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1 Toolbox description

This package contains a set of m-files which implement a Discrete Orthogonal Polynomial toolbox
called DOPbox. There are many applications of discrete opthogonal polynomials, e.g., in the
solution of ordinary differential equations (ODEs), partial differential equations (PDEs), boundary
value problems (BVPs), initial value problems (IVPs), inverse-BVPs etc.

This documentation describes the functions briefly and gives examples as to how they are used.
The theory behind this toolbox can be found in the following publications: The paper [1]

@inproceedings{
oleary2008b,
Author = {O’Leary, P. and Harker, M.},
Title = {An Algebraic Framework for Discrete Basis Function s in Computer Vision},
BookTitle = {2008 $6ˆ{\textrm{th}}$ ICVGIP},
Address= {Bhubaneswar, India},
Publisher = {IEEE},
Pages = {150-157},
Year = {2008} }

provides details of the synthesis algorithm and the application of the Gram polynomials to
image processing. The paper [2]

@inproceedings{oleary2010C,
Author = {O’Leary, P. and Harker, M.},
Title = {Discrete Polynomial Moments and Savitzky-Golay Sm oothing},
BookTitle = {Waset Special Journal},
Volume = {72},
DOI = {},
Pages = {439--443},
Year = {2010}}

provides information on when the Gram-Schmidt orthogonalization fails and also the imple-
mentation of local polynomial approximations. The application of DOPbox to BVPs and IVBPs
is documented in [3],

@article{Oleary2012,
author = {Paul O’Leary and
Matthew Harker},
title = {A Framework for the Evaluation of Inclinometer Data in the
Measurement of Structures},
journal = {IEEE T. Instrumentation and Measurement},
volume = {61},
number = {5},
year = {2012},
pages = {1237-1251},
ee = {http://dx.doi.org/10.1109/TIM.2011.2180969}}

2 Toolbox Functions

All the m-files contain headers with help for the specific function, see for example:

1 help dopNodes
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Purpose : This function generates a set of n nodes of the reque sted type.
In general such nodes are then used to synthesize basis funct ions.

Use (syntax): nodes = <strong>dopNodes</strong>( n, type )

Input Parameters :
n: the number of nodes
type: this paramater determines which set of nodes are gener ated.
The type should be one of the following:

’Gram’: generate the nodes required for the gram polynomial s.
’GramEnds’: a set of equally spaced nodes in the interval [-1 ,1].
’Cheby’: the Chebyshev nodes.
’ChebyEnds’: the Chebyshev nodes in the full interval [-1,1 ].

Return Parameters :
nodes: an n column vector containing the values of the nodes.

Description and algorithms:

References :

Author : Matthew Harker and Paul O’Leary
Date : 17. January 2013
Version : 1.0

(c) 2013 Matthew Harker and Paul O’Leary,
Chair of Automation, University of Leoben, Leoben, Austria
email: office@harkeroleary.org,
url: www.harkeroleary.org

History:
Date: Comment:

Clean up prior to running the code

2 clear all ;
3 close all ;

2.1 Generate a set of nodes – dopNodes.m

this function generates a set of nodes which can be used to synthesize a set of basis functions, see
help dopNodes for details of the types of nodes supported.

The function is used in the following manner

4 noNodes = 10;
5 %
6 % generate the Gram and Chebyshev nodes
7 %
8 gNodes = dopNodes( noNodes, ’Gram’ );
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9 cNodes = dopNodes( noNodes, ’Cheby’ );
10 %
11 % Generate the modiied nodes
12 %
13 geNodes = dopNodes( noNodes, ’GramEnds’ );
14 ceNodes = dopNodes( noNodes, ’ChebyEnds’ );

It is important to note that the nodes need to be generated exactly at the points where the
constraints are to be applied, in particular for boundary values problems. Both the Gram and
Chebyshev nodes do not reach to the end of the support; this would mean that constraints could
not be placed exactly at the ends of the support. For this reason modified Gram and Chenyshev
nodes are also provided, they are modified so that they start at −1 and end at 1.

15 fig1 = figure ;
16 a(1) = subplot (4,1,1);
17 plot ( gNodes, zeros ( size (gNodes)), ’ko’ , ’MarkerFaceColor’ , ’k’ );
18 hold on;
19 plot ([-1,1],[0,0], ’k’ );
20 axis ([-1,1,-1,1]);
21 ylabel ( ’Gram ’ );
22 %
23 a(3) = subplot (4,1,2);
24 plot ( cNodes, zeros ( size (gNodes)), ’ko’ , ’MarkerFaceColor’ , ’k’ );
25 hold on;
26 plot ([-1,1],[0,0], ’k’ );
27 axis ([-1,1,-1,1]);
28 ylabel ( ’Cheby’ );
29 %
30 a(2) = subplot (4,1,3);
31 plot ( geNodes, zeros ( size (gNodes)), ’ko’ , ’MarkerFaceColor’ , ’k’ );
32 hold on;
33 plot ([-1,1],[0,0], ’k’ );
34 axis ([-1,1,-1,1]);
35 ylabel ( ’GramE’ );
36 %
37 a(4) = subplot (4,1,4);
38 plot ( ceNodes, zeros ( size (gNodes)), ’ko’ , ’MarkerFaceColor’ , ’k’ );
39 hold on;
40 plot ([-1,1],[0,0], ’k’ );
41 axis ([-1,1,-1,1]);
42 %
43 xlabel ( ’Support’ );
44 ylabel ( ’ChebyE’ );
45 %
46 linkaxes( a, ’x’ );
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Figure 1: Node placements generated by dopNodes with the options for the Gram, Cheby, Gra-
mEnds and ChebyEnds.

In the next figure the end of the support is shown.

47 figure (fig1);
48 axis ([-1,-0.65,-1,1]);
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Figure 2: Node placements at the end of the support as generated by dopNodes with the options
for the Gram, Cheby, GramEnds and ChebyEnds.
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2.2 Generate a set of discrete orthogonal polynomials – dop.m

The function dop.m generates a set of discrete orthogonal polynomials. It has multiple options
(see help dop for details), the most important features are: the fuinction generates a set of
ortho-normal basis functions from a set of nodes. It can also optionally generate the differentials
of the basis functions and the coefficients for later interpolation with the basis functions.

The generation of a set of Gram polynomials from the Gram nodes is now demonstrated. A
large number of nodes are used to show the nature of the basis functions.

49 noNodes = 100;
50 noBfs = noNodes;
51 %
52 % generate a complete set of basis functions.
53 %
54 gNodes = dopNodes( noNodes, ’Gram’ );
55 B = dop( gNodes, noBfs );
56 %
57 fig2 = figure ;
58 for k=1:5
59 plot ( gNodes, B(:,k), ’k’ );
60 hold on;
61 end ;
62 axis ([-1,1,-0.3, 0.3]);
63 grid on;
64 xlabel ( ’Support’ );
65 ylabel ( ’Value’ );
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Figure 3: The first 5 Gram basis functions.
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2.2.1 Properties of the Basis functions

The basis functions B generated by this function are ortho-normal, i.e. the Gram matrix for the
basis functions

G , BT B = I (1)

should be the identity matrix. Consequently, the projection onto the orthogonal complement of
G⊥ = G − I = 0 should be exactly a matrix of zeros. However, due to numerical errors this is
not the case. G⊥ can be inspected to see the quality of the basis functions.

66 G = B’ * B;
67 Gperp = G - eye ( noBfs );
68 %
69 % Now visualizing the matrix Gperp,
70 %
71 xScale = (1:noBfs) - 1;
72 yScale = xScale;
73 fig3 = figure ;
74 imagesc ( xScale, yScale, Gperp );
75 colorbar ;
76 xlabel ( ’Degree d’ );
77 ylabel ( ’Degree d’ );
78 axis image ;
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Figure 4: The projection onto the orthogonal complement of the Gram matrix, computed for a
set of 100 Gram basis functions. The matrix should be exactly zeror.

Ideally the matrix G⊥ should be exactly zero. The Frobenius norm ‖G‖f , i.e. the sum of the
squares of all entries, can be used as an estimate for the quality of the basis functions.

79 fNormGperp = norm( Gperp, ’fro’ )
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fNormGperp =
2.9765e-15

The number of significant digits can be estimated as ns = − log10(‖G‖f )

80 ns = - log10 ( fNormGperp )

ns =
14.5263

As can be seen the error is very small. Consequently, the quality of the basis functions is very
high.

2.2.2 Generating complex basis functions

Consider the case of wishing to generate a set of basis functions from an arbitrary set of nodes
in the complex plane. This, for example, may be desirable when wishing to modell an damped
oscillator.

In the example presented here we wish to generate a set of complex basis functions with a
predefined envelope. The complex basis functions should be in quadrature to each other, this
insures local shift invariance.

82 load arbitraryData;
83 %
84 n = length (r);
85 x = linspace (0,1,n)’;
86 %
87 figure ;
88 plot ( x, r, ’k’ );
89 grid on;
90 xlabel ( ’Support’ );
91 ylabel ( ’Envelope’ );
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Figure 5: Envelope for the desired basis functions

Now defining the number of cycles required for the basis functions

92 noCycles = 10;
93 %
94 % and compute the corresponding angles
95 %
96 phi = linspace (0,2 * pi * noCycles,n )’;
97 %
98 % Compute the rean and imaginary components of the node place ments
99 %

100 nr = r. * cos ( phi );
101 ni = r. * sin ( phi );
102 n = nr + i * ni;
103 %
104 figure ;
105 plot ( nr, ni, ’k’ );
106 hold on;
107 plot ( nr, ni, ’k.’ );
108 grid on;
109 xlabel ( ’Real’ );
110 ylabel ( ’Imaginary’ );
111 axis equal;
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Figure 6: Node placements for the synthesis of the complex basis functions.

Now synthesize the basis functions (only the first 3 are computed for simplicity here.

112 noBfs = 3;
113 B = dop( n, noBfs );
114 %
115 figure ;
116 subplot (2,1,1);
117 plot ( x, real (B(:,2)) , ’r’ );
118 hold on;
119 plot ( x, imag (B(:,2)) , ’b’ );
120 grid on
121 ylabel ( ’B(:,2)’ );
122 plot (x,r/ norm(r), ’k’ );
123 plot (x,-r/ norm(r), ’k’ );
124 %
125 subplot (2,1,2);
126 plot ( x, real (B(:,3)) , ’r’ );
127 hold on;
128 plot ( x, imag (B(:,3)) , ’b’ );
129 grid on
130 ylabel ( ’B(:,3)’ );
131 %
132 xlabel ( ’Support’ );
133 %\caption{Sets of complex basis functions synthesized usi ng \lstinline{

dop}}
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2.2.3 Using dop.m to compute a regularizing differential operator.

In this example a polynomial is used, since the function and its derivatives can be computed
analytically. This permits an objective comparison of the numerically computed and the analytical
derivatives.

135
136 % Generate a polynomial function for test purposes:
137 noPts = 100;
138 x = linspace ( -1, 1, noPts )’;
139 p = [5,0,-5,0,-5,0];
140 dp = polyder ( p );
141 y = polyval ( p, x );
142 dy = polyval ( dp, x );
143 %
144 % Plot the analytical polynomials and their derivatives tog ether with

the
145 % numerically computed values
146 %
147 fig4 = figure ;
148 subplot (2,1,1);
149 plot ( x, y, ’k’ );
150 ylabel ( ’y(x)’ );
151 grid on;
152 %
153 subplot (2,1,2);
154 plot ( x, dy, ’k’ );
155 ylabel ( ’d y(x)/dx’ );
156 grid on;
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Figure 7: the test function and its analytical derivative

Now investigating the properties of numerical approximations to derivatives: the MATLAB
matrix implicitly used to numerically compute derivatives can be extracted as follows:

157 [Dx, Dy] = gradient ( eye (noPts));
158 %
159 % correct for the step size
160 %
161 h = x(2) - x(1);
162 DyMat = Dy / h ;
163 %
164 % and using this matrix to estimate the derivative of y(x).
165 %
166 dyMAT = DyMat * y ;

The function dop.m can also generate a derivative of the basis functions. Given the basis functions
B and their derivatives Ḃ a differential operator D can be computed:

Ḃ = D B (2)

consequently
Dr , D B BT = Ḃ BT. (3)

This is a regularizing differential operator, it is the differential operator D projected onto the
basis functions B

167 [B, dB] = dop( x, length (p) );
168 Dr = dB * B’;
169 %
170 % and using D to estimate the derivatives
171 %
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172 dyDop = Dr * y;
173 %
174 fig5 = figure ;
175 plot ( x, dy - dyMAT, ’k’ );
176 hold on;
177 plot ( x, dy - dyDop, ’r’ );
178 grid on;
179 xlabel ( ’Support’ );
180 ylabel ( ’Error in d y(x)’ );
181 legend ( ’Matlab Gradient’ , ’dop derivative’ , ’location’ , ’NorthWest’ );
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Figure 8: Comparison in the analytical and numericall computed derivatives, using MATLA
gradient function and the derivative matrix D computed using the DOPbox.

Note there are significant error in the numerical compuation of the derivatives using the gradient
function, i.e. with a 3 point approximation. The result is grossly incorrect at the ends of the
support. This indicates that the classical 3 term differential estimate is not suitable for use with
boundary value problems. Zooming in on the plot, shows that there are significant errors over the
complete support in the derivatives computed using the 3 term estimate.

In contrast the derivatives computed using the matrix determined from the basis functions
and their derivatives shows no significant errors. The matrix D is well suited for the estimation
of derivatives.

182 figure (fig5);
183 axis ([-0.95,0.95,-0.02,0.01]);
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Figure 9: Errors in the estimated derivatives in the centre region of the support.

The strength of the regularizing differentiating matrix is best seen when estimating derivatives
in the presence of noise.

184 noiseGain = 0.05;
185 noise = noiseGain * norm(x) * randn ( size (x));
186 yn = y + noise;
187 %
188 dyNMat = DyMat * yn;
189 dyNDop = Dr * yn;
190 %
191 fig5 = figure ;
192 plot ( x, dy - dyNMat, ’k’ );
193 hold on;
194 plot ( x, dy - dyNDop, ’r’ );
195 grid on;
196 xlabel ( ’Support’ );
197 ylabel ( ’Error in d y(x)’ );
198 legend ( ’Matlab Gradient’ , ’dop derivative’ , ’location’ , ’NorthWest’ );
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Figure 10: Estimation of derivatives in the presence of noise.

2.3 Generate a matrix DL to perform local derivative approximation

– dopDiffLocal.m

This function generates a local differentiating matrix. It supports both sparse and full matrix
formats. The full matrix format is the default. Selecting the sparse option will generate a sparse
matrix, this can be very important when dealing with large sparse sets of equations.

If we are looking to solve BVPs and IBVPs it will be necessary to solve problems of the form,

ẏ = D y. (4)

Given measurements of ẏ we may wist to compute y,

y = D+ ẏ + null {D} α. (5)

It is known that a differential operator as a single null, i.e. the constant vector 1α. Conse-
quently, the matrix D should also have a single constant vector as a null space. This is not the
case for the regularizing differential operator Dr.

Differentiating matrices generally become degenerate if computed globally for a large number
of points and a high degree, this is a fundamental property of such matrices. Comsequently,
the DOPbox provides the function dopDiffLocal.m to compute a local polynomial differential
approximator.

199 ls = 7;
200 noBfs = ls ;
201 %
202 Dl = dopDiffLocal(x, ls , noBfs);
203 dyL = Dl * y;
204 %
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205 %
206 fig6 = figure ;
207 plot ( x, dy - dyDop, ’r’ );
208 hold on;
209 plot ( x, dy - dyL, ’k’ );
210 grid on;
211 xlabel ( ’Support’ );
212 ylabel ( ’Error in d y(x)’ );
213 legend ( ’dop derivative’ , ’local derivative’ , ’location’ , ’NorthWest’ );
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Figure 11: Comparison of the regularizing and local estimates for the derivative of y(x)

There are indeed larger errors in the local derivative approximation, but at a scale of 10−12 there
are very small. The matrix has, despite being dimension 100 × 100 the correct null space.

A numerical test for the quality of the matrix is the use of its pseudo inverse as a numerical
integrator.

214 yMat = pinv (DyMat) * dy;
215 yDopLocal = pinv (Dl) * dy;
216 %
217 % ensure that the curve is mean free, this eliminates the need to deal

with
218 % the constant of integration.
219 %
220 yt = y - mean(y);
221 fig7 = figure ;
222 plot ( x, y - yMat, ’k’ );
223 hold on;
224 plot ( x, y - yDopLocal, ’r’ );
225 grid on;

16



226 legend ( ’Matlab Gradient’ , ’dopLocal’ , ’location’ , ’NorthWest’ );
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Figure 12: Error in the curve reconstruction from its derivatives using the pseudo inverse of the
gradient operator in MATLAB and the differentiating matrix computed using dopLocal.

This result clearly shows that the differentiating matrix computed using dopDiffLocal.m is well
suited for inverse problems.

2.4 Apply a set of constraints to a set of basis functions – dopConstrain.m

Boundary value problems, initial value problems and problems with inner constraints are charac-
terized by a differential equation and a set of constraints which must be fulfilled by the solutions.
The function dopConstrain enables the application of constraints to a set of basis functions.
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Figure 13: A simple cantilever with its associated constraints.

A simple cantilever provides a good example of a boundary value problem. The bending of
the beam is described by the Euler-Bernouli equation and the following constraints need to be
fulfilled, y(0) = 0, ẏ(0) = 1 and ÿ(1) = 0. We now demonstrate generating a set of addmissible
functions for this problem using dopConstrain . This is an interesting simple example since it
requires both value and derivative constraints.

227 n = 100;
228 noBfs = 7;
229 %
230 xs = linspace (0,1,n )’;
231 %
232 % And generate a set of basis functions
233 %
234 B = dop( xs, noBfs );

Now it is necessary to define the constraints.

235 c1 = zeros ( size (xs) );
236 %
237 % the first location in c corresponds to x = 0; settin a 1 at this

location
238 % required c1’ * y = 0, i.e. it implements the constraint
239 %
240 c1(1) = 1;
241 %
242 % the second constraint is a derivative constraint. First we must

compute
243 % the derivative matrix and extract the first row which compu tes the
244 % derivative at the first point
245 %
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246 ls = 5;
247 D = dopDiffLocal( xs, ls , ls );
248 d1 = D(1,:);
249 c2 = d1’;
250 % the third constraint in on the end of the beam and is on the sec ond
251 % deravitive.
252 %
253 D2 = D * D;
254 d21 = D2( end ,:);
255 c3 = d21’;
256 %
257 % Now conatinating the constraints
258 %
259 C = [c1, c2, c3];
260 %
261 % And applying the constraints to the basis functions B
262 %
263 Bc = dopConstrain( C, B );

Having generated the basis functions we can now view them

264 noBcs = noBfs - rank (C);
265 figure ;
266 plot ( x, Bc(:,1), ’k’ );
267 hold on;
268 for k=2:(noBcs)
269 plot ( x, Bc(:,k), ’k’ );
270 end ;
271 xlabel ( ’Support’ );
272 ylabel ( ’Amplitude’ );
273 grid on;
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Figure 14: Constrained basis functions for the cantilever example.

The generated basis functions are also orthonormal. This makes them optimal for the propagation
of Gaussian noise.

274 Gc = Bc’ * Bc
275 GcPerp = eye ( noBcs ) - Gc

Gc =
1.0000 0.0000 -0.0000 -0.0000
0.0000 1.0000 0.0000 -0.0000

-0.0000 0.0000 1.0000 0.0000
-0.0000 -0.0000 0.0000 1.0000

GcPerp =
1.0e-15 *

0 -0.1804 0.0069 0.2498
-0.1804 0.6661 -0.2290 0.1457

0.0069 -0.2290 0.6661 -0.6870
0.2498 0.1457 -0.6870 0.4441

2.5 Global and local polynomial approximation – dopApproxLocal.m

In this section both global and local polynomial approximation is demonstrated. Global approxi-
mation referrs to applying the basis functions to the full length of the support. Given a set of noise
data yn located at the points x, global approximation is performed by generating a set of basis
functions Bx of the desired degree d at the nodes defined by x. The approximation is performed
by computing the projection onto the basis functions,

yag = Bx BT

x yn. (6)

This can also be looked at in a simular manner to polyfit and polyval . The coefficients of
the Gram polynomial corresponding to yn are computed as,
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g = BT

x yn, (7)

this corresponds to polyfit . The reconstruction of the signal is performed as,

yag = Bx g. (8)

corresponding to polyval .
There is clearly a direct relationship between the coefficients of the Gram polynomials and the

geometric polynomials: this is obtained by looking at the reconstruction equation,

yag = Bx g = V p (9)

whereby, V is the Vandermonde matrix and p would be the coefficients delivered by polyfit .
Consequently, the coefficinets p can be computed from g with the following MATLAB code,

1 p = V\(Bx * g).

At this point it is important to note that in some applications it will be possible to compute a
perfectly good approximation using the Gram polynomials; however, if the Vandermonde matrix V

has become degenerate it will not be possible to compute the corresponding geometric coefficients
p.

Using the data from Figure 10 to demonstrate fitting

276 degree = 6;
277 noBfs = degree + 1;
278 %
279 % Generat the basis functions
280 %
281 Bx = dop( x, noBfs );
282 %
283 % Compute the spectrum
284 %
285 g = Bx’ * yn
286 %
287 % Reconstruct, i.e., compute the approximation.
288 %
289 yag = Bx * g;
290 %
291 figure ;
292 subplot (2,1,1);
293 plot ( x, yn, ’k.’ );
294 hold on;
295 plot ( x, yag, ’k’ );
296 grid on;
297 ylabel ( ’Fit’ );
298 legend ( ’y_n’ , ’y_{ag}’ , ’Location’ , ’NorthEast’ );
299 %
300 subplot (2,1,2);
301 plot ( x, yn - yag, ’k.’ );
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302 grid on;
303 ylabel ( ’\epsilon = y_n - y_{ag}’ );
304 xlabel ( ’Support’ );
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However, there are many examples where a global approximation will suffer from the Runge
phenomena. In such cases local polynomial approximations may provide better approximations.
Consider the data shown in Figure 15 this is a data set for which Runge phenomena is relevant

305 load approxLocalData
306 %
307 figGL = figure ;
308 plot ( x, y, ’k’ );
309 hold on;
310 plot ( x, yn, ’k.’ );
311 xlabel ( ’Support’ );
312 ylabel ( ’Value’ );
313 axis ([-1,1,-0.1,1.1]);
314 grid on;
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Figure 15: Test data set to compare global and local polynomial approximation.

Approximating the above data set with a degree d = 25 polynomial

315 degree = 25;
316 B = dop( x, degree + 1 );
317 yg = B * B’ * yn;
318 %
319 figure (figGL);
320 plot ( x, yg, ’r’ );
321 legend ( ’y(x)’ , ’y_n’ , ’y_g’ );
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Figure 16: The degree d = 25 polynomial approximation exhibits a significant effect from the
Runga phenomena.

Now comparing the results to a local polynomial approximation (LPA). The the LPA is charac-
terized by the length of the support ls, i.e. the number of points used for the local approximation
and the degree d of the approximation. The function dopApproxLocal.m generates a matrix S

which performs the LPA.

322 ls = 11;
323 d = 3;
324 %
325 % Generate the linear operator
326 %
327 S = dopApproxLocal( x, ls , d + 1 );
328 %
329 % Compute the approximation
330 %
331 ys = S * y;
332 %
333 figGL2 = figure ;
334 plot ( x, y, ’k’ );
335 hold on;
336 plot ( x, yn, ’k.’ );
337 xlabel ( ’Support’ );
338 ylabel ( ’Value’ );
339 axis ([-1,1,-0.1,1.1]);
340 grid on;
341 plot ( x, ys, ’r’ );
342 legend ( ’y(x)’ , ’y_n’ , ’y_s’ );

24



−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Support

V
a
lu
e

y(x)
yn
ys

Figure 17: local polynomial approximation.

2.6 Interpolating using basis functions – dopInterpolate.m

The methods provided here generate basis functions for arbitrary nodes within the unit circle on
the complex plane. In many cases the corresponding analytical functions are not directly available.
The function dopInterpolate provided a measns of interpolating within such functions.

The test data set interpolateData cantains a set of non-uniformly spaced x values (xnu), a
uniformly spaced set of nodes (x) and the function y(x) (y) evaluated at these points. the example
here is to reevaluate the equations are regularly spaced nodes.

343 load interpolateData;
344 %
345 % Generate a set of basis functions for original set of nodes
346 %
347 noBfs = 5;
348 [B, dB, rCfs] = dop( x, noBfs );
349 %
350 % compute the spectrum of y with respect to B.
351 %
352 polyCoeffs = B’ * y;
353 yb = B * polyCoeffs;
354 %
355 % Interpolate onto the non-uniform set of nodes
356 %
357 yi = dopInterpolate( polyCoeffs, rCfs, xnu );
358 %
359 figure ;
360 plot ( x, y, ’k’ );
361 hold on;
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362 plot ( xnu, yi, ’ro’ , ’markerFaceColor’ , ’w’ );
363 plot ( x, y, ’k.’ );
364 grid on;
365 xlabel ( ’Support’ );
366 ylabel ( ’Amplitude’ );
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Figure 18: Example of using dopInterpolate to recompute a function at a new set of arbitrary
nodes.

2.7 Generate a set sine basis functions – dopSine.m

Generate a set of sine wave basis functions and their derivatives.

367 nrS = 300;
368 nrBfs = 4;
369 [S, dS, x] = dopSine( nrS, nrBfs );
370 %
371 figS = figure ;
372 subplot (2,1,1);
373 for k=1:nrBfs
374 plot ( x, S(:,k), ’k’ );
375 hold on;
376 end ;
377 grid on;
378 ylabel ( ’sine(x)’ );
379 subplot (2,1,2);
380 for k=1:nrBfs
381 plot ( x, dS(:,k), ’k’ );
382 hold on;
383 end ;
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384 grid on;
385 ylabel ( ’d sine(x) / dx’ );
386 xlabel ( ’x’ );
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Figure 19: Sine basis functions and their derivatives.

2.8 Discrete Weighted Orthogonal Polynomials: dopWeightBasis

Discrete orthogonal weighted polynomials are defined on the orthogonality condition,

B W BT = I (10)

Whereby, W is a full rank positive definite weighting matrix, it is not restricted to being a
diagonal matrix.

387
388 %
389 % Example generate 10 weighted basis functions
390 %
391 nw = 100;
392 nrBfs = 10;
393 %
394 % generate the Gram nodes
395 %
396 xw = dopNodes( nw, ’gram’ );
397 %
398 % generate the Unitary basis functions
399 %
400 B = dop( xw , nrBfs );
401 %
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402 % Define the weights and compute the weighted basis function s. These
403 % correspond to the Gegenbauer polynomials for alpha = -0.5 a nd scaled

to
404 % be unitary in the definition B’ W B = I.
405 %
406 w = 1./(1 - xw.ˆ2);
407 W = diag ( w );
408 Bw = dopWeightBasis( B, W );
409 %
410 figW = figure ;
411 plot ( xw, Bw(:,2), ’k’ );
412 hold on;
413 plot ( xw, Bw(:,3), ’k’ );
414 plot ( xw, Bw(:,4), ’k’ );
415 plot ( xw, B(:,2), ’r’ );
416 plot ( xw, B(:,3), ’r’ );
417 plot ( xw, B(:,4), ’r’ );
418 xlabel ( ’Support’ );
419 ylabel ( ’Weighted polynomial value’ );
420 grid on;
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Figure 20: Discrete othogonal weighted polynomials BT W B = I. The wighting used here is
w = 1

1−x2 . Weighted polynomials in black and unweighted in red.

2.9 Weighted regression with weighted basis functions

The weighted basis functions presented in the previous section can used for a simple implementa-
tion of a weighted regression, e.g., a covariance weighted regression.
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The cost function for weigthed regression is,

E =
(

y − Bw αT
)

W (y − Bw α) . (11)

In the case of covariance weighted regression W = Λ−1 whereby Λ−1 is the symmetric positive
definite covariance matrix. Now expanding the above equation and differentiating with respect to
α yields,

dE

dα
= −2 BT

w W y + 2 BT

w W Bw α. (12)

Evaluating the derivative equal to the zero vector, yields the so-called normal equations for
weighted regression,

BT

w W Bw α = BT

w W y. (13)

If the weighted basis functions are generated such that BT

w W Bw = I as shown in the previous
section. Then the normal equations simplify to:

α = BT

w W y. (14)

Computing in this manner avoide the necessity to calculate matrix inverses at the time of fitting.
This greatly simplifies the computation of weighted regression.

2.10 dopFit and dopVal

These are two wrapper functions to simplify the use of the DOP library for fitting and evaluat-
ing discrete orthogonal polynomials. They are the discrete orthogonal polynomial equivalent of
polyfit and polyval . However, the discrete orthogonal polynomials can perform fitting up to
degree of D = 1000 without serious numerical errors.

The function dopVit also returen the covariance matrix for the polynomial coefficients and
dopVal returen the covariance matrix for the fitted yf values.

A Taylor expansion for a function is equivalent to computing a polynomial approximation. The
discrete orthogonal polynomials enable the computation of a Gram expansion, i.e. a polynomial
expansion, of very high degree. This may be advantegous, e.g., when solving differential equations
which are known to have no analytical solutions such as the Mathieu differential equation.

2.10.1 Fitting a high degree polynomials

In this first test a polynomial of degree d = 100 is fit to a data set. Fitting with this high degree
is not possible with the standard MATLAB function polyfit .

Load a test data set:

421 load dopFitData;
422 %
423 % Perform the fit and evaluate the polynomial
424 %
425 d = 100;
426 [g, Lg, S] = dopFit( x, y, d );
427 yg = dopVal( g, S );
428 %
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429 % Compute the residual
430 %
431 r = y - yg;
432 %
433 % Plot the fit
434 %
435 fitFig1 = figure ;
436 plot ( x, y, ’k.’ );
437 hold on;
438 plot ( x, yg, ’r’ );
439 ylabel ( ’Value’ );
440 grid on;
441 xlabel ( ’x’ );
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Figure 21: Example of a discrete orthogonal polynomial fit with degree d = 100.

Plot the residual

442 fitFig2 = figure ;
443 plot ( x, r, ’k.’ );
444 ylabel ( ’Residual’ );
445 grid on;
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Figure 22: Residual of the discrete orthogonal polynomial fit with degree d = 100.

Compute the histogram of the residual

446 nrBins = 15;
447 fitFig3 = figure ;
448 hist ( r, nrBins );
449 xlabel ( ’Residual’ );
450 ylabel ( ’Frequency’ );
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Figure 23: Histogram of the residual of the discrete orthogonal polynomial fit with degree d = 100.
This demonstrated the Gaussian nature of the residual, i.e. the fit has not produced systematic
errors.
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2.10.2 High degree polynomial expansion

This section demonstrates the application of dopFit to compute a high degree polynomial ex-
pansion for a function. The cosine finction is chosen here because its Taylor expansion is known;
furthermore, polyfit fails to model this data correctly.

Generate the test function

451 nrCycles = 15;
452 nrPts = 300;
453 %
454 x = dopNodes( nrPts, ’GramEnds’ );
455 %
456 phi = linspace ( 0, 2 * pi * nrCycles, nrPts )’;
457 y = cos (phi);
458 %
459 % compute the fit
460 %
461 d = 70;
462 [g, Lg, S] = dopFit( x, y, d );
463 %
464 % Note the structure S also delivers the values of y fit. These value

are
465 % required internally to do the covariance computations.
466 %
467 expFig = figure ;
468 plot (x, y, ’k.’ );
469 hold on;
470 plot ( x, S.yg, ’r’ );
471 xlabel ( ’x’ );
472 ylabel ( ’Value’ );
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Figure 24: A discrete orthogonal polynomial expansion of degree d = 70 for a cosine. This
demonstrated the possability of computing a polynomial expandions for functions which require
a high degree.
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