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A MATLAB Script for Terrestrial and Celestial Coordinate Conversion 
 

This document describes two MATLAB functions and a companion demonstration script that can be 

used to rotate a vector to and from the terrestrial and celestial systems.  The first function transforms a 

vector in the International Terrestrial Reference System (ITRS; a rotating earth-fixed system) to the 

Geocentric Celestial Reference System (GCRS; a local space-fixed system) by applying rotations for 

polar motion, earth rotation, nutation, precession, and the dynamical-to-gcrs frame tie.  The second 

MATLAB function performs the GCRS-to-ITRS transformation. 

 

The transformation used to relate the ITRS to the GCRS at a date t of the observation is given by 

 

         GCRS Q t R t W t ITRS   

 

where      , ,  and Q t R t W t  are the transformations matrices due to the effects of the motion of the 

celestial pole in the celestial reference system, the rotation of the Earth around the axis associated with 

the pole, and the polar motion, respectively. 

 

Additional information about these methods can be found in Chapter 5 of IERS Technical Note No. 36, 

“Transformation between the International Terrestrial Reference System and the Geocentric Celestial 

Reference System” which is part of the IERS Conventions (2010).  Another excellent resource is “The 

IAU Resolutions on Astronomical Reference Systems, Times Scales, and Earth Rotation Models”, 

United States Naval Observatory Circular No. 179, October 20, 2005. 

 

These functions were ported to MATLAB using the Fortran source code provided with NOVAS 3.1 and 

documented in “User’s Guide to NOVAS Version F3.1”, U.S. Naval Observatory, March 2011.  Please 

note that this MATLAB script computes the accumulated precession in right ascension using the 

analytic equation given in Capitaine, et al., Astronomy and Astrophysics, 412, 567-586, (2003) equation 

(42).  This implementation is provided by support functions cioloc.m and eqxra.m. 

 

Script example 
 

The companion MATLAB script that illustrates how to interact with these two functions is named 

demo_tercel.m.  The following is the script output for the example described in USNO/AA Technical 

Note 2010-04, “Testing Coordinate Frame Transformations”.  The script is “hard-wired” with numerical 

data for this example and uses the equinox-based method with full accuracy. 

 
demo_tercel 

 

rotates a vector from the terrestrial to the celestial system 

------------------------------------------------------------- 

 

equinox-based method, full accuracy 

 

UT1 calendar date         05-Apr-2007 

 

UT1 time                  11:59:59.928 

 

UT1 Julian date           2454195.99999917  
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position vector, geocentric equatorial rectangular 

coordinates, referred to ITRS axes (terrestrial system) 

 

 +1.00000000000000e+000  +0.00000000000000e+000  +0.00000000000000e+000   

 

 

position vector, geocentric equatorial rectangular 

coordinates, referred to GCRS axes (celestial system) 

 

 +9.73104317701089e-001  +2.30363826224119e-001  -7.03163482963017e-004   

 

terrestrial-to-celestial transformation matrix 

 

 +9.73104317701089e-001  +2.30363826224119e-001  -7.03163482963017e-004 

 -2.30363800441031e-001  +9.73104570636353e-001  +1.18545358540577e-004 

 +7.11560161552747e-004  +4.66264120217281e-005  +9.99999745754025e-001 

 

position vector, geocentric equatorial rectangular 

coordinates, referred to ITRS axes (terrestrial system) 

 

 +9.99999999999943e-001  +3.05884982816352e-008  +3.38673387753519e-007   

 

The following is the script output for this example using the CIO-based method with full accuracy. 

 
demo_tercel 

 

rotates a vector from the terrestrial to the celestial system 

------------------------------------------------------------- 

 

cio-based method, full accuracy 

 

UT1 calendar date         05-Apr-2007 

 

UT1 time                  11:59:59.928 

 

UT1 Julian date           2454195.99999917  

 

position vector, geocentric equatorial rectangular 

coordinates, referred to ITRS axes (terrestrial system) 

 

 +1.00000000000000e+000  +0.00000000000000e+000  +0.00000000000000e+000   

 

position vector, geocentric equatorial rectangular 

coordinates, referred to GCRS axes (celestial system) 

 

 +9.73104317701090e-001  +2.30363826224111e-001  -7.03163482961698e-004   

 

terrestrial-to-celestial transformation matrix 

 

 +9.73104317701090e-001  +2.30363826224111e-001  -7.03163482961698e-004 

 -2.30363800441025e-001  +9.73104570636355e-001  +1.18545358546144e-004 

 +7.11560161552747e-004  +4.66264120217281e-005  +9.99999745754025e-001 

 

position vector, geocentric equatorial rectangular 

coordinates, referred to ITRS axes (terrestrial system) 

 

 +9.99999999999942e-001  +3.05884872071636e-008  +3.38673389072703e-007   
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Each row of the transformation matrix was created by calling the ITRS-to-GCRS function three times 

with the following set of input vectors; v1 = [1 0 0];     v2 = [0 1 0];     v3 = [0 0 1]. 

 

The main script includes the option to set the method and accuracy of the numerical calculations.  The 

following is a summary of these different modes. 
 

% set mode = 0 for cio-based method, full accuracy 

% set mode = 1 for cio-based method, reduced accuracy 

% set mode = 2 for equinox-based method, full accuracy 

% set mode = 3 for equinox-based method, reduced accuracy 

 

The desired calculation mode can be set by editing the following line of MATLAB source code; 
 

setmod(2); 

 

MATLAB functions 
 

The following is the syntax for the MATLAB function that performs the ITRS-to-GCRS coordinate 

conversion. 

 
function vec2 = tercel (tjdh, tjdl, xp, yp, vec1) 

  

% this function rotates a vector from the terrestrial to the 

% celestial system. specifically, it transforms a vector in the 

% itrs (a rotating earth-fixed system) to the gcrs (a local 

% space-fixed system) by applying rotations for polar motion, 

% earth rotation, nutation, precession, and the dynamical-to-gcrs 

% frame tie. 

  

%  tjdh   = ut1 julian date, high-order part (in) 

  

%  tjdl   = ut1 julian date, low-order part (in) 

%           the julian date may be split at any point, but 

%           for highest precision, set tjdh to be the integral 

%           part of the julian date, and set tjdl to be the 

%           fractional part 

  

%  xp     = conventionally-defined x coordinate of celestial 

%           intermediate pole with respect to itrs pole, in arcseconds (in) 

  

%  yp     = conventionally-defined y coordinate of celestial 

%           intermediate pole with respect to itrs pole, in arcseconds (in) 

  

%  vec1   = position vector, geocentric equatorial rectangular 

%           coordinates, referred to itrs axes (terrestrial system) (in) 

  

%  vec2   = position vector, geocentric equatorial rectangular 

%           coordinates, referred to gcrs axes (celestial system) (out) 

  

% note 1:  set xp = yp = 0.0d0 to eliminate polar motion rotation. 

  

% note 2:  see also function setdt to set the value of delta-t 

%          (delta-t = tt - ut1) to be used here. 

  

% note 3:  both tjdh and tjdl should be non-negative for normal use 

%          (tjdl=0.0d0 is ok). a negative value of tjdh is used to invoke a 



Orbital Mechanics with MATLAB 

page 4 

 

%          special option where the output vector is produced with respect 

%          to the equator and equinox of date, and the date for which the 

%          transformation applies is taken from tjdl only. this option 

 

%          works only in 'equinox' mode. 

  

% note 4: input parameters xp, yp were xpole, ypole in novas f3.0. 

%         the names were changed for consistancy throughout novas and with 

%         iers conventions. 

 

The following is the syntax for the MATLAB function that performs the GCRS-to-ITRS coordinate 

conversion. 

 
function vec2 = celter (tjdh, tjdl, xp, yp, vec1) 

  

% this function rotates a vector from the celestial to the 

% terrestrial system.  specifically, it transforms a vector in the 

% gcrs (a local space-fixed system) to the itrs (a rotating 

% earth-fixed system) by applying rotations for the gcrs-to- 

% dynamical frame tie, precession, nutation, earth rotation, 

% and polar motion. 

  

%      tjdh   = ut1 julian date, high-order part (in) 

  

%      tjdl   = ut1 julian date, low-order part (in) 

%               the julian date may be split at any point, but 

%               for highest precision, set tjdh to be the integral 

%               part of the julian date, and set tjdl to be the 

%               fractional part 

  

%      xp     = conventionally-defined x coordinate of celestial 

%               intermediate pole with respect to itrs pole, 

%               in arcseconds (in) 

  

%      yp     = conventionally-defined y coordinate of celestial 

%               intermediate pole with respect to itrs pole, 

%               in arcseconds (in) 

  

%      vec1   = position vector, geocentric equatorial rectangular 

%               coordinates, referred to gcrs axes (celestial 

%               system) (in) 

  

%      vec2   = position vector, geocentric equatorial rectangular 

%               coordinates, referred to itrs axes (terrestrial 

%               system) (out) 

  

% note 1:  set xp = yp = 0.0d0 to eliminate polar motion rotation. 

  

% note 2:  see also subroutine setdt to set the value of delta-t 

%          (delta-t = tt - ut1) to be used here. 

  

% note 3:  both tjdh and tjdl should be non-negative for normal use 

%          (tjdl=0.0d0 is ok). a negative value of tjdh is used to invoke a 

%          special option where the input vector is assumed to be with 

%          respect to the equator and equinox of date, and the date for which 

%          the transformation applies is taken from tjdl only. this option 

%          works only in 'equinox' mode. 
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Algorithm resources 
 

NOVAS (Naval Observatory Vector Astrometry Subroutines), U. S. Naval Observatory, 

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas. 

 

Explanatory Supplement to the Astronomical Almanac, Edited by P. K. Seidelmann, University Science 

Books, 1992. 

 

Gérard Petit and Brian Luzum (eds.), “IERS Conventions (2010)”, IERS Technical Note 36. 

 

J. H. Lieske, “Precession Matrix Based on IAU (1976) System of Astronomical Constants”, Astronomy 

and Astrophysics, 73, 282-284 (1979) 

 

“Numerical Expressions for Precession Formulae and Mean Elements for the Moon and Planets”, 

Astronomy and Astrophysics, 282: 663-683 

 

D. McCarthy and B. Luzum, “An Abridged Model of the Precession-Nutation of the Celestial Pole”, 

Celestial Mechanics and Dynamical Astronomy, 85: 37-49, 2003 

 

N. Capitaine, P. T. Wallace, and J. Chapront, “Expressions for IAU 2000 Precession Quantities”, 

Astronomy and Astrophysics, 412, 567-586 (2003) 

 

“SOFA Tools for Earth Attitude”, Software version 4, Document version 1.2, IAU, September 5, 2010. 

 

“SOFA Time Scales and Calendar Tools”, Software version 1, Document version 1.1, IAU, December 

24, 2010. 

 

V. Coppola, J. Seago and D. Vallado, “The IAU 2000A and IAU 2006 Precession-Nutation Theories 

and Their Implementation”, AAS 09-159, American Astronautical Society. 

 

L. Barker, A. Dorsey and N. Stamatakos, “Validation of the IAY2000A/IAU2006 Frame 

Transformation Implementation”, AAS 10-054, American Astronautical Society. 

 

D. Vallado, J. Seago and P. Seidelmann, “Implementation Issues Surrounding the New IAU Reference 

Systems for Astrodynamics”, AAS 06-134, American Astronautical Society. 

 

G. Kaplan, “Nutation Series Evaluation in NOVAS 3.0”, United States Naval Observatory Circular No. 

181, December 15, 2009. 

 

G. Kaplan, “The IAU Resolutions on Astronomical Reference Systems, Times Scales, and Earth 

Rotation Models”, United States Naval Observatory Circular No. 179, October 20, 2005. 

 

A. Monet, G. Kaplan and W. Harris, “Testing Coordinate Frame Transformations NOVAS vs SOFA”, 

USNO/AA Technical Note 2010-04, July 14, 2010. 

 

N. Capitaine and P. T. Wallace, “Precession-nutation Procedures Consistent with IAU 2006 

Resolutions”, Astronomy and Astrophysics, 459, 981-985 (2006) 

 

http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas
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Appendix A 
 

Precession and Nutation 
 

This appendix summarizes the numerical methods used to compute precession and nutation in this 

MATLAB script.  The algorithms used to compute precession and nutation were ported to MATLAB 

using the Fortran version of NOVAS 3.1. 

 

Precession 

 

Precession is the slow drift of the Earth’s rotational axis due mainly to the gravitational attraction of the 

Sun and Moon.  The precession matrix transforms coordinates referred to the mean Earth equator and 

equinox of J2000 to coordinates measured with respect to the mean Earth equator and equinox of date. 

 

The precession algorithm used in this MATLAB script is based on the method described in “Expressions 

for IAU 2000 Precession Quantities”, by N. Capitaine, P. T. Wallace, and J. Chapront, Astronomy and 

Astrophysics, 412, 567-586 (2003). 

 

The precession matrix is determined from the following transformation 

 

        3 1 3 1 0A A AR R R R     P   

 

The precession angles are given by 

 

 

2 3 4 5

2 3 4 5

0

2

5038 .481507 1 .0790069 0 .0011404 0 .000132851 0 .0000000951

0 .025754 0 .0512623 0 .00772503 0 .000000467 0 .0000003337

10 .556403 2 .3814292 0 .00121197

A

A

A

t t t t t

t t t t t

t t t



 



        

         

     3 4 50 .000170663 0 .0000000560t t  

 

 

where 0 84381 .406   and the unit of these angular arguments is arc seconds.  The fundamental time 

argument is given by the expression 

  1 2 / 36525t JD JD   

 

In this equation 1JD  is the Julian Date of the first epoch and 2JD  is the Julian Date at 12 hours on 

January 1, 2000, both measured on the Terrestrial Time (TT) scale. 

 

The syntax of this MATLAB function that performs these calculations is 

 
function pos2 = preces (tjd1, pos1, tjd2) 

  

% this function precesses equatorial rectangular coordinates from 

% one epoch to another.  the coordinates are referred to the mean 

% dynamical equator and equinox of the two respective epochs.  see 

% explanatory supplement to the astronomical almanac, pp. 103-104, 

% and capitaine et al. (2003), astronomy and astrophysics 412, 

% 567-586. 
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% input 

  

%  tjd1 = tdb julian date of first epoch 

  

%  pos1 = position vector, geocentric equatorial rectangular 

%         coordinates, referred to mean dynamical equator and 

%         equinox of first epoch 

  

%  tjd2 = tdb julian date of second epoch 

  

% output 

  

%  pos2 = position vector, geocentric equatorial rectangular 

%         coordinates, referred to mean dynamical equator and 

%         equinox of second epoch 

  

% note: either tjd1 or tjd2 must be 2451545.0 (j2000.0) tdb 

 

Nutation 

 

The nutation function implemented in this MATLAB script is based on the methods described in 

“Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the 

Earth’s interior”, P. M. Mathews, T. A. Herring and B. A. Buffett, Journal of Geophysical Research, 

Vol. 107, No. B4, 2002. 

 

The high precision nutation calculations in this script are based on the IAU 2000A nutation algorithm 

and the low precision form uses the IAU 2000K algorithm. 

 

The nutation in longitude is determined from a series of the form 

 

  
1

sin cos
N

i i i

i

A At A  


      

 

Likewise, the nutation in obliquity is determined from 

 

  
1

cos sin
N

i i i

i

B B t B  


      

 

where 

 
14

1

i iN F   

 

In this last summation, iN  are integer multipliers and iF  are fundamental arguments.  For the IAU 

2000A version, 1365N   in the summation of which 678 of the terms are luni-solar contributions and 

687 are planetary contributions to nutation.  For the IAU 2000K version, 488N   and 323 terms are 

luni-solar contributions and 165 are planetary contributions. 

 

The first five angular elements are luni-solar Delaunay arguments given by the following expressions; 
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 1  mean anomaly of the Moon

485868 .249036 1717915923 .2178

F l

t

 

  
 

 

 2  mean anomaly of the Sun

1287104 .79305 129596581 .0481

F l

t

 

  
 

 

 
 3   is the mean longitude of the Moon

335779 .526232 1739527262 .8478

F F L L

t

  

  
 

 

 4  mean elongation of the Moon from the Sun

1072260 .70369 1602961601 .2090

F D

t

 

  
 

 

 5  mean longitude of the ascending node of the lunar orbit

450160 .398036 6962890 .5431

F

t

  

  
 

 

The remaining arguments are planetary mean longitudes given by the following expressions; 

 

 

6

7

8

9

10

11

4.402608842 2608.7903141574

3.176146697 1021.3285546211

1.753470314 628.3075849991

6.203480913 334.0612426700

0.599546497 52.9690962641

0.874016757 21.3299104

Me

Ve

E

Ma

J

Sa

F L t

F L t

F L t

F L t

F L t

F L

  

  

  

  

  

  

12

13

2

14

960

5.481293872 7.4781598567

5.311886287 3.8133035638

0.02438175 0.00000538691

U

Ne

A

t

F L t

F L t

F p t t

  

  

  

 

 

In these equations, the time argument t is the number of Julian centuries since J2000 and is given by 

 2451545.0 / 36525t JD   where JD is the Terrestrial Time (TT) Julian Date.  Additional 

information about these arguments can be found in “Numerical Expressions for Precession Formulae 

and Mean Elements for the Moon and Planets”, Astronomy and Astrophysics, 282: 663-683. 

 

The nutation matrix is given by 

 

 

0 0

0 0 0 0

0 0 0 0

cos sin cos sin sin

sin cos cos cos cos sin sin cos cos cos sin cos

sin sin cos sin cos cos sin cos sin sin cos cos

    

           

           

     
      
 

      

N  
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In this matrix 
0  is the mean obliquity of the ecliptic and 

0      is the true obliquity.  The mean 

obliquity of the ecliptic is calculated from 

 

 0 2 3

0 23 26 21 .448 46 .8150 0 .00059 0 .001813T T T          

 

where  2451545.0 / 36525T JD   and JD is the TDB Julian Date. 

 

The nutation matrix can also be expressed as a combination of individual rotations according to 

 

      1 3 1 0     N R R R  

 

where 

 

    1 3

1 0 0 cos sin 0

0 cos sin sin cos 0

0 sin cos 0 0 1

R R

 

     

 

   
     
   

      

 

 

This function requires initialization the first time it is called.  This can be accomplished by placing the 

following statement in the main script along with a global inutate statement. 

 
 inutate = 1; 

 

The following is the MATLAB source code for the function that calls the correct nutation function.  This 

function determines which algorithm to call based on the value of mode which is set in the main script. 

 
function [dpsi, deps] = nod (t) 

  

% this function returns the values for nutation in longitude and 

% nutation in obliquity for a given tdb julian date. 

  

%  t     = tdb time in julian centuries since j2000.0 (in) 

  

%  dpsi  = nutation in longitude in arcseconds (out) 

  

%  deps  = nutation in obliquity in arcseconds (out) 

  

% ported from NOVAS 3.1 

  

%%%%%%%%%%%%%%%%%%%%%%% 

  

seccon = 180.0d0 * 3600.0d0 / pi; 

  

% t0 = tdb julian date of epoch j2000.0 (tt) 

  

t0 = 2451545.0d0; 

  

% get method/accuracy mode 

  

mode = getmod; 

  



Orbital Mechanics with MATLAB 

page 10 

 

t1 = t * 36525.0d0; 

  

% evaluate nutation series 

  

% resulting nutation in longitude and obliquity in arc seconds 

  

if (mod (mode, 2) == 0) 

     

    % high accuracy mode -- iers 2000a 

     

    [dp, de] = nut2000a (t0, t1); 

     

else 

     

    % low accuracy mode -- iau 2000k 

     

    [dp, de] = nut2000k (t0, t1); 

     

end 

  

dpsi = dp * seccon; 

  

deps = de * seccon; 

 

The following is the calling syntax for the high precision version of the nutation function which is 

named nut2000a.m. 

 
function [dpsi, deps] = nut2000a (date1, date2) 

  

% nutation based on iau 2000a theory 

  

% input 

  

%  date1, date2 = tt julian date  

%  (julian date = date1 + date2) 

  

% output 

  

%  dpsi = nutation in longitude in radians 

  

%  deps = nutation in obliquity in radians 

 

The low precision version is named nut2000k.m with the following syntax.  The input and output for 

this function are the same as those for the nut2000a function described above. 

 
function [dpsi, deps] = nut2000k (date1, date2) 
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Appendix B 
 

Time Scales 
 

This appendix is a brief explanation of the time scales used in this MATLAB script. 

 

Coordinated Universal Time, UTC 

 

Coordinated Universal Time (UTC) is the time scale available from broadcast time signals.  It is a 

compromise between the highly stable atomic time and the irregular earth rotation.  UTC is the 

international basis of civil and scientific time. 

 

Terrestrial Time, TT 
 

Terrestrial Time is the time scale that would be kept by an ideal clock on the geoid - approximately, sea 

level on the surface of the Earth.  Since its unit of time is the SI (atomic) second, TT is independent of 

the variable rotation of the Earth.  TT is meant to be a smooth and continuous “coordinate” time scale 

independent of Earth rotation.  In practice TT is derived from International Atomic Time (TAI), a time 

scale kept by real clocks on the Earth's surface, by the relation TT = TAI + 32
s
.184.  It is the time scale 

now used for the precise calculation of future astronomical events observable from Earth. 

 
TT = TAI + 32.184 seconds 

 

TT = UTC + (number of leap seconds) + 32.184 seconds 

 

Barycentric Dynamical Time, TDB 
 

Barycentric Dynamical Time is the time scale that would be kept by an ideal clock, free of gravitational 

fields, co-moving with the solar system barycenter.  It is always within 2 milliseconds of TT, the 

difference caused by relativistic effects.  TDB is the time scale now used for investigations of the 

dynamics of solar system bodies. 

 
TDB = TT + periodic corrections 

 

where typical periodic corrections (USNO Circular 179) are 

 

 

 

 

 

 

 

 

0.001657sin 628.3076 6.2401

0.000022sin 575.3385 4.2970

0.000014sin 1256.6152 6.1969

0.000005sin 606.9777 4.0212

0.000005sin 52.9691 0.4444

0.000002sin 21.3299 5.5431

0.000010 sin 628.3076 4.24

TDB TT T

T

T

T

T

T

T T

  

 

 

 

 

 

  90 

 

 

In this equation, the coefficients are in seconds, the angular arguments are in radians, and T is the 

number of Julian centuries of TT from J2000; T = (Julian Date(TT) – 2451545.0) / 36525. 
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The following is the MATLAB source code for the routine ported from the NOVAS Fortran subroutine.  

Notice that the NOVAS name was simply times and the ported version is named novas_times to 

avoid confusion with the built-in MATLAB function. 

 
function [ttjd, secdif] = novas_times (tdbjd) 

  

% this function computes the terrestrial time (tt) julian date 

% corresponding to a barycentric dynamical time (tdb) julian date. 

% the expression used in this version is a truncated form of a 

% longer and more precise series given by fairhead & bretagnon 

% (1990) a&a 229, 240. the result is good to about 10 microseconds. 

  

% input 

  

%  tdbjd = tdb julian date 

  

% output 

  

%  ttjd = tt julian date 

  

%  secdif = difference tdbjd - ttjd, in seconds 

  

% ported from NOVAS 3.0 

  

%%%%%%%%%%%%%%%%%%%%%%% 

  

% t0 = tdb julian date of epoch j2000.0 (tt) 

  

t0 = 2451545.0d0; 

  

t = (tdbjd - t0) / 36525.0d0; 

  

% expression given in usno circular 179, eq. 2.6 

  

secdif = 0.001657d0 * sin(628.3076d0 * t + 6.2401d0) ... 

    + 0.000022d0 * sin(575.3385d0 * t + 4.2970d0) ... 

    + 0.000014d0 * sin(1256.6152d0 * t + 6.1969d0) ... 

    + 0.000005d0 * sin(606.9777d0 * t + 4.0212d0) ... 

    + 0.000005d0 * sin(52.9691d0 * t + 0.4444d0) ... 

    + 0.000002d0 * sin(21.3299d0 * t + 5.5431d0) ... 

    + 0.000010d0 * t * sin(628.3076d0 * t + 4.2490d0); 

  

ttjd = tdbjd - secdif / 86400.0d0; 

 


