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Abstract

In this paper we present a robust estimation algorithm for non-linear state-space models driven
by state-dependent noise. We derive the algorithm step by step from first principles, from theory
to implementation. The implementation is straightforward and consists mainly of two components:
1. a slightly modified version of the Rauch-Tung-Striebel recursions; and 2. a backtracking line search
strategy. Since it preserves the underlying chain structure of the problem, its computational complexity
grows linearly with the number of data. The algorithm is iterative and is guaranteed to converge,
under mild assumptions, to a local optimum from any starting point. We validate our approach via
experiments on synthetic data from a multi-variate stochastic volatility model.

1 Introduction

1.1 State-space models

State-space models (SSMs) are ubiquitous in many fields of engineering and applied sciences such as
autonomous navigation [1, 2], target tracking [3, 4] and computational econometrics [5, 6]. An SSM is
an abstract representation of a dynamic system with inputs and outputs, where its dynamics and input-
output characteristics are represented in terms of state variables. Unlike inputs and outputs, the states are
hidden and may not be measured directly (e.g. with a sensor).

Estimation is the problem of determining the system’s states given pairs of input-output data. How-
ever, because the state and input-output processes are generally random (i.e. they are driven by noise),
the states cannot be recovered exactly. The estimates are always afflicted with uncertainty.

1.2 Outliers and non-Gaussian noise

These random processes are often specified as conditional probability distributions. The most common
distribution is the normal, or Gausian. It is justified by the central limit theorem1 and favored for its
convenient analytical properties, seldom motivated by the nature of the problem.

Since it appears relatively frequently, there is an unfortunate tendency to invoke the Gaussian in
situations where it may not be applicable. Estimation is based on assumptions about the random pro-
cesses driving the states. Therefore, if the Gaussian assumption does not hold then the estimates may be
misleading and there is a significant risk of drawing incorrect conclusions about the system.

Outliers are a common type non-Gaussian phenomenon [7,8]. Intuitively, outliers are measurements
that do not agree with the bulk of the data. Although theoretically they may occur by chance in most
distributions,2 outliers often stem from effects that are either unknown or are deliberately excluded from
the model as they are tedious or impractical to account for (e.g. external disturbances).

Systems that rely on high-quality data (e.g. mobile robotic platforms) are usually sensitive to outliers.
In some cases even a few outliers that pass undetected may cause the system to fail to the point that a
full recovery is impossible [4, 9, 10]. Hence the importance of outlier-robust estimators.

1.3 State-dependent noise

In addition to Gaussianity, another major, commonly made assumption is that the noise levels are con-
stant (e.g. a sensor’s noise characteristics can be condensed into a covariance matrix). In reality, however,
the noise is a function of the system’s state (e.g. a uniform acoustic linear array [11]).

We agree with the view of Saha and Gustaffson [12], namely that state-dependent noise might be
more common in practice than what the literature acknowledges. Examples include:

• The discrete-time equivalent of a system of non-linear differential equations often results in a
transition model with state-dependent variance;

• The noise properties of some transition models are inherently heterogeneous (e.g. a car’s maneu-
verability depends on its speed);

• Some sensors (e.g. stereo cameras) typically exhibit constant relative noise characteristics —
i.e. the absolute noise increases with the magnitude of the signal;

1The central limit theorem guarantees that the arithmetic mean of a large number of independent variates drawn from an
arbitrary distribution —having finite mean and variance—is approximately Gaussian-distributed, provided the sample is large
enough.

2For example, the Gaussian places over 99% of its probability mass within the interval µ ± 3σ. An outlier 5σ away from µ
has less than one in a million chances of occurring. Even though the possibility exists, it is unrealistically small.
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• Sometimes the dependency of the noise on the states is the only available cue for inferring the
states (e.g. stochastic volatility models).

With a few exceptions [13, 14], there seems to be very little treatment of SSMs with state-dependent
noise in the literature.

1.4 Related work

In this paper we address the problem of robust estimation in non-linear systems driven by state-dependent
noise. To the best of the authors’ knowledge, no previous work has addressed all three aspects simulta-
neously (i.e. robustness, non-linearity and state-noise interdependency) and deterministically.

The following work is closely related to ours, although the three aspects are only partially covered:

• Julier and Uhlmann [15] introduced a deterministic sampling method for non-linear systems called
the unscented Kalman filter, which Särkkä [16] extended to the smoothing case;

• Särkkä and Nummenmaa [17] developed a filter based on variational approximations that tracks
states and noise simultaneously, albeit for linear systems where the state and noise processes evolve
independently;

• Agamennoni et al. [18, 19] extended this approach by accounting for cross-correlations between
the output dimensions and deriving smoothing and parameter learning algorithms, though again in
the context of linear systems;

• Aravkin et al. [20–22] formulated a number of robust smoothing methods for non-linear SSMs
from an optimization viewpoint, although their treatment assumes that the noise is independent of
the states;

• Piché et al. [23] presented an outlier-robust filter/smoother for non-linear systems in the assumed
density filtering framework, again with state-independent noise;

• Spinello and Stilwell [13] generalized an iterated version of the extended Kalman filter [24] to
cases where the observation noise is state-dependent and Gaussian, encoding the dependency via
the covariance parameters.

1.5 List of major contributions

The major contributions in this paper are:

• A non-trivial generalization of Aravkin’s work [21, 22] to models with state-dependent noise;

• A computationally efficient and provably convergent algorithm for solving the maximum a poste-
riori estimation problem which, unlike the approach of Aravkin et al., does not require approxi-
mating the Hessian matrix;

• A parameterization carefully designed in order to make equations readily interpretable and assert
our algorithm’s strong connection to the well-known Rauch-Tung-Striebel recursions.

We validate our approach via experiments on synthetic data from a challenging problem. The code
for our implementation is available from the author’s web page [25].

1.6 Outline of the paper

This paper is organized as follows. In section 2 we define the estimation problem that we aim to tackle
and discuss a few interesting properties of heavy-tailed distributions. In section 3 we derive an upper
bound on the objective function that we wish to minimize and show that this bound is a quadratic-
composite function of the states. With this in mind, we develop an iterative optimization algorithm in
section 4 to solve the estimation problem. In section 5 we test our algorithm on synthetic data and
compare its performance against other methods. Finally, in section 6 we offer a brief summary and
outline possibilities for future work.
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2 The Estimation Problem

2.1 Notation and definitions

Let X be a sequence of n states and let Y be a corresponding sequence of n measurements:

X = (x1, . . . , xn) ∈ Rd×...×d (1a)

Y = (y1, . . . , yn) ∈ Rd1×...×dn (1b)

where Rd stands for real d-dimensional Euclidean space.
Let gk be the transition function from steps k − 1 to k and let hk be the observation function at step

k. Let Qk and Rk be, in that order, the noise matrices of the state and measurement processes. Namely,

gk : Rd → Rd Qk : Rd → Pd (2a)

hk : Rd → Rdk Rk : Rd → Pdk (2b)

for k ∈ {1, . . . , n}, where Pd denotes the cone of real d× d symmetric, positive-definite matrices.
Last of all, let {uk} and {vk} be, respectively, the state and measurement noise processes:

uk ∼ Nd(0, I) (3a)
vk ∼ Tdk(0, I, sk) (3b)

for all k, 1 ≤ k ≤ n, whereNd(µ,Σ) is a d-variate normal, or Gaussian distribution with mean vector µ
and variance-covariance matrix Σ � 0, and Td(µ,Σ, ν) is a d-variate t distribution with location vector
µ, scale matrix Σ � 0 and ν > 0 degrees of freedom [26].

2.2 Robust non-linear estimation

Assume that the state and observation sequences are generated by the following processes:

xk = gk(xk−1) + Q
1
2

k (xk−1) uk (4a)

yk = hk(xk) + R
1
2

k (xk) vk (4b)

for k = 1 to n,3,4 Or equivalently,

xk|xk−1 ∼ Nd(gk(xk−1) ,Qk(xk−1)) (5a)
yk|xk ∼ Tdk(hk(xk) ,Rk(xk) , sk) (5b)

Then, the probability density function of the joint distribution over state and measurement sequences is5

p (X,Y ) =

n∏
k=1

p (xk|xk−1) p (yk|xk) (6)

Note that, even though states are conditionally Gaussian- and observations are conditionally t-distributed,
in general they are not jointly Gaussian nor t.6

2.3 The t distribution

The t is a sub-exponential distribution —its tails decay to zero at a less-than-exponential rate. It has
much heavier tails than the Gaussian, which is super-exponential. The weight of the tails depends on the
number of degrees of freedom: in the limit ν → ∞ the tails flatten and the t reduces to a Gaussian. As
ν becomes smaller the t spreads its probability mass more and more evenly across its sample space and
further away from the mode, assigning outliers a non-negligible probability.

3The notation A1/2 stands for the lower-triangular Cholesky factor of a symmetric, positive-definite matrix A.
4With the convention f1(x0) = µ and Q1(x0) = Σ.
5Throughout this manuscript we will use the same symbols to denote both the random variable and its realization, the random

variate. Although this is a slight abuse of notation, it is in the interest of clarity and should cause no confusion.
6The t is not closed under convolution. Therefore, even if gk and hk are affine and Qk and Rk are constant, (X,Y ) is still

not t-distributed.
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Placing a non-negligible probability on outliers is not a disadvantage; it simply reflects reality. The
Gaussian concentrates most of its probability mass in a small region around the mean, essentially ruling
out the possibility that a measurement is ever wrong. The t makes no such mistake.

Our observation model in (5b) acknowledges the fact that, occasionally, the measurement process
may produce inconsistent readings. By imparting this information directly into the model we enable it
to deal with outliers natively within the estimation framework. As a result, there is no need for us to
explicitly pre-process outliers or treat them separately because the model is now capable of explaining
them.

2.4 Characteristics of the t family

The family of t distributions has a few unique and attractive features, which sets it apart from the Gaus-
sian:

2.4.1 The influence function

The influence function [27] quantifies the sensitivity of a distribution with respect to small changes
in the data. It is directly related to the derivative of the negative log-density function. Fig. 1 shows
the t’s influence function for different numbers of degrees of freedom. The Gaussian (i.e. the limit
ν → ∞) is augmented with a 95% confidence χ2 test, a common practice in Kalman filtering for
rejecting outliers [28].

Fig. 1 illustrates the difference in the way the t and the Gaussian react to measurement outliers. Data
lying far away from the origin will exert an increasingly large influence on the Gaussian until reaching
the χ2

95% threshold. Beyond this threshold, the data are discarded and their influence is null. The t is
not so categorical. Its influence gradually tends to zero, down-weighting the data in a continuous fashion
as they are pulled further and further away from the origin. Eventually, the data are ignored. In the
meantime, however, the information gain —albeit small—remains positive.

yt − xt

−

∂ ∂
y
t
ln

p
(y

t|
x
t)

The t distribution’s influence function

 

 

ν → ∞ (χ2
95%)

ν = 30
ν = 10
ν = 1

Figure 1: The influence function captures how a distribution changes with the data. The t’s influ-
ence function is re-descending: it decreases to zero away from the origin. In contrast, the Gaus-
sian’s influence function (ν → ∞) is linear and thus unbounded, unless a χ2 validation threshold
is in place.

2.4.2 The moment of indecision

The “moment of indecision,” coined by O’Hagan [29] and addressed in [30] and more recently in [4], is
an interesting phenomenon characteristic of heavy-tailed distributions. At times it is hard to tell a true
outlier from the outcome of a large but natural variance. For instance, when a measurement conflicts
with the prior but is not far enough so that the distinction is not obvious. In this gray area the t behaves
in a peculiar way that, although logical, is not fully intuitive.

The term “moment of indecision” refers to the fact that a product of t density functions can have
multiple maxima. In other words, Bayes’ rule can produce a multi-modal posterior. When the prior and
the data strongly disagree, the posterior splits into two distinct peaks that capture two hypotheses: one
where the measurement is wrong (i.e. an outlier) and another where the prior is wrong. The ambiguity
is resolved later on when more data become available, reinforcing one of the modes and suppressing the
other.
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Fig. 2 illustrates this phenomenon. The prior (dotted) and the likelihood (dashed) are one-dimensional
t densities with ν = 2 and 1 degrees of freedom, respectively. The posterior (solid) is a poly-t den-
sity [31]. Initially, the prior and the likelihood are concentric (yt = xt) and the posterior is uni-modal
(upper-left panel). As the prior and the likelihood diverge (i.e. yt − xt increases) the posterior widens
and shifts to the right (upper-right). When the difference is large enough, the single mode breaks into
two modes that move in opposite directions (lower-left). Eventually, the probability mass under the right
mode becomes negligible and dies out, and the posterior reverts to the prior.7

Moment of indecision

yt − xt

p
(x

t
),
p
(y

t
|x

t
),
p
(x

t
|y

t
)

 

 

Prior
Likelihood
Posterior

Figure 2: The “moment of indecision” is a phenomenon typical of heavy-tailed distributions. As
the prior and likelihood diverge, the posterior becomes multi-modal in order to account for two
possibilities: the first where the measurement is an outlier, and the second where the prior is off.

3 Robust Non-linear Estimation

3.1 Smoothing vs. maximum a posteriori estimation

Given Y , smoothing consists of finding and manipulating X|Y , the posterior distribution over state
sequences. This distribution is analytically intractable since its probability density function, p (X|Y ),
has no closed-form expression. Hence the smoothing problem is extremely challenging in the robust
non-linear model.

In contrast to smoothing, maximum a posteriori estimation seeks to find a maximum of p (X|Y ) —
or, equivalently, a maximum of p (X,Y )—rather than the density function itself. Maximization provides
a point estimate of the state sequence and is analytically tractable. Still, the density function (6) is not
log-concave and the problem involves a large number of variables, meaning that naı̈ve approaches are
prone to get stuck in poor local optima.

3.2 The objective function

Maximizing (6) is equivalent to minimizing

− ln p (X,Y ) =

n∑
k=1

(− ln p (xk|xk−1)− ln p (yk|xk)) (7)

The main difficulties of this minimization problem are:

1. the conditional location parameters are non-linear and the conditional scale parameters non-constant;
and

2. even if they were, the t’s probability density function is not log-concave.

Consequently, the objective function (7) is non-linear and non-convex.

7The number of degrees of freedom determines which mode survives. In this case, ν is larger for the prior than for the
likelihood. If the opposite were true, the left mode would ultimately become extinct and the posterior would follow the likelihood
instead of returning to the prior.
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3.3 Gauss-Gamma decomposition

A t-distributed random variable can be expressed as a scale mixture of Gaussian variables. Namely, (5b)
is equivalent to {

yk|xk, wk ∼ Ndk(hk(xk) , Rk(xk)/wk )

wk ∼ G (sk/2 , sk/2)

where G (α, β) stands for a Gamma distribution with shape α > 0 and rate β > 0 [26].
The weight wk is an auxiliary random variable. It is particularly convenient because it renders the

measurement process conditionally Gaussian. Therefore, if wk was known for all k, minimizing eq. (7)
would be a quadratic-composite problem.8 With this in mind, we shall now derive a quadratic-composite
upper bound on the objective function.

3.4 A quadratic-composite upper bound

Consider the second term inside the summation in the right-hand side of eq. (7). Let p (wk) be wk’s
probability density function and q (wk) be an arbitrary probability density function over the positive real
line.

If q (wk) is fixed, this term is bounded from above. Invoking the Gauss-Gamma decomposition,
multiplying and dividing by q (wk) and applying Jensen’s inequality [33] produces

− ln p (yk|xk) = − ln

∫
p (yk|xk, wk) p (wk) dwk

= − ln

∫
p (yk|xk, wk)

p (wk)

q (wk)
q (wk) dwk

≤ −
∫

ln

[
p (yk|xk, wk)

p (wk)

q (wk)

]
q (wk) dwk

After expanding the logarithm and rearranging we arrive at

− ln p (yk|xk) ≤ −
∫

ln p (yk|xk, wk) q (wk) dwk︸ ︷︷ ︸
Quadratic-composite function of xk

+

∫
ln
q (wk)

p (wk)
q (wk) dwk︸ ︷︷ ︸

Independent of xk

(8)

Up to an additive constant independent of xk, the right-hand side of this inequality is

ωk
2
‖vk(xk)‖2 +

1

2
rk(xk)

where we have defined

ωk ,
∫
wk q (wk) dwk (9a)

vk(xk) , R
1
2

k (xk)
−1

(yk − hk(xk)) (9b)

rk(xk) , ln det Rk(xk) (9c)

Hence the upper bound in ineq. (8) is a quadratic-composite function of xk, i.e. it is quadratic in vk and
rk even though it is not necessarily quadratic in xk.

For a fixed xk, the bound attains its minimum if and only if q (wk) = p (wk|xk,yk) for all wk > 09

(the reader may verify this via substitution and applying Bayes’ rule). In this case the bound is tight and
the inequality becomes an equality.

8A convex-composite problem [32] is of the form

min
x∈S

f (g (x))

where f : Rm → R is convex, g : Rn → Rm is continuously differentiable and S ⊆ Rn is affine. In particular, if f is a
quadratic function then the problem is quadratic-composite.

9Except, perhaps, on a set of measure zero.
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3.5 Putting the pieces together

Applying (8) to each of the terms inside the summation in eq. (7) leads to a quadratic-composite upper
bound on the objective function. Let us define

uk(xk−1,xk) , Q
1
2

k (xk−1)
−1

(xk − gk(xk−1)) (10a)

qk(xk−1) , ln det Qk(xk−1) (10b)

in analogy with eqs. (9b) and (9c) and let W = (w1, . . . , wn) be the sequence of weights. Then,

− ln p (X,Y ) ≤ b (X, q (W )) (11a)

where

b (X, q (W )) =
1

2

n∑
k=1

[
‖uk(xk−1,xk)‖2 + ωk ‖vk(xk)‖2 + qk(xk−1) + rk(xk) + . . .

]
(11b)

with the dots denoting terms independent of the states.
Minimizing the bound with respect to q (W ) tightens it and turns ineq. (11a) into an equation. Thus

we can write
arg min

X
− ln p (X|Y ) = arg min

X, q
b (X, q (W )) (12)

This equation is remarkable as it decouples the original non-linear, non-convex minimization problem
into a problem that is quadratic-composite in X —which allows for a much more efficient solution—
and trivial to solve in q (W ). In addition, it suggests a coordinate descent algorithm for minimizing the
objective function by iteratively tightening the bound.

4 Algorithm and Implementation

4.1 The maximum a posteriori estimation algorithm

We now propose an algorithm for carrying out maximum a posteriori estimation on robust non-linear
state-space models. Starting from an initial guess of the state sequence, repeat the following steps until
convergence:

1. While keeping the states fixed, minimize the bound with respect to the weights; and

2. While keeping the weights fixed, minimize the bound with respect to the states.

Assuming that the objective is well-behaved,10 convergence to a local minimum is guaranteed even if
neither 1) nor 2) minimize the bound, provided they do not increase it.

 

b (Xi , qi (W)) Upper bound 

Objective 
function 

Upper bound 
becomes tight 

Weight 
update 

–ln p (Xi , Y) 

KL [qi (W) || p (W | Xi , Y)] 

b (Xi , qi+1 (W)) 

State 
update

–ln p (Xi+1 , Y) 

b (Xi+1 , qi+1 (W)) 

Upper bound decreases less 
than objective function 

Figure 3: Illustration of the coordinate descent algorithm (ith iteration). First, step 1) updates
the weights’ densities. At this point the upper bound is tight. Then, step 2) updates the state
sequence and decreases the bound further. The objective function must decrease by at least as
much as the bound since it is no longer tight. As iterations progress, the gap becomes smaller
and smaller and eventually falls below the relative tolerance.

Fig. 3 illustrates steps 1) and 2) of the algorithm at the ith iteration. Let us go over both steps in more
detail:

10That is, assuming that a minimum exists.
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4.1.1 Updating the weights

For a fixed state sequence, minimization with respect to the weights’ density is trivial. From 3.4 we
know that the bound is tightened when q (W ) is equal to the density of W |X,Y . Since the weights are
conditionally independent given the states, the density factorizes as

∏n
k=1 q (wk). Applying Bayes’ rule

to the Gauss-Gamma decomposition of the kth factor yields

wk|xk,yk ∼ G (αk, βk)

αk =
sk + dk

2
βk =

sk + ‖vk(xk)‖2

2

and hence the optimal q (wk) is given by

q (wk) =
βαk

k

Γ (αk)
wαk−1
k exp (−βkwk)

for wk > 0, where Γ is the gamma function [34].
Now that we know wk’s density we can calculate all of the moments that eq. (11b) requires. In

particular, evaluating ωk as defined in eq. (9a) produces11

ωk =
αk
βk

=
sk + dk

sk + ‖vk(xk)‖2
(13)

Given xk, the expected value of wk decreases according to the square of the normalized residual. Intu-
itively, measurements are down-weighted by their disagreement with the states.

4.1.2 Updating the states

Minimization with respect to X , for a fixed q (W ), is achieved numerically. We apply a variant of the
Gauss-Newton method developed by Burke and Ferris [32] in the context of convex-composite optimiza-
tion. At each iteration of the method, we compute a sequence of search directions by solving a quadratic
sub-problem and then perform a line search along these directions.

The objective function for the quadratic sub-problem results from replacing uk, vk, qk and rk in
eq. (11b) by their first-order Taylor expansions around xk−1 and xk. Specifically, if ∆X is the sequence
of linear variables,

∆X = (∆x1, . . . , ∆xn)

then the search directions are computed by solving

min
∆X

n∑
k=1

fk(∆xk−1,∆xk) (14)

where fk is given by eqs. (15) and (16). (Deriving these equations is lengthy but straightforward, involv-
ing little more than differentiation and algebraic manipulation.)

If we take a close look at (15) we realize that the mathematical structure of the sub-problem is al-
most the same as that of a linear, time-varying Kalman smoother. The objective function is quadratic
in ∆X and consists of a sum of pairwise terms (involving ∆xk−1 and xk) and singleton terms (in-
volving only xk). Thus we can solve prob. (14) via a modified form of the Rauch-Tung-Striebel (RTS)
recursions [37].12

Line search may be performed in a number of ways [38]. We chose a backtracking strategy, which is
fast and effective. Let h be the step size along the search direction ∆X . Starting from h = 1, we either
accept the step if it satisfies the Wolfe conditions, or shrink it by a constant factor and try again.

11The dots in (11b) represent terms independent of xk . Evaluating these terms, although tedious, is straightforward. They are
given by

dk

2
E [ln (2πwk)] + KL [q (wk)‖p (wk)]

where E denotes expectation with respect to q (wk) and KL is the Kullback-Leibler divergence [35].
12The only difference between the objective function of the quadratic sub-problem and that of the Kalman smoother is the

presence of the additional terms
qk(xk−1)>∆xk−1 rk(xk)>∆xk

outside of the square in eq. (15). These are caused by state-dependent noise. However, since they are linear in ∆xk−1 and ∆xk ,
they can be accounted for during the forward pass by executing an extra correction step with “fictitious” zero-valued measurements.
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fk(∆xk−1,∆xk) =
1

2

∥∥∥Q 1
2

k (xk−1)
−1

(∆xk −Gk(xk−1,xk) ∆xk−1 − gk(xk−1) + xk)
∥∥∥2

+
ωk
2

∥∥∥R 1
2

k (xk)
−1

(yk −Hk(xk) ∆xk − hk(xk))
∥∥∥2

+ qk(xk−1)
>

∆xk−1 + rk(xk)
>

∆xk + . . .

(15)

Gk(xk−1,xk) =

[
· · · ∂gk

∂xi
(xk−1) +

∂Q
1
2

k

∂xi
(xk−1) uk(xk−1,xk) · · ·

]
(16a)

Hk(xk) =

[
· · · ∂hk

∂xi
(xk) +

∂R
1
2

k

∂xi
(xk) vk(xk) · · ·

]
(16b)

qk(xk−1) =

[
· · · tr

(
Q

1
2

k (xk−1)
−1 ∂Q

1
2

k

∂xi
(xk−1)

)
· · ·

]>
(16c)

rk(xk) =

[
· · · tr

(
R

1
2

k (xk)
−1 ∂R

1
2

k

∂xi
(xk)

)
· · ·

]>
(16d)

Figure 4: The kth term of the objective function of the quadratic sub-problem (14). The ith columns
of matrices Gk and Hk are shown in eqs. (16a) and (16b), and the ith elements of vectors qk and
rk appear in eqs. (16c) and (16d), respectively. Calculating Cholesky factors and evaluating their
derivatives can be done simultaneously and requires the same order of complexity [36].

After each successful step, we check the following termination criterion to assess convergence:

−n−1 tr

(
∂b

∂X
(X, q (W ))

>
∆X

)
≤ ε (17a)

where ε > 0. (Refer to appendix A for an expression of the derivatives of the upper bound.) When this
criterion is met we consider that the Gauss-Newton method converged to a local minimum and return to
step 1).

4.2 Assessing convergence

To assess convergence of the overall algorithm we monitor the objective function between two consecu-
tive iterations. If

ln p (Xi+1, Y )− ln p (Xi, Y ) ≤ δ (17b)

for δ > 0 then we deem that a local minimum has been found and terminate the algorithm.

4.3 Pseudo-code

Alg. 1 shows the pseudo-code implementing the robust non-linear estimator. Line 2 implements step
1), while lines 3 to 7 implement step 2). In line 4 the search directions are computed via modified RTS
recursions, and in line 5 a backtracking line search strategy selects the step size.

Algorithm 1 The robust non-linear estimator.
Require: an initial guess X

1: repeat
2: for all k, ωk ← (13) # step 1)
3: repeat
4: ∆X ← the solution to prob. (14)
5: calculate h via backtracking
6: X ← X + h∆X
7: until (17a) is true # end of step 2)
8: until (17b) is true
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Our implementation of alg. 1 is in the MatLab programming language. The source code is available
on-line and includes a test function for a quick demonstration. Interested readers must download the files
from [25] into their working directories, run the initialization script (init.m)13 and type TestRNLE()
in the command prompt. Documentation and details of our implementation may be found by typing
help RNLE and/or by examining the comments in the source code.

5 Experimental Results

5.1 Multi-variate stochastic volatility models

Multi-variate Stochastic Volatility (MSV) models track the price variations of a group of financial assets.
The variation is treated as a random process governed by state variables, and thus an MSV model can be
expressed as an SSM.

One such MSV model advocated by Tsay [39] is written in state-space form as

xk = φ ◦ (xk−1 − µ) + µ+ Λ diag (σ/2) uk (18a)
yk = Γ diag (exp (xk/2)) vk (18b)

where ◦ denotes the Hadamard, or element-wise product and exp the element-wise exponential function.
Vector xk contains the latent log-volatilities, and vector yk contains the percentage rate of return for
each asset for the kth trading day. Vectors uk and vk are noise processes as defined in eqs. (3a) and (3b),
respectively.

The transition model in eq. (18a) captures the tendency of the states (log-volatilities) to revert to a
stationary value (µ) in the long run. The observation model in eq. (18b) asserts that the variation of the
measurements (returns) is a non-linear function of the states. Note that eq. (18b) implies

hk(xk) = 0 Rk(xk) = Γ diag (exp (xk)) Γ>

that is, the only link between states and measurements is the state-dependent measurement noise.
Table 1 summarizes the parameters of this MSV model. The last column lists the distributions used to

generate random parameters during the experiment. The notation U(a, b) denotes a uniform distribution
in the interval [a, b]. Matrices Λ and Γ are lower-triangular with unit diagonal. The number of states is
equal to the number of measurements, i.e. d = dk for all k = 1, . . . , n.

Table 1: Summary of model parameters

Symbol Shape Sampling distribution

µ d× 1 µi ∼ U (−2,−1)

φ d× 1 φi ∼ U (0.95, 1)

σ d× 1 σi ∼ U (0.05, 0.15)

Λ d× d λij ∼ U (−0.10, 0.95), i > j

Γ d× d γij ∼ U (−0.15, 0.95), i > j

The percentage rate of return is usually assumed conditionally Gaussian [6]. In this paper yk is t-
distributed with sk = ν degrees of freedom. This accounts for the higher kurtosis [40] typical of daily
price variations.

5.2 Benchmarks

For the purpose of validation, we compared our Robust Non-Linear Estimator (RNLE) to two other
estimators:

• The Sampling-Importance-Resampling Particle Smoother (SIR-PS) [41], a sequential sampling
algorithm that splits the state-space into a finite number of particles; and

• A block component-wise Metropolis-Hastings Sampler (MHS) [42], a Markov chain Monte Carlo
Method that exploits the sequential nature of the data.

13The initialization script compiles two C files and creates corresponding MatLab executable (MEx) files.
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Both of these estimators are asymptotically optimal, i.e. they produce increasingly better estimates as the
number of particles grows infinitely large. Hence they serve as a benchmark for the method we propose.

We point out that the methods mentioned in sub-section 1.4 are not applicable to this problem.
Linearization algorithms such as the Extended Kalman Filter/Smoother (EKF/S) [43] and their iterated
cousins [24] only linearize the observation function, not the noise. Deterministic sampling algorithms
such as the Unscented Kalman Filter (UKF) [15] and its retrospective counterpart, the Unscented Rauch-
Tung-Striebel Smoother (URTSS) [16], use too few samples to reason about variance-covariance param-
eters.14 Perhaps the method of Spinello and Stilwell [13] would be a viable candidate, were it not for the
fact that their algorithm is designed for filtering and that they assume Gaussian noise.

5.3 Performance metrics

In order to evaluate and compare the performance of different estimation algorithms we selected a set
of error metrics. Namely, we chose the Root Mean Squared (RMS), Maximum (Max), Mean Absolute
(MAbs) and Maximum Absolute (MaxAbs) errors, given by:

RMS =

√√√√ 1

n

n∑
k=1

‖xk − x̂k‖2

Max = max
k=1, ..., n

‖xk − x̂k‖

MAbs =
1

n

n∑
k=1

|xk − x̂k|

MaxAbs = max
k=1, ..., n

|xk − x̂k|

where x̂k is an estimate of the true state xk at step k and | · | is the Manhattan norm.
For the SIR-PS, x̂k is computed as the weighted average of the particles for the kth day. For the

MHS, it is the average of the kth element over samples.

5.4 Experimental setup

Our experiment consisted of repeating the following steps a total of 50 times:

1. Sample a set of parameters according to table 1;

2. Generate a sequence of 200 data from this model;

3. Run the SIR-PS, the RNLE (algorithm 1) and the MHS on this data with full knowledge of the
model; and

4. Compute the error metrics for each estimator.

The SIR-PS was run with 100 particles. Its proposal distribution was the same as the state transition
model.

The initial guess of the state sequence for the RNLE was obtained with a windowed filter of width
2m+ 1. Specifically, we initialized each component of the state vector as follows:

x̂k = ln
1

2m+ 1

k+m∑
i=k−m

yi − 1

2m+ 1

k+m∑
j=k−m

yj

2

for each k, m < k ≤ n−m. In our experiment m = 3.
The MHS was initialized with the same initial guess. We ran it for 1000 burn-in iterations and then

20000 more iterations, thinning by a factor of 20. This produced a total of 100 samples from the posterior
distribution over state sequences. We hand-tuned the parameters of the proposal distribution to achieve
an average acceptance rate of 20%–40%.
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Figure 5: Typical sequences of data generated by the multi-variate stochastic volatility model in
eqs. (18). The vertical bars denote the percentage rate of return of a given asset, i.e. the percent
change in its price between consecutive trading days.

5.5 Results

Fig. 5 shows a typical sequence of measurements generated by the MSV model in eqs. (18). Note that
this is not a standard signal processing problem where we wish to recover a signal buried in noise. What
we wish to estimate is the instantaneous variation in the signal (its envelope, so to speak).

Fig. 6 shows the sequence of log-volatilities of the 3rd asset (3rd row in fig. 5), plus the estimates.
For the SIR-PS (top), the estimates are depicted as particle clouds, where each particle’s weight is pro-
portionally mapped to a different tone of gray. For the RNLE (middle), the estimates are 99% confidence
intervals derived from the variance-covariance parameters computed during the RTS recursions. For the
MHS, the estimates are samples in the ensemble.
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Figure 6: Typical sequence of state estimates returned by the three estimation algorithms. The
estimated log-volatilities of a given asset, as estimated by the SIR-PS (top), RNLE (middle) and
MHS (bottom), are plotted in gray. The black line depicts the true log-volatilities.

Table 2 and fig. 7 summarize the error metrics that each algorithm scored in our experiment. The last
14The unscented transform propagates 2d+ 1 points, while a covariance matrix contains d(d− 1)/2 free parameters.
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row in the table lists the execution time per sequence in seconds. Statistics were collected over the 50
runs. All differences are statistically significant at the 0.5% level.

Table 2: Summary of performance metrics

Metric SIR-PS RNLE MHS
Mean Std. dev. Mean Std. dev. Mean Std. dev.

RMS 1.47 0.0928 1.22 0.0855 1.05 0.0697
Max 3.04 0.443 2.57 0.346 2.20 0.200

MAbs 2.60 0.152 2.15 0.143 1.88 0.125
MaxAbs 6.08 0.956 5.21 0.764 4.34 0.467

Exec. time 77.6 1.49 1.05 0.0823 144 1.56

Root mean squared
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Figure 7: Box plots of the error metrics achieved by the SIR-PS, RNLE and MHS. The sample
statistics are computed over the 50 runs of the experiment.

5.6 Comparison and discussion

In terms of estimation accuracy, the RNLE is almost on par with the MHS (e.g. its RMS error is 14%
larger on average). Assuming that the sample size is sufficiently large (100 in our experiment), we can
regard the MHS as the optimal estimator and conclude that, for this experiment, the RNLE performed
close to the best possible estimator.

The advantage of the RNLE is its running time. With an average of 1.05± 0.135 sec. per sequence,
it is more than 120 times faster than the MHS and over 70 times faster than the SIR-PS, which took an
average of 144± 2.56 and 77.6± 2.45 seconds per sequence, respectively.

The RNLE outperformed the SIR-PS, although this is due to the relatively small particle cloud.
Increasing the number of particles beyond 100 tends to decrease the errors, albeit at a computational cost
that increases quadratically and thus renders it impractical compared to the MHS.

6 Summary and Conclusions
In this paper we proposed a robust estimation algorithm for non-linear state-space models driven by state-
dependent noise. We derived the algorithm from first principles as an iterative solver for a quadratic-
composite minimization problem. We tested it on simulated data and showed that its performance is
comparable to that of the optimal Bayes estimator.

We believe that the RNLE has great potential for complex tasks with outliers and missing data. To the
best of the authors’ knowledge, no other deterministic algorithm in the literature has these capabilities.

It would be interesting to extend our approach to allow for more general distributional assumptions.
For instance, elliptical distributions [44] are attractive because of their generality and their compact
parametrization.15 One could imagine a model parameterized by a density generator function that deter-
mines the shape of the observation density.

15In fact, the t is an elliptical distribution with density generator function g : x 7→ (1 + x/ν)−(ν+d)/2 for x ≥ 0.
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In our experiment we relied on a filter to provide us with an initial guess of the state sequence. There
are many other, more general initialization schemes, e.g. the EKF/S, the UKF etc. Studying and assessing
their relative merits would be an interesting direction to pursue in the future.
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A Derivatives of the Quadratic-composite Function
The derivatives of b —defined in eq. (11b)—with respect to xk, evaluated at X , are given by

∂

∂xk
b (X, q (W )) = Q

1
2

k (xk−1)
−>

uk(xk−1,xk)

−Gk+1(xk,xk+1)
>

Q
1
2

k+1(xk)
−>

uk+1(xk,xk+1)

− ωkHk(xk)
>

R
1
2

k (xk)
−>

vk(xk) + qk+1(xk) + rk(xk)

The gradient,∇b, of b with respect to X is a d× n matrix formed by concatenating these partial deriva-
tives.
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