
A guide to connecting MATLAB with OpenCV

Georgios D. Evangelidis

INRIA Grenoble Rhone-Alpes,

655 Avenue de l’Europe,

38330 Montbonnot, France

e-mail: georgios.evangelidis@inria.fr

This document is a short guide to connecting Matlab with OpenCV.

Matlab provides a MEX environment in order to write C functions instead of M-files.

Recall that MEX (Matlab-EXecutable) files are dynamically linked subroutines from

C/C++ code (or Fortran code) that, when compiled, can be run from within Matlab

like M-files. Hence, MEX environment offers a way to call your custom C/C++

routines as if they were Matlab built-in function. A detailed MEX Guide is offered by

MathWorks [1].

The following description presupposes that, except for Matlab, OpenCV is installed in

your system. Note that connection has been verified in a 64-bit machine with Win7,

OpenCV2.1 and 32-bit Matlab R2009b. If you have installed a 64-bit Matlab version,

try to use OpenCV 2.3 (or 2.3.1) that offers a prebuilt library for both 32-bit and 64-

bit systems. Otherwise you sould re-build the libraries from source-code using the

proper generator (32-bit or 64 bit). Note that 32-bit Matlab works well in 64-bit

machines, so I would suggest this version.

Build your files

In order to be able to compile any C/C++, you have to setup MEX environment and

choose the appropriate compiler with the command

>> mex -setup

Note that I used the compiler (cl) of Visual C++ 2008 express edition (it works fine). I

provide below two examples of MEX-files that use OpenCV functions. The first

example is the simplest case where no input/output arguments are required. For

mailto:georgios.evangelidis@inria.fr

example, image loading is called from within the function and the MEX file returns

nothing (it just displays the result). The second case is more interesting since input

and output arguments are Matlab variables. The Sun Peng's types convertor [2] that

provides bidirectional conversion between C/C++ (OpenCV) types and matlab

matrices is used for such a conversion.

Example 1: A simple MEX file without input/output

arguments that uses simple OpenCV modules

/***

 This is a simple MEX file. It just calls OpenCV functions for

loading,

smothing and diaplaying the results

**/

#include <stdio.h>

#include <stdlib.h>

#include <opencv/cv.h>

#include <opencv/highgui.h>

#include "mex.h"

int smoothImage(char* filename){

//load the image

IplImage* img = cvLoadImage(filename);

if(!img){

printf("Cannot load image file: %s\n",filename);

return -1;

}

//create another image

IplImage* img_smooth = cvCloneImage(img);

//smooth the image img and save the result to img_smooth

cvSmooth(img, img_smooth, CV_GAUSSIAN, 5, 5);

// create windows to show images

cvNamedWindow("Original Image", CV_WINDOW_AUTOSIZE);

cvMoveWindow("Original Image", 100, 100);

cvNamedWindow("Smoothed Image", CV_WINDOW_AUTOSIZE);

cvMoveWindow("Smoothed Image", 400, 400);

// show the images

cvShowImage("Original Image", img);

cvShowImage("Smoothed Image", img_smooth);

// wait for a key

cvWaitKey(0);

//destroy windows

cvDestroyWindow("Original Image");

cvDestroyWindow("Smoothed Image");

//release images

cvReleaseImage(& img);

cvReleaseImage(& img_smooth);

return 0;

};

void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray*

prhs[]){

if (nrhs != 0)

{

mexErrMsgTxt("Do not give input arguments.");

}

if (nlhs != 0)

{

mexErrMsgTxt("Do not give output arguments.");

}

char *name = "cameraman.png";

smoothImage(name);

}

Let us suppose that the above code is saved to displayImage.cpp file. Since this file

makes use of OpenCV header files, the compiler must be informed with the

appropriate include directories. Moreover, in order to produce the executable file, the

necessary libraries should be given.

There are two ways to define the required compilation flags:

1. by pre-editing the MEXOPTS.BAT file

2. by defining paths and libraries with the mex command

By editing the MEXOPTS.BAT file

When you choose a compiler with
>> mex -setup

an appropriate batch file is created containing all required settings the compilation

needs. This is the file mexopts.bat and in order to find it, just type in Matlab

>> fullfile(prefdir,'mexopts.bat')

In my machine, this file is in

C:\users\<username>\AppData\Roaming\MathWorks\MATLAB\R2009b\mexopts.bat

Edit the above file and add follow the next steps:

1. set the OpenCV path based on your installation, i.e.

SET OCVDIR=C:\OpenCV2.1

http://xanthippi.ceid.upatras.gr/people/evangelidis/matlab_opencv/data/displayImage.cpp

2. Find the INCLUDE variable definition (SET INCLUDE) and add the path that

contains the OpenCV include folder (the folder that contains the header files cv.h,

cxcore.h etc)

%OCVDIR%\include\opencv

%OCVDIR%\include

3. Find the LIB variable definition (SET LIB) and add the path that contains the

OpenCV libraries (*.lib files)

%OCVDIR%\lib

4. Find the LINKFLAGS variable definition (SET LINKFLAGS) and add the

standard *.lib files of OpenCV (here of OpenCV 2.1)

cv210.lib

cxcore210.lib

highgui210.lib

cvaux210.lib

(Not all of them are required for the above example)

After that, just run

>> mex displayImage.cpp

and the file displayImage.mexw32 will be created. Then, you can call the

Matlab function diplayImage without arguments and it will show the image that

is loaded within the source (here the image cameraman.png).

By defining paths and libs with the mex command

Alternatively, you can define the paths and libraries anytime you call the mex

command. For example, say that your source file needs the header files cv.h,

highgui.h and cxcore.h as above. Then you need to define the include

directory using the flag -I and the three .lib files.

>> OCVRoot = C:\OpenCV2.1;

>> IPath = ['-I',fullfile(OCVRoot,'include')];

>> LPath = fullfile(OCVRoot, 'lib');

>> lib1 = fullfile(LPath,'cv210d.lib');

>> lib2 = fullfile(LPath,'cxcore210d.lib');

>> lib3 = fullfile(LPath,'highgui210d.lib');

>> mex('displayImage.cpp', Ipath, lib1, lib2, lib3);

Then, you can show the image in Matlab as described above.

http://xanthippi.ceid.upatras.gr/people/evangelidis/matlab_opencv/data/cameraman.png

Example 2: A MEX file with input/output arguments

that uses OpenCV

I consider the above example of image smoothing but now the input and output

images are matlab variables. A Gaussian filter is adopted, the size of which is given

with two more input parameters (height, width). As I mentioned above, I make use of

Sun Peng's type convertor [2] to switch between mxArray and IplImage

structures or other C/C++ data types (find HERE only the appropriate files).

/***

 This is a simple MEX file that accepts as inputs an image and the

 size of a Gaussian filter(two parameters). Then it applies the

filter to the image by calling the OpenCV function cvSmooth and

returns the filtered image to a matlab variable.

**/

#include <opencv/cv.h>

#include <opencv/highgui.h>

#include <opencv/cxcore.h>

#ifndef HAS_OPENCV

#define HAS_OPENCV

#endif

#include "mex.h"

#include "mc_convert.h"

#include "mc_convert.cpp"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

 const mxArray *prhs[]) {

 //Read Matlab image and load it to an IplImage struct

 IplImage* inputImg = mxArr_to_new_IplImage(prhs[0]);

 //Read the filter parameters

 double filterHeight, filterWidth;

 mat_to_scalar (prhs[1], &filterHeight);

 mat_to_scalar (prhs[2], &filterWidth);

 //smooth the input image and save the result to outputImg

 IplImage* outputImg = cvCloneImage(inputImg);

 cvSmooth(inputImg, outputImg, CV_GAUSSIAN, filterWidth,

filterHeight);

 //Return output image to mxArray (Matlab matrix)

 plhs[0] = IplImage_to_new_mxArr(outputImg);

 cvReleaseImage(&inputImg);

 cvReleaseImage(&outputImg);

}

Note that Matlab-to-OpenCV convertor needs to define the symbol name

HAS_OPENCV to the C preprocessor. I define it in the source code, but one can

either add the switch -DHAS_OPENCV to mex command or edit the COMPFLAGS

definition in MEXOPTS.BAT (find the SET COMPFLAGS line) and add the

/DHAS_OPENCV flag.

http://xanthippi.ceid.upatras.gr/people/evangelidis/matlab_opencv/data/mc_convert.zip

Given that the source is saved to the file smoothImage.cpp, you just need to compile it

and run it. The command

>> mex smoothImage.cpp

will create the file smoothImage.mexw32. Then, you can run the Matlab function as

follows

>> im = imread('cameraman.png');

>> filterHeight = 7;

>> filterWidth = 7;

>> outImage = smoothImage(im, filterHeight, filterWidht);

Good Luck!

Contact

For any bugs, questions or help, please contact the author.

Georgios Evangelidis,

e-mail: georgios.evangelidis@inria.fr

References

[1] Mathworks, MEX-files Guide

http://www.mathworks.fr/support/tech-notes/1600/1605.html

[2] Sun Peng, C/C++ and Matlab types convertor,

http://www.mathworks.com/matlabcentral/fileexchange/20927

http://xanthippi.ceid.upatras.gr/people/evangelidis/matlab_opencv/data/smoothImage.cpp
http://perception.inrialpes.fr/~evangelidis/
mailto:georgios.evangelidis@inria.fr
http://www.mathworks.fr/support/tech-notes/1600/1605.html
http://www.mathworks.com/matlabcentral/fileexchange/20927

