the problem definition for this example. 

 
% number of differential equations 

  

ndiffeq = 3; 

  

% number of control variables 

  

ncv = 1; 

  

% number of discretization nodes 

  

nnodes = 50; 

  

% number of state nlp variables 

  

nlp_state = ndiffeq * nnodes; 

  

% number of control nlp variables 

  

nlp_control = ncv * nnodes; 

  

% total number of nlp variables 

  

nlpv = nlp_state + nlp_control; 

  

% number of state vector defect equality constraints 

  

nc_defect = nlp_state - ndiffeq; 

  

% number of auxilary equality constraints (boundary conditions) 

  

nc_aux = 2; 

  

% total number of equality constraints 

  

nc_total = nc_defect + nc_aux; 
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The next part of the computer program calculates such things as the time values at each node, the initial 

and final state and control guesses, and the lower and upper boundaries for the NLP variables.  For this 

example the initial guess for the state vector at each node is set to the value of the initial state vector.  

The initial guess for the control variable at each node is simply set to zero. 

 

The NLP problem is solved by calling a MATLAB interface routine to the SNOPT algorithm.  The 

following is the syntax for this operation. 

 
[x, f, inform, xmul, fmul] = snopt(xg, xlb, xub, flow, fupp, 'dtofunc_trap'); 

 

In the calling arguments dtofunc_trap is a user-supplied function that evaluates the objective 

function and equality constraints for any given trajectory condition. 

 

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s 

web site which is located at http://scicomp.ucsd.edu/~peg/. 

 

The source code for the MATLAB function that calculates the current value of the objective function, 

the equality constraints (defects) and the boundary constraints for this example is as follows: 

 
function [f, g] = dtofunc_trap (x) 

  

% objective function and equality constraints 

  

% trapezoidal collocation method 

  

% inputs 

  

%  x = current nlp variable values 

  

% outputs 

  

%  f = vector of equality constraints and 

%      objective function evaluated at x 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global nc_defect ndiffeq nnodes nlp_state ncv tarray 

  

% compute state vector defect equality constraints 

  

for k = 1:1:nnodes - 1 

  

    % time elements 

  

    tk = tarray(k); 

  

    tkp1 = tarray(k + 1); 

  

    % state vector elements 

  

    if (k == 1) 

 

       % first node 

 

       nks = 0; 

 

       nkp1s = ndiffeq; 

http://scicomp.ucsd.edu/~peg/
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    else 

 

       % reset to previous node 

 

       nks = (k - 1) * ndiffeq; 

 

       nkp1s = nks + ndiffeq; 

 

    end 

    

    for i = 1:1:ndiffeq 

 

        xk(i) = x(nks + i); 

  

        xkp1(i) = x(nkp1s + i); 

 

    end 

  

    % control variable elements 

  

    if (k == 1) 

 

       % first node 

 

       nkc = nlp_state; 

 

       nkp1c = nkc + ncv; 

 

    else 

 

       % reset to previous node 

 

       nkc = nlp_state + (k - 1) * ncv; 

 

       nkp1c = nkc + ncv; 

    end 

  

    for i = 1:1:ncv 

        uk(i) = x(nkc + i); 

  

        ukp1(i) = x(nkp1c + i); 

 

    end 

  

    % compute state vector defects for current node 

  

    reswrk = defect_trap(tk, tkp1, xk, xkp1, uk, ukp1); 

  

    % load defect array for this node 

  

    for i = 1:1:ndiffeq 

 

        resid(nks + i) = reswrk(i); 

 

    end 

 

end 

  

% set active defect constraints 

% (offset by 1) 

  

for i = 1:1:nc_defect 

 

    f(i + 1) = resid(i); 
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end 

  

% current final state vector 

  

xfinal(1) = x(nlp_state - 2); 

  

xfinal(2) = x(nlp_state - 1); 

  

xfinal(3) = x(nlp_state); 

  

% objective function (maximize final radius) 

  

f(1) = -xfinal(1); 

  

% compute auxillary equality constraints 

% (final boundary conditions) 

  

f(nc_defect + 2) = xfinal(2); 

  

f(nc_defect + 3) = xfinal(1) * xfinal(3)^2 - 1; 

  

% transpose 

  

f = f'; 

  

% no derivatives 

  

g = []; 

 

The following is the source code for the MATLAB function that calculates the state defect vector for the 

trapezoidal collocation algorithm. 

 
function resid = defect_trap(tk, tkp1, xk, xkp1, uk, ukp1) 

  

% state vector defects - trapezoid method 

  

% input 

  

%  tk   = time at node k 

%  tkp1 = time at node k + 1 

%  xk   = state vector at node k 

%  xkp1 = state vector at node k + 1 

%  uk   = control variable vector at node k 

%  ukp1 = control variable at node k + 1 

  

% output 

  

%  resid = state defect vector for node k 

  

% Orbital Mechanics with MATLAB 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global ndiffeq 

  

% compute delta time 

  

hk = tkp1 - tk; 

  

% evaluate equations of motion 

% at beginning and end of segment 

  

xdk = dto_rhs (tk, xk, uk); 
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xdkp1 = dto_rhs (tkp1, xkp1, ukp1); 

  

% compute state vector defect for this node 

  

for i = 1:1:ndiffeq 

    resid(i) = xkp1(i) - xk(i) - 0.5d0 * hk * (xdk(i) + xdkp1(i)); 

end 

 

The right-hand-side of the equations of motion is defined in a function called dto_rhs.m.  Here is the 

MATLAB source code for this function. 

 
function xdot = dto_rhs (t, x, u) 

  

% first-order equations of motion 

  

% required by dto_trap.m 

  

% input 

  

%  t = current time 

  

%  x = current state vector 

  

%  x(1) = r, x(2) = u, x(3) = v 

  

%  u = current control vector 

  

% output 

  

%  xdot = rhs equations of motion 

  

%  xdot(1) = r dot, xdot(2) = u dot, xdot(3) = v dot 

  

% Orbital Mechanics with MATLAB 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

global acc beta 

  

% current control variable 

  

theta = u(1); 

  

% current thrust acceleration 

  

accm = acc / (1.0d0 - beta * t); 

  

% evaluate equations of motion at current conditions 

  

xdot(1) = x(2); 

  

xdot(2) = (x(3) * x(3) - 1.0d0 / x(1)) / x(1) + accm * sin(theta); 

  

xdot(3) = -x(2) * x(3) / x(1) + accm * cos(theta); 

 

Simulation Results 
 

The following is the NLP algorithm header and the last iteration for this example. 

 
Major Minors     Step   nCon Feasible  Optimal  MeritFunction    nS Penalty 

    44      1  1.0E+00     48 (6.7E-10)(1.5E-06)-1.5247152E+00    48 3.2E+02   R 
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After the NLP algorithm has converged, the software will display a printout of the initial and final 

conditions.  The following is the screen display for this example. 
 

         program dto_trap  

 

    trajectory optimization using 

 direct transcription and collocation  

 

 

 initial state vector  

 

 radius              =   1.00000000  

 

 radial velocity     =   0.00000000  

 

 transverse velocity =   1.00000000  

 

 

final state vector  

 

 radius               =   1.52446193  

 

 radial velocity      =   0.00000000  

 

 transverse velocity  =   0.80991923 

 

The following are plots of the in-plane thrust angle, several other flight parameters and the heliocentric 

planet orbits and transfer trajectory.  Please note that the radial distance and velocities are non-

dimensional.  For this example the MATLAB script used 50 discretization nodes.  In these plots, the 

asterisks represent the locations of the Chebyshev-Gauss-Lobatto nodes. 

 

 
Figure 2. Thrust Angle versus Simulation Time 
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Figure 3. Radial Distance versus Simulation Time 

 

 

 
Figure 4. Radial Velocity versus Simulation Time 
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Figure 5. Transverse Velocity versus Simulation Time 

 

 

 
Figure 6. Heliocentric planet orbits and transfer trajectory 
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The dto_trap MATLAB script will create color Postscript disk files of these graphic images.  These 

images include a TIFF preview and are created with MATLAB code similar to 

 
print -depsc -tiff -r300 vradial.eps 
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