
page 1

A MATLAB Script that Demonstrates Aerospace Trajectory
Optimization Using Direct Transcription and Collocation

This brief report describes a technical approach and MATLAB script that demonstrate the use of direct

transcription and collocation to solve aerospace optimal control problems. The computer program

solves the problem described on pages 66-69 of the classic text, Applied Optimal Control, by Arthur E.

Bryson, Jr. and Yu-Chi Ho.

This problem is summarized in the text as follows:

“Given a constant-thrust rocket engine, T = thrust, operating for a given length of time, t , we wish to

find the thrust-direction history,  t , to transfer a rocket vehicle from a given initial circular orbit to

the largest possible circular orbit.”

In the language of optimal control theory, this problem is a “continuous system with functions of the

state variables prescribed at a fixed terminal time”. The numerical example given in the text is a

continuous, low-thrust coplanar orbit transfer from Earth to “near” Mars. The orbits of the planets are

assumed to be circular and coplanar, and the total transfer time is about 193 days.

Mathematical background

A typical optimal control trajectory problem can be described by a system of dynamic variables

 

 

t

t

 
  
 

y
z

u

consisting of the state variables y and the control variables u for any time t. In this discussion vectors

are denoted in bold.

The system dynamics are defined by a vector system of ordinary differential equations called the state

equations that can be represented as follows:

    , , ,
d

t t t
dt

    
y

y f y u p

where p is a vector of problem parameters that are time independent.

The initial dynamic variables at time 0t are defined by    0 0 0 0, ,t t t   ψ ψ y u and the terminal

conditions at the final time ft are defined by    , ,f f f ft t t   ψ ψ y u . These conditions are called the

boundary values of the trajectory problem.

The problem may also be subject to path constraints of the form    , , 0t t t   g y u .

For any mission time t there are also simple bounds on the state variables

page 2

  l ut y y y

and the control variables

  l ut u u u

The basic optimal control problem is to determine the control vector history that minimizes the scalar

performance index or objective function given by

    0 0, , , ,f fJ t t t t    y y p

while satisfying all the user-defined mission constraints.

Direct transcription

The basic idea behind direct transcription involves discretizing the state and control representation of a

continuous aerospace trajectory. This technique allows the Optimal Control Problem (OCP) to be

“transcribed” into a Nonlinear Programming Problem (NLP). The OCP can be thought of as an NLP

with an infinite number of controls and constraints.

Each phase of an aerospace trajectory can be divided into segments or intervals such that

 1 2I n Ft t t t t    

where It is the initial time and Ft is the final mission time. The individual time points are called node,

mesh or grid points. The value of the state vector at a grid point or node is  k kty y and the control

vector is  k ktu u .

In the direct transcription method, we treat the values of the states and controls at the nodes as a set of

NLP variables. Furthermore, the differential equations of the problem are represented by a system of

defect equality constraints that are enforced at each discretization node. In the direct transcription

method the state and control variable bounds become simple bounds on the NLP variables. The defect

constraints and variable bounds are imposed at all the grid points. If we represent the state defects by a

Hermite-Simpson discretization method, these constraints and bounds are also imposed at the midpoints

of each trajectory segment.

The following diagram illustrates the geometry of trajectory and control discretization. For this simple

example we have divided the trajectory into 8 segments. These 8 segments can be represented by 9

discrete nodes with their corresponding times it , states iy and controls iu . A typical segment midpoint

is also illustrated.

page 3

t1 t2 t3 t4 t5 t6 t7 t8
t9

y1

y2
y3

y4

y5

y6

y7
y8

y9

u1

u2 u3

u4

u5

u6

u7

u8

u9

segment
midpoint

u5
y5

Figure 1 Trajectory and Control Discretization

Collocation

For the trapezoidal discretization method, the NLP variables are

 0 0 1 1 0, , , , , , , , ,
T

f f ft t   x y u y u y u p

The state equations are approximately satisfied by setting the defects

  1 1
2

k
k k k k k

h
    ζ y y f f

to zero for 1, , sk n . The step size is denoted by 1k k kh t t   , and the right hand side of the

differential equations are given by    , , ,k k k kt t t   f f y u p .

For the compressed Hermite-Simpson discretization or collocation method, the NLP variables are

       01
, , , , , , , , , ,

T

m m fi i f
t t


 
 

x y u u y u u y u

where
1 2
, , .m m etcu u are values of the controls at the midpoints of the discretization segments.

The defects for this discretization algorithm are given by

page 4

      1 1 1, 4 , ,
6 k k

k
k k k k k m m k k

h
  

     
 

ζ y y f y u f y u f y u

where  ,f x u represents the equations of motion evaluated at the nodes and midpoints.

The state vector and equations of motion at the midpoint of a segment are given by

      1 1 1

1
, ,

2 8k

k
m k k k k k k

h
       y y y f y u f y u

and

 , , ,
2k k k

k
m m m k

h
t

 
   

f f y u p

for 1, , 1Nk n 

In these equations kh is the time interval between segments. For equal duration segments kh is equal to

   1f i Nt t n  where Nn is the number of nodes and 1Nn  is the number of segments.

By treating the state vector defects as equality constraints, the NLP algorithm attempts to converge the

trapezoidal approximation to the actual trajectory as defined by the right-hand-sides of the equations of

motion. Furthermore, driving the vector of defects to zero enforces continuity at the trajectory nodes.

Implicit integration with the trapezoidal method

The general form for integration from time nt to time 1nt  is given by

  
1 1

1

n n

n n

t t

n n n
t t

x x xdt x f x dt
 

     

The trapezoidal approximation can be written as

 1
1

2

n n
n n

x x
x x t




  

The defect condition is given by

 1
1 0

2

n n
n n

x x
x x t




   

which can also be expressed as

   1

1 0
2

n n

n n n

f x f x
x x t




     

page 5

In these equations,  f x is the first order equation of motion and
1n nt t t   is the time increment

between nodes.

For example, a problem with 8 nodes (7 segments) can be written compactly as follows:

   

   

   

   

 

1

1 1 2

2

2 2 3

3

3 3 4

4

4 4 5

5

5 5

6

6

7

7

8

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0
2

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

x
f x f x

x
f x f x

x
f x f x

x t
f x f x

x
f x

x

x

x

 
      

      
     
      

    
       
     
    
     
         

 

 

   

   

6

6 7

7 8

f x

f x f x

f x f x

 
 
 
 
 
 
 
 

 
  

Chebyshev-Gauss-Lobatto grid points

The location of the grid points in this MATLAB script is determined using a Chebyshev-Gauss-Lobatto

(CGL) technique. The CGL algorithm locates points evenly distributed in the interval  1, 1   

according to

 cos 0, ,k

k
k N

N





   

 

where N is the total number of nodes.

The actual time at individual grid points is determined from

     0 0

1

2
k f k ft t t t t   

where 0t is the initial time and ft is the final time.

Bryson-Ho problem description

This trajectory optimization problem is modeled in a two-dimensional polar coordinate system. This

coordinate system is heliocentric (sun-centered) and all motion is confined to the ecliptic or fundamental

plane. The following diagram illustrates the geometry of this coordinate system along with the

orientation of the steering angle.

In this diagram, r is the heliocentric distance,  is the polar angle, v is the transverse or tangential

component of the velocity, u is the radial component of the velocity and  is the steering or thrust

orientation angle. The steering angle is measured relative to the instantaneous tangential direction and is

positive in the clockwise direction. The direction of the propulsive thrust is denoted by the red vector.

page 6

0 





The first-order, two-dimensional equations of motion for the Bryson-Ho Earth-to-Mars orbit transfer

problem are given by

2

2
sin

cos

dr
r u

dt

du v T
u

dt r r m

dv uv T
v

dt r m






 

   

   

where

 radial position

 radial velocity

 transverse velocity

 propulsive thrust

 mass

 thrust angle

 gravitational constant

r

u

v

T

m



















page 7

The thrust angle is defined relative to the “local horizontal” or tangential direction at the current

position. It is measured positive above the local horizontal plane and negative below. The in-plane

thrust angle  is the single control variable for this problem.

The spacecraft mass at any elapsed time t is determined from

    0 1m t m mt 

where m is the propellant flow rate of the propulsive device and 0m is the initial mass.

The flight conditions in the initial circular orbit are as follows:

 

 

 

0

0

0

0

0

0 0

0

r r

u u

v
r






 

 

The boundary conditions that create a circular orbit at the final time ft are given by

 

 
 

0

0

f f

f

f

u t u

v t
r t



 

 

The first equation states that the radial velocity should be zero and the second equation is a boundary

condition that forces the final velocity to be equal to the local circular velocity at the final radial

distance.

The initial mass and propulsive characteristics for the Earth to Mars orbit transfer are as follows:

 initial mass 0m = 4535.9 kilograms

 initial thrust T = 3.781 Newtons

 propellant flow rate m = 5.85 kilograms/day

Dimensional analysis

To “streamline” the numerical calculations, the fundamental distance, velocity and time in the equations

of motion are normalized. In this MATLAB script, all heliocentric distances are normalized with

respect to the Astronomical Unit which is equal to 149597870.691 kilometers. Likewise, all velocity

values are normalized with respect to the “local circular velocity” at the heliocentric distance of the

Earth’s circular orbit, 0r . Therefore, the velocity unit is 0S Sr  since 0r is equal to 1 AU.

page 8

Furthermore, all time values are normalized with respect to 3

0 1S Sr   since again
0r is equal to 1

AU. In these equations,
S is the gravitational constant of the Sun. The corresponding value for this

astronomical constant is equal to 0.0002959122082855912 AU
3
/day

2
.

Finally, the acceleration is formulated as the ratio of the acceleration due to propulsive thrust and the

acceleration due to the point-mass gravity of the Sun evaluated at a distance of 1 AU. Therefore, the

acceleration ratio  is equal to Ta a where Ta is the propulsive acceleration and a is the solar

acceleration. The acceleration due to the Sun is equal to 2

0S r .

For this problem, the non-dimensional acceleration ratio is given by

 

0

3 22

0
2

3.781 N
0.001

4535.9 kg
0.1405

132712441933km sec

149597870.691km

s

T m
a

r
  

The non-dimensional flight time is given by f cft t where ft is the total flight time in days and cft is

the time conversion factor which is equal to 1 s = 58.13244.

If we normalize the dimensional propellant flow rate by the initial mass and apply the time conversion

factor, the non-dimensional propellant flow rate is given by

0

5.85 kg/day
58.13244 0.074974

4535.9 kg
cf

m
m t

m
  

This interplanetary mission requires about 1129 kilograms of propellant.

With these conversions, the two-dimensional equations of motion are modeled as

2

2

1
sin

cos

dr
r u

dt

du v
u a

dt r r

dv uv
v a

dt r





 

   

   

In the second and third equations,  1a a mt  .

For this problem we would like to maximize the radius of the final circular orbit. Therefore the objective

function is fJ r  .

page 9

Numerical solution of the optimal control problem

In order to transcribe the optimal control problem (OCP) into a nonlinear programming problem (NLP)

for computer solution, the user must provide an initial guess for the state and control vectors at the nodes

and the following information and software components:

(1) problem definition (number of trajectory states, number of discretization nodes, number of

control variables, initial and final conditions, etc.)

(2) right-hand-side of the equations of motion

(3) state vector defect equality constraints

(4) collocation method

(5) scalar object function

To demonstrate this process a MATLAB script called dto_trap was created to solve the Bryson-Ho

example. This section documents the construction and operation of this software.

The software begins by defining such things as the total number of nodes, control variables and

differential equations. The following is the problem definition for this example.

% number of differential equations

ndiffeq = 3;

% number of control variables

ncv = 1;

% number of discretization nodes

nnodes = 50;

% number of state nlp variables

nlp_state = ndiffeq * nnodes;

% number of control nlp variables

nlp_control = ncv * nnodes;

% total number of nlp variables

nlpv = nlp_state + nlp_control;

% number of state vector defect equality constraints

nc_defect = nlp_state - ndiffeq;

% number of auxilary equality constraints (boundary conditions)

nc_aux = 2;

% total number of equality constraints

nc_total = nc_defect + nc_aux;

page 10

The next part of the computer program calculates such things as the time values at each node, the initial

and final state and control guesses, and the lower and upper boundaries for the NLP variables. For this

example the initial guess for the state vector at each node is set to the value of the initial state vector.

The initial guess for the control variable at each node is simply set to zero.

The NLP problem is solved by calling a MATLAB interface routine to the SNOPT algorithm. The

following is the syntax for this operation.

[x, f, inform, xmul, fmul] = snopt(xg, xlb, xub, flow, fupp, 'dtofunc_trap');

In the calling arguments dtofunc_trap is a user-supplied function that evaluates the objective

function and equality constraints for any given trajectory condition.

MATLAB versions of SNOPT for several computer platforms can be found at Professor Philip Gill’s

web site which is located at http://scicomp.ucsd.edu/~peg/.

The source code for the MATLAB function that calculates the current value of the objective function,

the equality constraints (defects) and the boundary constraints for this example is as follows:

function [f, g] = dtofunc_trap (x)

% objective function and equality constraints

% trapezoidal collocation method

% inputs

% x = current nlp variable values

% outputs

% f = vector of equality constraints and

% objective function evaluated at x

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global nc_defect ndiffeq nnodes nlp_state ncv tarray

% compute state vector defect equality constraints

for k = 1:1:nnodes - 1

 % time elements

 tk = tarray(k);

 tkp1 = tarray(k + 1);

 % state vector elements

 if (k == 1)

 % first node

 nks = 0;

 nkp1s = ndiffeq;

http://scicomp.ucsd.edu/~peg/

page 11

 else

 % reset to previous node

 nks = (k - 1) * ndiffeq;

 nkp1s = nks + ndiffeq;

 end

 for i = 1:1:ndiffeq

 xk(i) = x(nks + i);

 xkp1(i) = x(nkp1s + i);

 end

 % control variable elements

 if (k == 1)

 % first node

 nkc = nlp_state;

 nkp1c = nkc + ncv;

 else

 % reset to previous node

 nkc = nlp_state + (k - 1) * ncv;

 nkp1c = nkc + ncv;

 end

 for i = 1:1:ncv

 uk(i) = x(nkc + i);

 ukp1(i) = x(nkp1c + i);

 end

 % compute state vector defects for current node

 reswrk = defect_trap(tk, tkp1, xk, xkp1, uk, ukp1);

 % load defect array for this node

 for i = 1:1:ndiffeq

 resid(nks + i) = reswrk(i);

 end

end

% set active defect constraints

% (offset by 1)

for i = 1:1:nc_defect

 f(i + 1) = resid(i);

page 12

end

% current final state vector

xfinal(1) = x(nlp_state - 2);

xfinal(2) = x(nlp_state - 1);

xfinal(3) = x(nlp_state);

% objective function (maximize final radius)

f(1) = -xfinal(1);

% compute auxillary equality constraints

% (final boundary conditions)

f(nc_defect + 2) = xfinal(2);

f(nc_defect + 3) = xfinal(1) * xfinal(3)^2 - 1;

% transpose

f = f';

% no derivatives

g = [];

The following is the source code for the MATLAB function that calculates the state defect vector for the

trapezoidal collocation algorithm.

function resid = defect_trap(tk, tkp1, xk, xkp1, uk, ukp1)

% state vector defects - trapezoid method

% input

% tk = time at node k

% tkp1 = time at node k + 1

% xk = state vector at node k

% xkp1 = state vector at node k + 1

% uk = control variable vector at node k

% ukp1 = control variable at node k + 1

% output

% resid = state defect vector for node k

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global ndiffeq

% compute delta time

hk = tkp1 - tk;

% evaluate equations of motion

% at beginning and end of segment

xdk = dto_rhs (tk, xk, uk);

page 13

xdkp1 = dto_rhs (tkp1, xkp1, ukp1);

% compute state vector defect for this node

for i = 1:1:ndiffeq

 resid(i) = xkp1(i) - xk(i) - 0.5d0 * hk * (xdk(i) + xdkp1(i));

end

The right-hand-side of the equations of motion is defined in a function called dto_rhs.m. Here is the

MATLAB source code for this function.

function xdot = dto_rhs (t, x, u)

% first-order equations of motion

% required by dto_trap.m

% input

% t = current time

% x = current state vector

% x(1) = r, x(2) = u, x(3) = v

% u = current control vector

% output

% xdot = rhs equations of motion

% xdot(1) = r dot, xdot(2) = u dot, xdot(3) = v dot

% Orbital Mechanics with MATLAB

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global acc beta

% current control variable

theta = u(1);

% current thrust acceleration

accm = acc / (1.0d0 - beta * t);

% evaluate equations of motion at current conditions

xdot(1) = x(2);

xdot(2) = (x(3) * x(3) - 1.0d0 / x(1)) / x(1) + accm * sin(theta);

xdot(3) = -x(2) * x(3) / x(1) + accm * cos(theta);

Simulation Results

The following is the NLP algorithm header and the last iteration for this example.

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

 44 1 1.0E+00 48 (6.7E-10)(1.5E-06)-1.5247152E+00 48 3.2E+02 R

page 14

After the NLP algorithm has converged, the software will display a printout of the initial and final

conditions. The following is the screen display for this example.

 program dto_trap

 trajectory optimization using

 direct transcription and collocation

 initial state vector

 radius = 1.00000000

 radial velocity = 0.00000000

 transverse velocity = 1.00000000

final state vector

 radius = 1.52446193

 radial velocity = 0.00000000

 transverse velocity = 0.80991923

The following are plots of the in-plane thrust angle, several other flight parameters and the heliocentric

planet orbits and transfer trajectory. Please note that the radial distance and velocities are non-

dimensional. For this example the MATLAB script used 50 discretization nodes. In these plots, the

asterisks represent the locations of the Chebyshev-Gauss-Lobatto nodes.

Figure 2. Thrust Angle versus Simulation Time

page 15

Figure 3. Radial Distance versus Simulation Time

Figure 4. Radial Velocity versus Simulation Time

page 16

Figure 5. Transverse Velocity versus Simulation Time

Figure 6. Heliocentric planet orbits and transfer trajectory

page 17

The dto_trap MATLAB script will create color Postscript disk files of these graphic images. These

images include a TIFF preview and are created with MATLAB code similar to

print -depsc -tiff -r300 vradial.eps

Algorithm resources

“Optimal Finite-Thrust Spacecraft Trajectories Using Direct Transcription and Nonlinear

Programming”, Paul J. Enright, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1991.

“Using Sparse Nonlinear Programming to Compute Low Thrust Orbit Transfers”, John T. Betts, The

Journal of the Astronautical Sciences, Vol. 41, No. 3, July-September 1993, pp. 349-371.

“Optimal Interplanetary Orbit Transfers by Direct Transcription”, John T. Betts, The Journal of the

Astronautical Sciences, Vol. 42, No. 3, July-September 1994, pp. 247-268.

“Improved Collocation Methods with Application to Direct Trajectory Optimization”, Albert L.

Herman, Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1995.

“Optimal Low Thrust Interplanetary Trajectories by Direct Method Techniques”, Craig A. Kluever, The

Journal of the Astronautical Sciences, Vol. 45, No. 3, July-September 1997, pp. 247-262.

“Survey of Numerical Methods for Trajectory Optimization”, John T. Betts, AIAA Journal of Guidance,

Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193-207.

Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, John T. Betts,

Society for Industrial and Applied Mathematics, Philadelphia, 2010.

