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[1] Ecohydrological systems may be characterized as nonlinear, complex, open
dissipative systems. Such systems consist of many coupled processes, and the couplings
change depending on the system state or scale in space and time at which the system is
analyzed. The arrangement of couplings in a complex system may be represented as a
network of information flow and feedback between variables that measure system
processes. The occurrence of feedback on such a network provides sufficient conditions
for self-organized and nonlinear behaviors to emerge. We adapt an information-theoretic
statistical method called transfer entropy for the purposes of robustly measuring the
directionality, relative strength, statistical significance, and time scale of information flow
between pairs of ecohydrological variables using time series data. A process network may
be delineated where variables are cast as nodes and information flows as weighted
directional links between them. The process network captures key couplings and time
scales and represents the state of the complex system as a whole, including functional
groups of variables (subsystems) and synchronization resulting from feedbacks. It is
therefore able to identify interactions which are not detectable using methods which
examine the system using one relationship at a time. We assemble an information flow
process network using July 2003 FLUXNET data for a Midwestern corn-soybean
ecohydrological system in a healthy, peak growing season state and compare the results
with those using July 2005 data for the same site during a severe drought. We find that
the process network during drought is substantially decoupled, and regional-scale
information feedback is reduced during the drought. We conclude that the proposed
process network methodology is able to identify the differences between two
states of an ecohydrological system on the basis of variations in the
pattern of feedback coupling on the network.
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1. Introduction

[2] Ecohydrology is the study of the dynamic interaction
of climate, soils, and vegetation, as they exchange carbon,
water, energy, and nutrients at a range of scales in space and
time [Rodriguez-Iturbe, 2000]. Ecohydrologic processes
constitute open dissipative systems [Jorgensen et al.,
2007, Kumar, 2007] that exhibit emergent patterns that
are usually identified through their geometric, dynamical,
or statistical characteristics. The emergent patterns are a
result of nonlinear feedback interactions between the com-
ponents of the systems, and/or the system and the environ-
ment, where a small change leads to a series of interrelated
changes that are not predictable from the knowledge of the
behavior of the individual components. The occurrence of
feedback in such a network indicates the existence of self-
organizing emergent structures [Capra, 1996; Hubler,
2005]. In such situations, knowledge of a few state variables

or coupling relationships is often insufficient to characterize
the behavior of the entire system.
[3] The arrangement of couplings in such a complex

system may be represented as a network of feedback
relationships that transport material, energy, and informa-
tion across different components [Reiners and Driese,
2003]. Each coupling has directionality such that change
in one component causes change in another, albeit with a
time lag. The hierarchy of these couplings involving the
entire water cycle has been characterized as a hypercycle
[Kumar, 2007]. A process network is defined as a network
of feedback loops and the associated time scales that depicts
the magnitude and direction of flow of matter, energy, and/
or information between the different variables. The process
network may be embedded in a physical space. For exam-
ple, in a stream network transfer of water, nutrients, and
biotic material sustains the habitat and food web of aquatic
species. On the other hand, the process network may be
regarded as an abstraction of a very complex set of
interactions without any geographical embedding. For ex-
ample, the interaction of a multitude of processes that are
associated with the uptake of water by fine roots of plants,
their passage through the xylem cells, and eventual dis-
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charge into the atmosphere through the stomatal openings
constitute a process network.
[4] It is proposed that the ideal description of a complex

system’s state is a process network (that may or may not
have a geographical embedding). In other words, the
characteristics of a process network describe emergent
properties of the system resulting from forcing and feedback
couplings. Changes in the feedback strength and rearrange-
ment of coupling may characterize a shift in the dynamic
regime [Kumar, 2007; Foley et al., 2003; Folke et al., 2004]
of the system. This proposed process network approach to
ecohydrological analysis has conceptual precedents in other
fields of research; for example, Gather et al. [2002] repre-
sents human medical states as characteristic patterns of
connection between patients’ various vital signs, Ma and
Bohnert [2007] represents each Arabidopsis phenotypical
state as a network pattern of connection between genes
using microarray data, and Percha et al. [2005] represents
seizures as a pathologically synchronized state of the brain’s
neural network.
[5] To study ecohydrological systems, a variety of data

are being collected from a natural laboratory perspective,
that is, uncontrolled experiments in the natural environment,
providing an opportunity to uncover hitherto unknown
couplings. Since the variables measured have differing
dimensionalities (for example, rainfall (volume per unit
time), solar radiation (energy per unit area per unit time),
net ecosystem exchange (mass per unit area per unit time))
and the coupling strength, and the space-time lag of
influence may be different in different directions of the
coupling, new methods are needed to statistically identify
these dependencies from the data. Given the diversity and
incompleteness of observational data available for complex
ecohydrological systems, a new approach for the delineation
of process networks is needed, which can maximize the use
of all available data to describe the system state, without a
prior knowledge of how the associated variables are related.
That is, an approach is needed that can robustly identify
feedback, both strength and direction, from the time series
measurements of observable system variables.
[6] There are many methods that can be used to extract

properties of coupling between different variables, such as
Granger causality, partial correlations [Opgen-Rhein and
Strimmer, 2007], Bayesian inference [Knuth, 2005], direc-
tional nonlinear modeling [Veeramani et al., 2004], and
Gaussian models [Markowetz and Spang, 2007]. Given time
series measurements of two variables, traditional correlation-
based methods are capable of identifying the time scale of
linear couplings between them. However, they are not able to
capture nonlinear relationships or unambiguously identify
the directionality of the coupling if they are asymmetric, that
is if variable X influences variable Y at one time scale while
variable Y influences variable X at a different time scale.
These limitations prevent the use of correlation-based tech-
niques for the robust analysis of complex systems where
feedback is important.
[7] Information entropy–based methods [Shannon, 1948]

have emerged as alternate powerful tools that overcome
these limitations [Schreiber, 2000]. They are attractive
because of their basis in the theory of statistical information
which is becoming increasingly popular because of its
deep unity with nonequilibrium statistical thermodynamics

[Nicolis and Prigogine, 1989], Bayesian inference and pre-
dictability [Knuth, 2005], and the observer-relative infor-
mation contained in patterns [Heylighen, 2001; Roederer,
2005]. Information entropy is also particularly attractive for
the analysis of ecohydrological systems, where nonlinearity
due to feedback at the subdaily time scale is a well-recognized
but poorly understood phenomenon [Baldocchi et al., 2001a;
Katul et al., 2007b]. Baldocchi et al. [2001a] were able to
explain 73% of the variance of carbon dioxide flux using
three periodic modes: the annual (21%), the diurnal (43%),
and the semiannual (9%). This leaves nearly a third of the
total variability to be explained by the subdaily time scale,
where feedback between the ecosystem, land surface, and the
atmosphere is known to be important. Therefore, the methods
must unambiguously resolve this feedback.
[8] Information flow between components of a system

provides a unifying way to deal with the different dimen-
sionality of variables in a system. Information flow is the
contribution of uncertainty-reducing or predictive knowl-
edge by one variable to another. An information-theoretic
approach is presented which delineates process networks by
characterizing the flow of information between pairs of
coupled variables using measurements of the associated
time series. It is essential that feedback be robustly identi-
fied, which in turn requires the establishment of (1) the
direction and (2) the lag in time and space of each coupling.
Feedback occurs when a circle of directional, lagged cou-
plings links a variable back to itself via the network. If
directionality and lag are not established, it is impossible to
distinguish the case of synchronization due to one-way
forcing from the case of synchronization due to feedback
[Rulkov et al., 1995]. The basis of the proposed methods is
the transfer entropy statistic introduced by Schreiber [2000],
which was devised as a tool for the analysis of coupled
chaotic systems. Using this statistic the directionality, rela-
tive strength, statistical significance, and time lag and scale
of information flow that couples two time series data sets is
determined. The conjugation of all pairwise couplings
allows construction of the process network where the
variables constitute the nodes in the process network and
links between them represent flow of information, and the
two together define the organizational structure and state of
the complex system as a whole. The process networks
resulting from this method feature flows of information,
rather than mass or energy. Statistical tests are developed to
ensure that the characterization of information flow from
pairs of ecohydrological time series is methodologically
robust.
[9] To verify the effectiveness of the methods, the infor-

mation flow process network is delineated for a system of
twelve ecohydrological time series variables for a Midwest-
ern corn-soybean ecosystem, at subdaily time scales. The
identified couplings and time scales are evaluated against
the prevailing understanding of the system to judge whether
the process network thus characterized provides a valuable
representation.
[10] The paper is organized as follows. In section 2, the

basics of the information theory and statistical methods are
laid out and applied to derive process networks. In section
3, the data set used to study a corn-soybean ecohydrological
system is explained. In section 4, the results of the analysis
are presented, including process networks for the healthy
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year, July 2003, and the drought-afflicted ecosystem, July
2005. Here a closer analysis of selected couplings between
variables is provided, and a study of the numerical robust-
ness of the analysis is conducted. Section 5 outlines the
conclusions and implications of the work. Some technical
details of the methods are provided in Appendix A. In part 2
[Ruddell and Kumar, 2009], network statistics are derived
to compare process networks and information flow on the
network in the presence of seasonal and climatological
variations and identify emergent patterns.

2. Methods

2.1. Mutual Information and Transfer Entropy

[11] Entropy-based statistics, particularly the mutual in-
formation I (also known as the transinformation, or in
generalized form as the information redundancy), have been
used in hydrology and time series analysis and are a mature
methodology for establishing codependency between vari-
ables [Fraser and Swinney, 1986; Chapman, 1986; Vastano
and Swinney, 1988; Fraser, 1989; Sharma et al., 2000;
Mays et al., 2002; Molini et al., 2005; Khan et al., 2006].
The transfer entropy T [Schreiber, 2000; Kaiser and
Schreiber, 2002] is a useful variation on the conditional
mutual information [Cover and Thomas, 2006] that is ap-
plicable to time series data sets. Transfer entropy has been
applied in the study of financial time series [Marschinski
and Kantz, 2002], communication within the brain’s neural
network [Singer et al., 2006], fault propagation in chemical
plants [Bauer et al., 2004], and deformation and damage in
structures [Nichols, 2006]. The transfer entropy has not
been applied in practice to study directional coupling and
feedback in environmental time series data, a problem
which poses a number of additional challenges including
(1) coupling of dimensionally dissimilar variables, such as
carbon fluxes and rainfall; (2) feedback effects in a time
series dominated by periodic forcings; (3) coupling of
processes at multiple scales; and (4) small data sizes. Here,
methods are developed to cope with these challenges, and
their methodological limitations are examined as described
below.
[12] Let Xt = {xt}t = 1,2,. . .,n be a discrete time series with

marginal pdf p(xt). Two time series are denoted as Xt and Yt,
or equivalently as Xt

(i) and Xt
(j) where i and j are the indices

of variables Xt and Yt. Assume that Xt takes m discrete
values or that continuous values can be binned into m
discrete partitions. The Shannon entropy H(Xt) = �

P
p(xt)log p(xt) is bounded as 0 � H(Xt) � log(m). While
the entropy is a measure of uncertainty, the mutual infor-
mation measures the reduction in uncertainty due to the
knowledge of another variable. It is obtained as

I Xt ; Ytð Þ ¼
X
xt ;yt

p xt ; ytð Þ log p xt; ytð Þ
p xtð Þp ytð Þ; ð1Þ

where xt and yt are values assumed by time series Xt and Yt.
It is the Kullback-Leibler distance (KLD) [Cover and
Thomas, 2006], between the joint distribution p(xt,yt) and
the product p(xt)p(yt) of the marginal distributions. A large
value of I implies that Xt and Yt share a lot of information.
The mutual information is symmetric with respect to Xt and
Yt and is bounded as 0 � I(Xt,Yt) � min[H(Xt), H(Yt)]. Since

it measures a reduction in uncertainty of Yt due to
knowledge of Xt, if no uncertainty in Yt exists, no mutual
information can exist between Xt and Yt.
[13] Schreiber [2000] defined transfer entropy from Xt to

Yt as

TS Xt > Ytð Þ ¼
X

yt ;y
k½ �
t ;x

l½ �
t

p yt; y
k½ �
t ; x

l½ �
t

� �
log

p ytj y
k½ �
t ; x

l½ �
t

� �� �

p ytjy k½ �
t

� � ; ð2Þ

where xt
[l] and yt

[k] are the immediate history of Xt and Yt of
‘‘block length’’ l and k, respectively. T measures the
reduction in the uncertainty of the current state of Yt that is
gained from the l length history of Xt that is not present in
the k length history of Yt itself. In other words ‘‘it measures
a distance from the hypothesis that the dynamics of Yt can
be described entirely by its own past and no information is
gained by considering the dynamics of Xt’’ [Nichols, 2006].
[14] If it is assumed that no other variable’s information

flow to Yt overlaps with that of Xt to Yt (pairwise decom-
posability or independence), and that the history block
length used captures all relevant information (complete-
ness), then TS may be interpreted as measuring a ‘‘flow’’
of information from Xt to Yt. This flow of information may
be interpreted as the presence of a process coupling from Xt

to Yt. The lack of flow of information means either that the
two variables are not coupled, or that their states are so
closely synchronized that Xt provides no additional infor-
mation about Yt.
[15] In practice, the history order is estimated as the first

local minimum of the time-lagged mutual information series
that compares Xt or Yt to itself at various lags [Kantz and
Schreiber, 2000, p. 132]. However, it is difficult to apply
this formulation to observed data sets of finite size, because
its data requirements grow exponentially with the block
length l and k. Schreiber [2000] and others [Marschinski
and Kantz, 2002; Sabesan et al., 2003] have therefore used
synthetic time series data sets of length greater than 10,000
examples in their studies. When studying real-world sys-
tems, data lengths are usually much shorter. Even if many
data points are available, a researcher will want to compar-
atively study subsets of the data. The issue of estimation is
discussed in detail in section A1, where it is shown that 10–
20 bins and 500–1000 data points are generally sufficient to
obtain a qualitatively robust estimate of the transfer entropy
using time series data.
[16] One may consider variants on this basic theme and

describe transfer entropy more generally as

TG Xt > Yt; t; k; l;wð Þ ¼
X

yt ;y
k½ �
t�wDt

;x
l½ �
t

p yt; y
k½ �
t�wDt; x

l½ �
t�tDt

� �

	 log
p ytj y

k½ �
t�wDt; x

l½ �
t�tDt

� �� �

p ytjy k½ �
t�wDt

� � : ð3Þ

In the above the lag parameter w accounts for the situation
that the k length history of Yt that provides the most
information about Yt may not be its immediate history at w =
1 but is located w > 1 time steps earlier (time steps are in
units of Dt or dt). Similarly the time lag t, allows
consideration of l length history of Xt at a distance t that
provides additional information over and above that is
contained in Yt’s own history.
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[17] Marschinski and Kantz [2002] and Sabesan et al.
[2003] follow Schreiber [2000] in assuming Xt’s block
length l = 1 [Sabesan et al., 2003]. The assumption is
conservatively biased (it underestimates transfer entropy)
because it neglects information contributed by Xt to Yt at
block lengths l > 1. It is also possible to assume that Yt’s
block length k = 1, using similar arguments. This is a less
conservative assumption, because it fails to remove infor-
mation shared by Xt and Yt that is contained in Yt’s history at
block lengths of k > 1. However, this assumption allows
minimization of the data requirements and computational
demands of the methods, which renders the problem trac-
table [Bauer et al., 2004; Nichols, 2006].
[18] Using l = k = 1 makes it simple to treat each time

lagged state of Xt as an independent contributor of infor-
mation to Yt. The most conservative choice for w should be
the single time lagged history value of Yt which contributes
the most information to the current state of Yt. In a Markov
process w = 1 because the immediate history always
contributes the most information. In this work it is assumed
that l = k = w = 1 and t as an unknown to be determined
(Figure 1a). That is, transfer entropy is estimated at a lag t
at which transfer of information takes place from Xt to Yt in
comparison to the single point immediate history of Yt,

T Xt > Yt ; tð Þ ¼
X

yt ;yt�Dt
;x
t�tDt

p yt; yt�Dt; xt�tDt

� �

	 log
p ytj yt�Dt ; xt�tDt

� �� �
p yt jyt�Dt

� � : ð4Þ

In this paper this transfer entropy is computed from the
component Shannon entropies using the form given by
Knuth et al. [2005] (see Figure 1b),

T Xt > Yt ; tð Þ ¼ H Xt�tDt; Yt�Dtð Þ þ H Yt; Yt�Dtð Þ � H Yt�Dtð Þ
� H Xt�tDt; Yt; Yt�Dtð Þ: ð5Þ

It is important to note that transfer entropy is asymmetric,
that is T(Xt > Yt,t) 6¼ T(Yt > Xt,t), and the two transfers may
occur at different lags. This property is exploited to
characterize both the magnitude and the corresponding lag
of bidirectional information transfer between the two time
series.
[19] Entropy, mutual information, and transfer entropy

can be normalized with respect to the maximum possible
entropy H of a distribution where all states are equally
probable, i.e., H = log(m). This normalization eliminates
differences in entropy that are caused simply by the number
of bins used for discretization or the resolution of the
partition, and renders a metric as a fraction of possible
entropy or information from zero to one. The resulting
normalized metrics are denoted with an apostrophe, as H0,
I0, and T0.
[20] Because these entropy metrics are computed on the

basis of estimated marginal and joint probability distribu-
tions, the accurate estimation of those distributions is critical
to the robustness of the results. In this paper a fixed-interval
partition scheme is used for probability density estimation,
owing to its simplicity, well-understood limitations, and
favorable data requirements. It is necessary to verify that
the bin-counting scheme that is sufficiently detailed, and
that enough data is available to accurately estimate I and T.
The details of density estimation and a validation of this
approach are contained in section A1.
[21] Although mathematical methods based on time lags

are employed, it is appropriate and accurate to use the
language of time scale as a more intuitive substitute for
the language of time lag. For transfer entropy estimation,
lag and scale manifest themselves in similar ways. This
assertion is based on a detailed investigation of the rela-
tionship between time lag and time scale which is presented
in section A2.

2.2. Significance Test and Periodic Noise

[22] To establish the statistical significance of measured
couplings, that is, whether or not a coupling is significantly

Figure 1. (a) The time lag scheme used to compute the transfer entropy. (b) Venn diagram illustrating
that the information flow from time series variable Xt to Yt, T(Xt > Yt,t) is equivalent to reduced
uncertainty in variable Yt, where uncertainty is measured by the Shannon entropy of the sink variable,
H(Yt). Transfer entropy T(Xt > Yt,t) is the time-lagged mutual information of Xt and Yt conditioned on the
history of variable Yt so that all information contributed by Xt to Yt is additional to the information
contained in Yt’s own history.
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stronger than that which would occur through random
chance between unrelated time series, the method of shuf-
fled surrogates is used, following the example of Kantz and
Schurmann [1996], Marschinski and Kantz [2002], Sabesan
et al. [2003], and Nichols [2006]. To estimate the shuffled-
surrogate transfer entropy Tss, the values of time series Xt

and Yt are shuffled randomly in time to destroy time
correlations between them, forming new time series’ Xss

and Yss. Surrogate transfer entropy Tss(Xss > Yss) is computed
for several realizations using Monte Carlo simulations result-
ing in a Gaussian distribution of surrogates with mean m(Tss)
and standard deviation s(Tss). A one-tailed hypothesis test is
applied to determine whether T(Xt > Yt) exceeds Tss(Xss > Yss)
at c standard deviations above the mean where c corresponds
to (1 – a) 100% level of confidence (c = 2.36 for a = 0.01,
and c = 1.66 for a = 0.05). The null hypothesis is rejected
if T > (m(Tss) + c 	 s(Tss)). The critical value that must be
exceeded to reject the null hypothesis is termed the ‘‘sig-
nificance threshold’’ or D.
[23] The above method is demonstrated using a coupled

logistic map LXt and LYt obtained as

LXt ¼ a 	 LY
t�lyxð Þ 	 1� LY

t�lyxð Þ
� �

ð6Þ

LYt ¼ a 	 LX
t�lxyð Þ 	 1� LX

t�lxyð Þ
� �

: ð7Þ

The coupling lags are lxy = 1 and lyx = 7, and a = 3.99 which
is within the chaotic range of 3.57 < a < 4 of the logistic

map. T0 with 99% confidence thresholds and the corre-
sponding linear cross correlation (X-corr) are plotted for this
coupled system of logistic maps for time lags ranging from
0 to 36, using 10000 synthetic data points in Figure 2.
Linear cross correlations identify the relevant lags, but
cannot identify directionality. Furthermore, the suggestion
of a negative correlation is misleading in the presence of
this nonlinear coupling. T0 succeeds in correctly identifying
lags and directions, and in separating lags with significant
coupling strength from lags with insignificant coupling
strengths. Echoes in the T0 time lag plot occur at additive
feedback lags, and identify the circular flow of information
which repeatedly cycles from one variable to the other.
[24] In environmental data, often very interesting cou-

plings are buried inside dominant periodic drivers such as
diurnal, seasonal or annual cycles. To understand the
performance of the methods to identify such couplings the
coupled logistic time series is corrupted with sinusoidal
signal for different signal to noise (SNR) ratio, defined as
the ratio of the standard deviation of the logistic time series
to the standard deviation of the sinusoidal time series. The
results shown in Figure 3 indicate that the method is able to
correctly identify the time lags of significant information
transfer in the presence of periodic contamination as long as
the signal-to-noise ratio is on the order of 1 or greater.
Above SNR = 1, the variance of the time series anomaly is
more than 50% explained by the signal, as opposed to the
noise. The effective SNR can be boosted by filtering out the
periodic signal from the data. A periodic anomaly is used to
filter out the diurnal cycle in the FLUXNET data as
described in section 3.

2.3. Characterizing Process Coupling

[25] A large variety of useful transformations and normal-
izations have been applied to I and T to produce derivative
metrics, such as partial I used by Sharma et al. [2000],
effective transfer entropy (ETE) and relative explanation
added (REA) used by Marschinski and Kantz [2002], H(X)-
relative I used by Mays et al. [2002], time lag averaged net
T used by Bauer et al. [2004], and a normalization ĉ used by
Singer et al. [2006]. It is possible to normalize H, I, and T
by each other or any of their component entropies, to render
them relative to significance thresholds, and to recombine
them in any number of ways. Caution is in order for the use
of all transformed metrics for two reasons. First, informa-
tion values that fall below the significance threshold cannot
be considered statistically meaningful for the establishment
of a significant coupling regardless of the transformation
employed. Second, relative quantities can be deceptive if
the normalizing denominator quantity is correlated with the
numerator I or T, as is the case when I and T are normalized
by some value of H.
[26] A particularly useful combination is the ratio of

transfer entropy to the zero-lag mutual information, which
will be termed the synchronization ratio Tz, where

Tz Xt > Yt; tð Þ ¼ T Xt > Yt; tð Þ
I Xt; Ytð Þ : ð8Þ

Tz measures the transfer of information from Xt�t (t > 0) to
Yt, as compared with the shared information at the zero lag.
This ratio enables characterization of the nature of coupling

Figure 2. Results for a synthetic system of two logistic
maps bidirectionally coupled at a time lag of 1 for the Xt >
Yt coupling and a time lag of 7 for the Yt > Xt coupling. The
linear cross correlation (X-corr) correctly identifies time
lags of coupling, but no directionality may be identified.
Using T0, the lag, directionality, and statistical significance
of the coupling is correctly assessed against the significance
threshold D(T0). Significant coupling time lags are clearly
separated from the insignificant. Feedback echoes appear at
additive time lags, correctly indicating a repeated cycling of
predictive information through the coupled system. The two
significance thresholds take the same value in this example.
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between the dynamics identified through the time series.
Four types of couplings between Xt and Yt can be identified
using the ratio Tz (Figure 4 and Table 1). In the list below,
the language of synchronization is used as an intuitive
approximation for the concept of mutual information, and
the language of forcing to approximate the concept of

transfer entropy. These couplings occur in pairs between
each pair of variables, such that the coupling in one
direction takes one type and time scale, and the coupling in
the other direction takes an independent type or time scale.
[27] Type 1, synchronization-dominated coupling: If Xt

and Yt are highly synchronized with each other, that is,

Figure 4. (a) Conceptual sketch giving examples of three types of coupling relationships from one
variable to another. Plotted is the line relating Tz to time lag for three hypothetical coupling relationships.
Tz is the ratio of T to the zero-lag I, in combination with a statistical significance threshold of information
transfer (D). T = I when the time lag is zero, so Tz = 1. After lag zero, information flow T either increases
or decreases relative to I and eventually drops below Tz = 1 and Tz = D. The peak process time lag is that
lag at which the most information is transferred. (b) Conceptual matrix illustrating the six pairwise
combinations of canonical couplings identified in the process network for July 2003 and July 2005
(check marks), two possible canonical coupling pairs not observed in these networks (question marks),
and two canonical coupling pairs that are not possible (crosses). Matrix is symmetric.

Figure 3. Assessment of the sensitivity of transfer entropy to time-lagged process couplings in the
presence of confounding periodic noise. (a) Example of periodic noise added to a pair of coupled logistic
maps for a specific signal-to-noise ratio (SNR); in this case, SNR = 1, and the two lines represent each of
the sine-corrupted coupled logistic maps. (b) T0 at the process coupling time lag of 1 (the correct lag) for
the coupled logistic map, and a 99% confidence threshold, plotted against a range of SNRs. Transfer
entropy is able to distinguish significant time-lagged process couplings in the presence of confounding
periodic noise for SNR � 1.
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interacting strongly with no time lag, but no significant
information flow occurs from Xt to Yt, it is expected that
T(Xt > Yt,t) <D(T), I(Xt,Yt) >D(I), and consequently Tz(Xt >
Yt,t) < 1. This is a synchronization-dominated coupling.
[28] Type 2, feedback-dominated coupling: If there is a

significant information flow from Xt’s history to the current
value of Yt, but this flow is smaller than the shared
information at zero time lag, it is expected that Tz(Xt >
Yt,t) < 1, T(Xt > Yt,t) > D(T), and I(Xt,Yt) > D(I). Xt and Yt
are closely related, but some information flow still occurs.
Type 2 is a sort of middle ground between the synchronization-
dominated type 1 and the forcing-dominated type 2, where
substantial forcing and synchronization both exist. If type 2
couplings exist in both directions between a pair of varia-
bles, this type of information feedback may indicate self-
organizing behavior.
[29] Type 3, forcing-dominated coupling: If information

flow from Xt to Yt is significant and larger than the
information they share at zero time lag, it is expected that
Tz(Xt > Yt,t) > 1 and T(Xt > Yt,t) > D(T). This is a forcing-
dominated coupling.
[30] Type 4, coupling (uncoupled): if there is no signif-

icant information flow or shared information, Xt and Yt are
decoupled and it is expected that T(Xt > Yt,t) < D(T), and
I(Xt,Yt) < D(I).

2.4. Constructing a Process Network

[31] Given a number of variables, it is possible to
construct a process network by casting each variable as a
node in the network and computing the information flow
between each pair of nodes. A network adjacency matrix A
is constructed where each cell indicates whether there is a
directional coupling between two nodes. A is a matrix of
dimensions [nV  nV  nt] such that nV is the number of
variables and nt is the number of time lags studied. The
direction of this information flow coupling always runs
from the source to the sink node; in our notation for T(X > Y),
X is the index of the source node and Y is the index of the
sink node. There are three types of adjacency matrices:
‘‘weighted,’’ where each cell contains the coupling strength
weight measured by some entropy metric (such as T0,I0,Tz),
‘‘unweighted,’’ where each cell contains a one or zero to
indicate the presence (above D) or absence (below D) of a
coupling, and ‘‘weighted cut,’’ where cells with no coupling
contain a zero but cells with significant coupling contain the
value of the weight [Wilhelm and Hollunder, 2007].
[32] An adjacency matrix may be constructed for every

time lag. To reduce the dimensionality of the process net-
work adjacency matrix from three dimensions [nV  nV 
nt] to a more manageable two dimensions [nV  nV], a rule
must be applied to identify one time scale as the ‘‘charac-
teristic’’ time lag, t0, of each coupling. At least two simple
approaches exist: the first significant time lag may be

chosen, or the statistically significant time lag tmax where
T0 is strongest may be chosen. It should be noted that either
approach will fail if multiple distinct coupling time lags exist.
In this paper the first significant local peak time lag is chosen
as the characteristic time lag. The two-dimensional weighted-
cut adjacency matrix ATz(i,j) used to construct the process
network in this paper is computed using Tz at the peak time
lag of T0, t0 = tmax, as

ATz i; jð Þ ¼
Tz X

ið Þ
t > X

jð Þ
t ; t0

� �
if T > DT

0 otherwise;

8>><
>>:

ð9Þ

where Xt
(i) and Xt

(j) are the time series corresponding to the
ith and jth variable. The corresponding time lag t0 is
captured in the matrix G(i,j) and the mutual information
percentage, 100  I0(Xt

(i),Xt
(j)) and the relative mutual

information percentage, 100  I(Xt
(i),Xt

(j))/H(Xt
(j)) are cap-

tured in the weighted-cut matrices AI(i,j) and AIr(i,j),
respectively. The adjacency matrices ATz and time-lag
matrix G will allow understanding of the structural organi-
zation of the coupling between the variables. This frame-
work is applied to the results in section 4.

3. Study Site and Data Description

[33] The methods described in the previous section are
applied to develop a process network of interactions be-
tween variables measured at an eddy flux tower. Data from
a FLUXNET site [Baldocchi et al., 2001b] located in
Bondville, Illinois, USA [Hollinger et al., 2005; Meyers,
2008] is used. The Bondville site is located in the central
Corn Belt ecoregion which is dominated by more than 90%
corn or soybean land cover. The Bondville site comprises a
10 m eddy covariance flux tower and monitors no-till corn
(peak canopy height 3 m) in odd years and no-till soybeans
(peak canopy height 0.9 m) in even years since August
1996, with a relatively continuous high-quality record from
1998 to the present.
[34] The radiative, meteorological, soil, and eddy flux

data are sampled at a resolution of 1 to 10 Hz, averaged at a
data set resolution r = 30 min resolution, processed for
quality, and then transformed into derivative variables for
hundreds of sites across the globe [Baldocchi et al., 2001b]
(data available at the Oak Ridge National Lab Carbon
Dioxide Information Analysis Center (CDIAC), http://cdiac.
ornl.gov, and ORNL-DAAC, http://daac.ornl.gov). The best
available gap-filled FLUXNET data is used [Falge et al.,
2001a, Falge et al., 2001b], which is the level 4 (L4)
product. This study uses the L4 marginal distribution
sampling filled products rather than neural network filled
products [Reichstein et al., 2005].

Table 1. Logical Criterion for Coupling Type Classificationa

T > D(T) I > D(I) T > I Description

Type 1, synchronization dominated F T F significant shared information, no significant information flow
Type 2, feedback dominated T T F significant information flow greater than significant shared information
Type 3, forcing dominated T – T significant shared information greater than significant information flow
Type 4, uncoupled F F – no significant information flow or shared information; decoupled

aT is true; F is false.

W03419 RUDDELL AND KUMAR: ECOHYDROLOGIC PROCESS NETWORKS, 1

7 of 22

W03419



[35] The Bondville site is located 2.5 miles south of the
KCMI aviation weather station at the Willard Airport in
Champaign, Illinois. METAR (acronym roughly translates
from French as Aviation Routine Weather Report) data is
observed hourly at U.S. airports (more often when weather
is changing), and includes a useful measurement of cloud
coverage below 12,000 feet (above surface elevation) which
can be interpreted as an index for the cloud fraction (data is
available from NOAA at http://weather.noaa.gov/weather/
metar.shtml). To create a uniform data set, this METAR data
is resampled to the same temporal resolution as the L4 flux
tower data, by filling each 30 min value as the most recently
observed previous cloud cover value in the METAR record.
There are seven possible codes for cloud cover, which are
mapped to integers from one to seven in the unified data set.
In this way the METAR data is combined with the L4 flux
tower data to create a twelve variable set (see Table 2) for
this study. These variables cover the most important mete-
orological, hydrological, radiative, and carbon exchange
processes that take place in the system at the subdaily time
scale, and represent the full set of variables made available
in the L4 data. It is possible to examine a large number of
additional variables which contribute to the system’s dy-
namics, but the scope of this paper is limited to a minimal
adequate set for this initial study of process networks.
[36] Results for July 2003 and 2005 are presented. The

year 2003 is a good growing year that set record crop yields
for Illinois (USDA National Agricultural Statistics Service,
http://www.nass.usda.gov/), due to the absence of drought,
flood, or other adverse conditions during the growing
season. The month of July is the peak of the annual growing
season, when both the corn and soybean plants show
maximum carbon and nutrient assimilation [Hanway,
1966; Hanway and Thompson, 1967]. It is expected that
coupling strength (measured as information flow and feed-
back) between variables should be the strongest when the
ecosystem is actively growing and the magnitude of its
interactions with the climate are strongest. Living systems
function through the production, utilization, and communi-
cation of information, and ecosystems and organisms of
higher-order produce the most information [Roederer, 2005;
Jorgensen et al., 2007, pp. 107, 155]. This is true both at the
biochemical level, and also at the ecosystem level where the
complexity of the ecological network and the total quantity
of information flowing on the network is a measure of its

‘‘ascendancy’’ or developmental maturity. For example,
Jorgensen et al. [2007, p. 158] explain how ecosystems
follow a developmental curve on both the annual and life
cycle time scales, in which the information flow and
connectedness in the system increase to a peak when the
system reaches developmental maturity, and then fall off
again as the system declines. If the analogy is valid between
this systems approach to ecology and the information flow
process network approach, we should expect the most
feedback and information production by the ecosystem
when the ecosystem is at the peak of its developmental
cycle (in midsummer). We will see that this expectation is
verified for the Bondville system. The derived process
network should therefore feature feedback between vegeta-
tion and climate in this healthy July 2003 ecohydrologic
system. The process network thus derived will describe the
‘‘normal’’ state of the system under very healthy peak
growing conditions. This healthy system is analyzed in
close detail in this paper, and then used as a baseline
example for a more extensive multiyear study in part 2 of
the paper.
[37] The year 2005 was afflicted by an unusually severe

drought, which caused a small but economically damaging
reduction in crop yields in Illinois [Gu et al., 2006; Kunkel
et al., 2006; Zhang et al., 2006]. NOAA’s 6-month stan-
dardized precipitation index (negative numbers indicate
lower than normal precipitation, http://www.ncdc.noaa.
gov/oa/climate/research/prelim/drought/spi.html) for July
2005 is �1.2, compared with 0.48 for July 2003. It is
expected that the process network can clearly characterize
the differences between these two states in terms of the
presence or absence of key couplings and feedback.
[38] To understand the subtle patterns of coupling between

variables, the diurnal cycle is removed and the anomaly
signal thus obtained is analyzed. The anomaly signal is
obtained by taking the difference between the values of a
variable at a specific time of the day from the average value
over the following 5 days of the same variable at the same
time. Examples of the transformed anomaly data are given
in Figure 5, for latent heat (gLE) and net ecosystem
exchange (NEE). The practical effect of this transformation
is that events which produce a variation are emphasized
over patterns which recur. These anomaly patterns will
generally tend to emphasize daytime events over nighttime
events, to the extent that the magnitude of changes in
variables during the day is greater than the magnitude of
those at night. However, any significant event (such as a
weather front) which impacts the system at night is also
resolved. Only subdaily time scales of interaction are
studied in this paper.
[39] The 1488 half-hour data points for July are reduced

by 48  4 = 192 data points when the 5 day periodic
anomaly is taken, and by additional 36 data points to
account for time lags of 18 h. The L4 FLUXNET data
and METAR cloud data do have some gaps, but where gaps
do exist they are discarded. If any of the twelve variables at
a given time step is discarded, the values of all twelve
variables at that time step are discarded. After preprocess-
ing, the number of data points used to generate a typical
month’s statistics varies from roughly 800 to 1250 data
points, depending on the month, year, and time lag used.
July 2003 and 2005 have over 1200 data points. The

Table 2. List of Variables

Symbol Description Units

Rg total incoming shortwave radiation W m�2

Qa air temperature deg C
VPD vapor pressure deficit KPa
Qs soil temperature (surface layer) deg C
P precipitation mm
q soil water content (surface layer) m3 m�3

gH sensible heat flux W m�2

gLE latent heat flux W m�2

GER estimated gross ecosystem respiration mmol CO2 m
�2 s�1

NEE net ecosystem exchange mmol CO2 m
�2 s�1

GEP estimated gross ecosystem production mmol CO2 m
�2 s�1

CF cloud fraction between
12,000 feet and surface

fraction
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resolution of the method is equal to the length of time
covered by the data set analyzed (one month in this case),
because the system state is averaged across this length of
time. It is difficult to analyze system states at a resolution
finer than one month, when 30 min data is being used,
because the sample size will become too small. This
approach to the computation of transfer entropy requires
at least 500–1000 data (see section A1).

4. Results

[40] In section 2.3 four types of coupling between vari-
ables are described. Since information may flow asymmet-
rically both in magnitude and temporal lag between any pair
of variables, there are a number of ways in which two
variables may interact with each other. These canonical
couplings are described in section 4.1 below and an inter-
pretive framework is developed. These are illustrated with
examples derived from the observation from the study site.
The goal of the process network approach is to go beyond
pairwise couplings, and define the state of the system as a
hierarchical pattern of coupling and feedback between
subsystems. To do this, it is necessary to identify the
directionality and time scale of all pairwise couplings in
the system, and then to assemble a holistic picture of system
structure using a hierarchy of subsystems logically con-
structed from these pairwise couplings. The synthesis of a
process network using the conjugation of pairwise cou-
plings for the study site is described in section 4.2. In
section 4.3 the process network for a healthy and drought
stressed corn-soybean ecosystem are compared to illustrate
the ability of the process network concept to distinguish
between the coupling and feedback structure of the two
contrasting states.

4.1. Canonical Coupling Patterns

[41] The adjacency matrix for the 12 variables (Table 2)
results in 132 potential pairwise couplings, out of which 60
(or 46%) were found to be statistically significant such that
T0 > D(T0) at one or more time lags. Six typical combina-
tions or ‘‘canonical coupling types’’ are observed in the July
2003 network, representing each of the three types of
couplings (types 1–3) outlined in section 2.3, taken in pairs.
[42] Figure 6 illustrates examples of each canonical

coupling type. In the list below, when referring to time
scales, ‘‘short’’ means time scales close to the data set
resolution r (which is 30min in this case), ‘‘very short’’
means time scales much finer than the data set resolution,
and ‘‘long’’ means time scales coarser than the data set
resolution.
[43] 1. In coupling type 1–1 (Figure 6a), air temperature

Qs and ecosystem carbon respiration GER are highly
synchronized (I0 = 21%) at very short time scales, but are
so similar that there is no significant transfer of information
between them at lagged time scales. These variables are
effectively fully synchronized at the 30 min time scale
resolved by the data. Soil microbial respiration is known
to be dominated by soil temperature which governs micro-
bial metabolism [Stoy et al., 2007], and the L4 algorithm
which computes GER is also based in part on the soil
temperature [Reichstein et al., 2005]. Consequently, Figure 6a
shows a pattern that is expected in the L4 data set.
[44] 2. In coupling type 1–2 (Figure 6b), latent heat flux

gLE and vapor pressure deficit VPD are partially synchro-
nized (I0 = 10%) at very short time scales, but there is a
significant one-way (unidirectional) flow of information
from VPD to gLE. Their synchronization is partially due
to forcing of gLE by VPD at the <30 min time scale.
However, because mutual information is larger than transfer

Figure 5. Illustration of the original data time series and transformed 5 day periodic anomaly time series
for gLE and NEE variables. The anomaly removes the diurnal cycle, rendering each variable as a
departure from the norm. During the fourth and fifth day of this week, an event occurs which causes a
below-normal gLE anomaly and an above-normal NEE anomaly to occur. Statistics computed using
anomaly transformed data are sensitive to departures from the normal pattern and are therefore more
sensitive to the coupling processes that caused the departure from the normal pattern.
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entropy, this is a synchronization-dominated information
flow relationship since Tz < 1. Vapor pressure deficit affects
latent heat flux by determining the ability of the air to hold
moisture [Katul et al., 2007a].
[45] 3. In coupling type 1–3 (Figure 6c), air temperature

Qa and latent heat flux gH are not very synchronized (I0 =
3%) at very short time scales, but there is a significant
unidirectional flow of information from Qa to gH which is
substantially larger than the mutual information. Air Tem-
perature is the primary driver of sensible heat because of its
gradient near the land surface [Baldocchi et al., 2001a] and

its effect persists for a long time, resulting in a type 3
coupling. Consequently, the impact of the synoptic weather
event is effective at the 30 min time scale, but its effects
persist across all synoptic time scales. This is a forcing-
dominated information flow relationship since Tz > 1.
However, the sensible heat flux does not alter the air
temperature, and is dissipated through turbulent mixing at
the short time scale resulting in a type 1 coupling.
[46] 4. In coupling type 2–2 (Figure 6d), net ecosystem

carbon exchange NEE and latent heat flux gLE are partially
synchronized (I0 = 9%) at very short time scales, but they

Figure 6. Selected Tz lag plots for July 2003; each demonstrates one of the six observed canonical types
of coupling. Variable abbreviations are given in Table 2. The normalizing quantity I0 is listed on the
vertical axis; larger I0 makes a large Tz more meaningful. Dotted lines are significance thresholds D,
above which information flow coupling is statistically significant.
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also transfer significant information to each other (feedback)
at short time scales. These variables have a synchronization-
dominated relationship since Tz < 1, driven by information
feedback at short time scales. Type 2–2 relationships indicate
that these variables form a self-organizing subsystem, where
substantial synchronization occurs because of significant
information feedback at short time scales. Ecosystem carbon
flux is dominated in July by plant photosynthetic processes,
which comes at the cost of substantial transpiration of water
through the open leaf stomata [Farquhar and Sharkey, 1982;
Stoy et al., 2006].
[47] 5. In coupling type 2–3 (Figure 6e), precipitation P

and soil water content q are not very synchronized (I0 = 2%)
at very short time scales, but there is significant feedback
information flow. The information flow is asymmetric, with
the type 2 flow from P to q occurring at short time scales,
and the type 3 flow from q to P occurring at larger scales.
This is an uncommon hybrid type of feedback relationship
which can only exist when both the mutual information and
transfer entropy are weakly significant. Because feedback
exists, weak self-organizing behavior may occur in the
relationship. Precipitation is the foremost determinant of
soil moisture (this happens on short time scales as rain
saturates the soil), but soil moisture is also known to impact
precipitation over longer subdaily time scales by modifying
the land surface energy balance (gH and gLE) and, in turn,
the atmospheric boundary layer processes that govern cloud
formation and convective rainfall [Juang et al., 2007a,
2007b].
[48] 6. In coupling type 3–3 (Figure 6f), precipitation P

and latent heat flux gLE are not very synchronized (I0 = 1%)
at very short time scales, but there is significant feedback
information flow of the third type centered on a time scale
of 10–14 h. These variables have a forcing-dominated
relationship since Tz > 1. Because feedback exists, weak
self-organizing behavior may occur in the relationship. In
the summer, rainfall and latent heat flux are coupled at
subdaily time scales via atmospheric boundary layer pro-
cesses [Juang et al., 2007a, 2007b].
[49] Two additional coupling types, 3-4 and 4-4, are

theoretically possible but are not observed in this data set;
these couplings represent a one-way coupling without
significant synchronization (3-4) and a complete decoupling
(4-4) between the pair of variables, respectively. Coupling
types 1–4 and 2-4 are logically impossible, because the
mutual information is a symmetric quantity.
[50] Type 1 couplings are indistinguishable from perfect

synchronization at the time scales examined. This might
happen because the two nodes are actually measuring the
same process in different ways, or it might happen because
their coupling processes operate at such short or long time
scales that time-lagged dependencies in the variables’
perturbations are not discernable, given the finite resolution
r of this data set and finite range of t lags analyzed. Type 2
couplings may indicate that the coupling process operates at
short time scales near or slightly below the resolution of the
data (30 min), resulting in the appearance that the two
variables are near a state of full synchronization but still
exchanging weakly significant information flows (Contrast
this with type 1 couplings, where coupling processes
operate at time scales far shorter than the resolution of the
data). Accordingly, type 2 couplings will peak at short time

scales. Type 3 couplings occur when the two nodes are
coupled by processes at the exact time scale observed, t.
The difference between feedback-coupled type 2–2 and
feedback-coupled type 3–3 relationships may be an artifact
of the data set resolution; 3-3 couplings will appear as 2-2 if
the resolution is coarsened until it cannot resolve the
process, and may appear as 1-1 couplings if the resolution
is coarsened farther still. This relativism is appropriate,
given the hierarchical and irreducible nature of all complex
systems [Haigh, 1987; Capra, 1996].
[51] This ecohydrological system is embedded within a

periodic and stochastic forcing structure, including the
diurnal and annual cycles and the synoptic weather patterns,
which regularly ‘‘reset’’ the ecohydrological system’s quasi-
stable daytime state by forcing it into an alternate state such
as nighttime. By characterizing the system this way, the
language of nonlinear self-organizing systems is employed
[Holling, 1973; Nicolis and Prigogine, 1989]. Feedback-
driven self-organized structures require time for iterative
feedback to produce synchronization between the parts; this
synchronization is what characterizes a quasi-stable system
state. On the basis of these findings, the authors believe that
these ecohydrological variables should be conceptually
modeled as coupled chaotic oscillators, of which coupled
lasers are an idealized physical example [Haken, 1988;
Kanter et al., 2007]. The peak value of T indicates the time
scale of synchronization. The time scale of synchronization
is proportional to the time scale of feedback in coupled
synchronizing systems like this one; the time scale of
synchronization must be much smaller than the time scale
of the forcing which resets the system, or the variables that
participate in the feedback will not achieve synchronization
[Rulkov et al., 1995; Kurths et al., 2003, Kanter et al. 2007].
[52] The canonical type 2–3 and 3–3 couplings may

reveal the presence of this sort of self-organizing structure;
although information flow feedback is coupling these var-
iables (P, q, gLE), the feedback time scale (6–24 h) is too
slow to produce substantial synchronization (measured as I0)
before the setting sun (24 h scale) or a weather front (3–5 day
scale) pushes the system into a different state. From this
perspective, type 2–2 couplings have a feedback time scale
(1 h) short enough to produce substantial synchronization,
but long enough for the process coupling to be captured by
30 min data. Type 1–1 couplings may have a feedback time
scale so fast it is not discernable at the 30 min resolution, but
that can only be revealed using higher-resolution data.

4.2. Building and Interpreting the Process Network
for July 2003

[53] The goal of our process network systems approach is
to go beyond pairwise couplings, and define the state of the
system as a hierarchical pattern of coupling and feedback
between subsystems. Subsystems are defined as a group of
variables which are structurally equivalent, meaning that
they share a common role in the larger system structure
[Lorrain and White, 1971]. However, hierarchy is allowed
in the subsystem structure, such that if two subsystems
comprising structurally equivalent variables both relate to a
third subsystem in the same way, then those two subsystems
may be considered structurally equivalent, at the higher
level of aggregation [Haigh, 1987]. How can process
network and subsystems be delineated using Shannon
entropy statistics? Subsystems are aggregations of individ-
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ual nodes that share similar patterns of coupling type and
time scale; they are analogous to the functional groups
which ecologists use to describe ecosystem structural net-
works [Folke et al., 2004]. Nodes in the same subsystem
should share type 1 or type 2 synchronization-dominated
couplings. Type 3 or type 4 couplings mean that coupled
nodes do not belong to the same subsystem. When a
network is built using pairwise couplings, the biggest risk
is that of identifying false positive couplings that are caused
by third-party effects, that is, nodes A and B are indepen-
dent but driven by a common forcing node C, so A and B
will falsely appear to drive each other [Jorgensen et al.,
2007]. By grouping nodes into subsystems this confusion
can be reduced. The information needed (I0, Tz0, t0) to make
these interpretations is contained in Tables 3a, 3b, 3c, and
3d, which presents the three network matrices explained in
section 2.4 for the July 2003 Bondville corn-soybean
ecosystem.
[54] First the zero-lag mutual information is presented in

Table 3a, which presents I 0 between pairs of variables. The
diagonal of this matrix gives the Shannon entropy of the
source variable, H 0(X). Diagonal values range from 9.8%
for precipitation, which resides in the ‘‘zero precipitation’’
state most of the time, to 91.1% for soil temperature, which
resides in all eleven of its discrete states with roughly equal
frequency. Rg, gH, gLE, GEP, and NEE have moderate
entropy ranging from 35.5% to 62.6%, and Qa, VPD, Qs,
q, GER, and CF have higher entropies ranging from 63.7%
to 91.1%.
[55] Mutual information values between variables can

never exceed H 0(X), but frequently approach a relative
mutual information of 30%, which means that roughly
30% of the total Shannon entropy of one variable is
explained by the other. In Table 3b the relative mutual
information is presented, which clarifies which groups of
variables are strongly synchronized with each other at very
short time scales. The relative mutual information of GEP to
NEE is 60.1%, so NEE and GEP are assumed to comprise a
single node in the network, since 60.1% of NEE’s entropy is
explained (where explanation means mutual information)
by GEP. This finding confirms that subdaily variability in
the net carbon exchange at the peak of the growing season is

dominated by photosynthetic activity, rather than respira-
tion. In the same way, Qa, Qs, GER, VPD, and q are strong
explainers of each other and precipitation, and VPD also
predicts gLE. Rg explains P, gH, gLE, NEE, and GEP.
Furthermore, gH, gLE, NEE, and GEP explain much about
each other. CF explains more than 10% of P and of Rg.
Nothing explains more than 10% about CF, and gH and P do
not explain more than 10% of any other variable.
[56] A careful study of Tables 3a–3d indicates that all

variables fall into three cohesive groups, and Rg, gLE, and
VPD are key variables that explain more than 10% in
multiple groups. The first major group is the ‘‘atmospheric
boundary layer’’ (ABL) group of Rg, CF, and P, which are
associated with ABL formation processes and convective
activity [Margulis and Entekhabi, 2001; Juang et al. 2007a,
2007b; Katul et al. 2007a]. The second major group is the
‘‘turbulent’’ group associated with energy budget and photo-
synthetic processes on the land surface at plant canopy tur-
bulent time scales [Farquhar and Sharkey, 1982; Baldocchi
et al., 2001a; Katul et al., 2001; Siqueira et al., 2006].
It includes gH, gLE, GEP, and NEE, which are variables

Table 3a. Network Matrix AI(i,j)a

Rg Qa VPD Qs P q gH gLE GER NEE GEP CF

Rg 55.7 2.5 9.2 2.5 1.3 2.6 5.1 15.4 5.1 11.1 13.2 6.8
Qa 85.2 10.0 32.8 1.6 15.5 2.9 3.8 24.6 2.1 2.6 4.4
VPD 72.0 9.7 1.8 9.0 2.3 9.6 12.9 4.2 5.5 6.2
Qs 91.1 2.1 17.4 2.5 4.0 20.7 2.7 3.0 4.9
P 9.8 2.0 x x 1.5 x 1.0 3.4
q 63.7 2.4 2.5 20.1 2.5 3.3 7.0
gH 35.5 3.8 2.9 3.9 3.6 1.9
gLE 62.6 4.7 8.8 9.6 3.5
GER 89.7 4.1 4.8 6.7
NEE 54.9 33.0 3.2
GEP 58.3 3.0
CF 86.5

aMatrix show the mutual information between pairs of variables at zero
time lag. The cross means I 0 < D(I 0). Source variable X index i is in rows;
sink variable Y index j is in columns. Matrix is symmetric. Italics indicate
matrix diagonal. All values are in percent.

Table 3b. Network Matrix AIr(i,j)a

Rg Qa VPD Qs P q gH gLE GER NEE GEP CF

Rg 100.0 3.0 12.8 2.7 13.4 4.1 14.2 24.7 5.7 20.3 22.7 7.9

Qa 4.5 100.0 13.8 36.0 16.6 24.4 8.2 6.1 27.4 3.8 4.4 5.0

VPD 16.5 11.7 100.0 10.6 18.1 14.1 6.6 15.3 14.4 7.7 9.5 7.1

Qs 4.5 38.5 13.4 100.0 21.7 27.3 7.0 6.4 23.1 4.9 5.2 5.6

P 2.4 1.9 2.5 2.3 100.0 3.1 x x 1.6 x 1.7 3.9

q 4.7 18.2 12.5 19.1 20.2 100.0 6.7 4.0 22.4 4.5 5.7 8.1

gH 9.1 3.4 3.2 2.7 x 3.8 100.0 6.0 3.3 7.2 6.2 2.2

gLE 27.7 4.5 13.3 4.4 x 3.9 1.6 100.0 5.3 16.1 16.5 4.1

GER 9.2 28.9 18.0 22.8 15.0 31.6 8.3 7.6 100.0 7.4 8.2 7.8

NEE 20.0 2.4 5.9 3.0 x 3.9 11.1 14.1 4.5 100.0 56.6 3.7

GEP 23.7 3.0 7.7 3.3 10.2 5.2 10.1 15.4 5.3 60.1 100.0 3.4

CF 9.9 4.1 6.9 4.3 28.2 8.9 4.3 4.6 6.1 4.8 4.1 100.0

aMatrix shows the percentage of uncertainty of each Y explained by X.
Bold means > 10% of Xt (j) explained by Xt(i). The cross means I 0 < D(I 0).
Source variable X index i is in rows; sink variable Y index j is in columns.
Italics indicate matrix diagonal. All values are in percent.

Table 3c. Network Matrix ATz(i,j)a

Rg Qa VPD Qs P q gH gLE GER NEE GEP CF

Rg 0.10 x x x 1.25 x 0.74 0.53 x 0.73 0.63 x
Qa x x x x 1.16 x 1.27 2.06 x 3.38 2.76 x
VPD x x x x 1.33 x 1.40 0.76 x 1.56 1.33 x
Qs x x x x 0.90 x 1.54 2.17 x 2.93 2.46 x
P 1.44 x x x 0.15 0.93 2.30 2.77 x 2.53 1.89 x
q x x x x 1.06 x 1.27 2.42 x 2.13 x x
gH 0.62 x x x 2.41 x 0.09 1.16 x 0.92 0.94 x
gLE 0.43 x x x 1.93 x 0.89 0.15 x 0.90 0.84 x
GER x x x x 1.35 x 1.25 1.87 x 1.98 1.70 x
NEE 0.48 x x x 1.83 x 0.82 0.92 x 0.14 0.22 x
GEP 0.42 x x x 1.48 x 0.96 0.88 x 0.22 0.13 x
CF x x x x 0.55 x 1.75 2.16 x 2.21 2.36 x

aMatrix shows the ratio of the maximum lag T to mutual information for
all significant couplings. Source variable X index i is in rows; sink variable

Y index j is in columns. Italics indicate matrix diagonal. The cross means

type 1 coupling, and bold means type 2 coupling; otherwise, values are type

3 coupling.
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whose information transport was found in section 4.1 to
peak at fast <30 min time scales. The third major group is
the ‘‘synoptic’’ group of Qa, Qs, GER, VPD, and q which
are known to be strongly linked to the synoptic-scale
weather patterns [Baldocchi et al., 2001a; Katul et al.,
2001].
[57] By using the canonical couplings and the informa-

tion in Table 3c, an arrangement of subsystems, information
flow, feedback, and time scales can define the July 2003
state of the system. In Table 3c Tz is presented for every
statistically significant information flow coupling in the
network. In Table 3d key time lags are presented for each
coupling: the first significant time lag, last significant time
lag, number of significant time lags, and the characteristic
time lag t 0 of the greatest information transfer. The turbu-
lent group variables share type 2 couplings at the short
<30 min time scale, and therefore form a type 2 self-
organizing subsystem. The synoptic group variables share
type 1 couplings, and form a type 1 subsystem. The ABL
variables do not form a logically consistent subsystem of a
single type and time scale, but are connected by a rich pattern
of type 3 couplings at longer time scales up to 18 h.
[58] The resulting process network in Figure 7 exhibits

a rich pattern of information flow between three major sub-
systems. The synoptic subsystem, associated with large-scale
weather patterns, forces the ABL and turbulent subsystems
via type 3 coupling at all time scales, but the ABL and
turbulent subsystems participate in a feedback loop with each
other at subdaily time scales. The ABL subsystem exports
information to the turbulent subsystem via a type 3 coupling
at the 12 h time scale. The ABL subsystem is also a sink of
information flow from the turbulent subsystem via connec-
tions through P and Rg. The ABL and turbulent subsystems
are therefore connected via a feedback loop, forming a larger-
scale hierarchical self-organizing subsystem which is termed
the ‘‘regional’’ subsystem because of the longer subdaily time
scales that characterize the feedback loop. The variables and
time scales of this feedback loop are consistent with what is
known about ABL formation processes [Juang et al. 2007a,
2007b; Margulis and Entekhabi, 2001; Katul et al. 2007a],
and this feedback loop identifies the well-known process by
which land surface variables affect ABL formation through-

out the day, and in turn modify cloud cover, radiation, and
convective precipitation later in the day.
[59] GEP participates in the organization of the turbulent

subsystem through the control of photosynthesis on stoma-
tal conductance and plant transpiration. Therefore, it follows
that local plant photosynthetic processes exert an indirect
control on the ABL and in turn on other parts of the land
surface ecosystem via network feedback. The marginal
entropies H 0 for the turbulent subsystem are substantially
lower than those of the synoptic and ABL subsystems (35–
62% for turbulent, versus 55–91% for others). This suggests
that this feedback loop is negative, serving to stabilize and
moderate the regional land surface ecosystem even as it re-
ceives forcing and feedback from subsystems with more var-
iability. This is consistent with the findings of McNaughton
and Jarvis [1991] that plant ecosystems inhabit negative or
stabilizing feedback loops involving the ABL at scales from
the leaf scale (very short time scale) to the regional scale
(longer subdaily time scale).
[60] These findings are not without their limitations. In

particular, it is difficult to unambiguously resolve the
structure of the ABL subsystem. The authors believe the
logical inconsistencies in the ABL subsystem of the process
networks are caused by the spatial nature of information flow
and feedback in the ABL (as explained byMcNaughton and
Jarvis [1991] and Jacobs and De Bruin 1992]). The use of
a spatial data set in a future study could help bring this
subsystem into clearer focus. Given that the FLUXNET
data is collected at a single point in space, we will have to
accept a lack of clarity regarding the ABL and precipitation.
Shuttleworth [1988] found that the ABL is known to vary at
the subdaily time scale with surface conditions at spatial
scales on the order of 10 km to 100 km; the ‘‘fetch’’ or
spatial measurement scale of the Bondville flux tower is
much smaller, on the order of 100 m. This experiment
effectively substitutes temporal data for spatial data; a
review of studies that have taken a similar approach is
provided by Baldocchi [2008].

4.3. Comparing the Process Network: Healthy Versus
Drought States

[61] To compare a second system state with the July 2003
state (Figure 7), a process network is computed for the July

Table 3d. Network Matrix G(i,j)a

Rg Qa VPD Qs P q gH gLE GER NEE GEP CF

Rg .5–4(5),.5 x x x .5–15(22),13 x .5–15(11),.5 .5–5(10),.5 x .5–5(11),.5 .5–5(11),.5 x
Qa x x x x .5–17(29),.5 x .5–18(34),12 16–17(2),16 x 6–18(11),16 7–9(3),9 x
VPD x x x x .5–18(32),5 x .5–18(8),.5 .5–18(4),.5 x .5–18(7),.5 .5–3(6),.5 x
Qs x x x x .5–18(32),12 x .5–18(35),4 16–18(4),18 x 4–17(9),8 4–8(2),4 x
P 12–13(3),12 x x x .5–13(12),5 .5– .5(1),.5 10–18(9),11 10–14(5),12 x 12–12(2),12 12–12(1),12 x
q x x x x .5–18(36),7 x .5–18(36),5 17–17(1),17 x 11–11(1),11 x x
gH .5– .5(1),.5 x x x .5–13(21),8 x .5–3(5),.5 .5–4(6),.5 x .5–3(7),.5 .5–3(5),.5 x
gLE .5–3(5),.5 x x x .5–17(22),12 x .5–5(9),.5 .5–4(7),.5 x .5–5(10),.5 .5–5(11),.5 x
GER x x x x .5–18(36),15 x 4–18(19),17 .5–16(7),2 x .5–17(24),.5 .5–14(11),3 x
NEE .5–4(7),.5 x x x .5–15(8),6 x .5–12(8),.5 .5–5(11),.5 x .5–5(9),.5 .5–5(9),.5 x
GEP .5–3(6),2 x x x .5–17(13),6 x .5–3(7),.5 .5–5(10),.5 x .5–5(9),.5 .5–5(10),.5 x
CF x x x x .5–18(20),11 x .5–14(13),9 10–12(4),11 x 5–15(15),12 5–15(12),9 x

aMatrix shows time lags of significant information flow on the interval [t = 0.5 h . . .18 h], including the first significant lag, last significant lag, number
of significant lags, and peak time lag. Source variable index X is in rows; sink variable index Y is in columns. Significant lag times are [first –
last(number),max]. The cross means T 0 < D(T 0).
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2005 drought-afflicted ecohydrological system. The result-
ing weighted-cut process network for July 2005 is visual-
ized in Figure 8. The first salient observation is that the
drought process has fewer couplings than the healthy
process network; in fact, roughly half of the couplings
disappear during the drought state (adjacency matrix re-
sults not shown). Not a single new coupling exists during
the drought, which did not occur during healthy condi-
tions. In general, then, the drought state is characterized
by decoupling.
[62] The most important decoupling is that of the turbu-

lent type 2 land surface subsystem from the other two
subsystems. In the process network, neither the synoptic
nor the ABL subsystems are coupled to the turbulent
subsystem during drought conditions, with the same type
3 12 h couplings that existed during healthy conditions.
Because less information is flowing between the subsys-
tems, the surface energy balance and carbon flux processes
are not being organized as strongly by the weather patterns
and boundary layer processes. The ‘‘engine of variability’’
that is necessary for the land surface ecohydrological system
to thrive [Kumar, 2007] appears to be broken down during

drought because of insufficient information input from the
synoptic weather patterns. The moisture fluxes which carry
the information may be reduced below a key threshold
during drought.
[63] The absence of information flow from the ABL

subsystem to the turbulent subsystem means that the circu-
lar type 3 feedback between these two subsystems is broken
during drought. The regional self-organizing type 3 subsys-
tem that binds the turbulent and ABL subsystems into a
larger hierarchical subsystem at longer time scales around
12 h dissolves because of the disappearance of the feedback
that defined this structure during healthy conditions. A
physical interpretation of this breakdown is that individual
local-scale land surface ecosystems are not able to commu-
nicate with each other via the medium of the ABL, or to
collectively organize and influence their atmospheric envi-
ronment on a regional scale. The reduction of information
flow and feedback between the turbulent and ABL sub-
systems on longer ‘‘regional’’ time scales is characteristic of
drought.
[64] At one time it was believed that the plant ecosystem

is passively forced by climate conditions, but as far back as

Figure 7. The process network for July 2003, a healthy system state. Types 1, 2, and 3 relationships
result in the interpretation of the system as three subsystems linked at time scales ranging from 30 min to
12 h. Thin arrows represent type 2 couplings. Thick arrows represent type 3 couplings. A type 1
‘‘synoptic’’ subsystem including GER, q, Qs, Qa, and VPD forces the other subsystems at all studied time
scales from 30 min to 18 h. A type 2 ‘‘turbulent’’ self-organizing subsystem including gH, gLE, NEE, and
GEP exists with a feedback time scale of 30 min or less and inhabits a feedback loop with P and Rg at
time scales from 30 min to 12 h. The P, CF, and Rg variables form a loose subsystem of mixed types,
which interact with each other on a time scale of roughly 12 h.
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1960 it was recognized that ‘‘drought begets drought’’
[Namias, 1960; Monteith, 1995]. In other words, drought
can be understood as a self-organizing phenomenon involv-
ing feedback between the land surface and the atmosphere.
There is a physical feedback between the land surface and
atmospheric boundary layer, such that fewer clouds and
precipitation cause insufficient soil moisture, reduced
evapotranspiration, and in turn reduce atmospheric humid-
ity, reducing the potential for future precipitation and mois-
ture transport [McNaughton and Jarvis, 1991; Dominguez
and Kumar, 2008a, 2008b]. On the other hand, reduced
evapotranspiration results in increased sensible heat flux,
which can cause moisture to rise more quickly to the
lifting condensation level at which precipitation occurs
[Juang et al., 2007b; Dominguez and Kumar, 2008a,
2008b]. The feedback resulting from ecosystem can there-
fore impact the occurrence of convective precipitation
[Freedman et al., 2001; Juang et al., 2007a; Carleton et
al., 1994].
[65] Although there is an agreement on how to recognize

drought (negative ecosystem impacts due to insufficient
moisture), there is no agreement on what exactly drought

‘‘is,’’ or how to provide a robust definition for it. Some
ecosystems apparently never experience drought even dur-
ing periods of low precipitation because of a lack of
moisture stress where soil moisture does not drop below
the wilting point [Jaksic et al., 2006; Rodriguez-Iturbe,
2000]. The impact of drought varies widely from one
location to another, possibly due to plant adaptation and
rooting patterns [Calvet, 2000]. These studies, especially
that of Carleton et al. 1994], suggest that summertime
drought may be characterized as a specific regime of
feedback between the land surface vegetation and the
convective precipitation activity in the atmosphere. The
results we present define drought as a system state using a
process network, where the time scales and subsystems
involved in the feedback couplings are precisely estab-
lished. The methods developed here shed more light into
this issue because they are able to detect and characterize
the asymmetry of information flow in the network.

5. Discussion

[66] FLUXNET data is derived from eddy covariance
measurement towers, which suffer from several types of

Figure 8. Same as Figure 7 but for July 2005, the peak growing month of a season impacted by severe
drought. The same three subsystems exist as in a healthy system state (Figure 7), but fewer couplings
exist between the subsystems; the network is substantially decoupled. Most notably, the synoptic
subsystem is no longer coupled to the turbulent subsystem via a type 3 coupling, and the turbulent and
ABL subsystems no longer participate in circular feedback at time scales up to 18 h. As a consequence,
the regional self-organizing subsystem disappears in this drought system state.
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error. In addition to the limited precision, random noise,
instrument failures, downtime, and calibration errors which
impact all physical measurements, measurements of fluxes
suffer from unique biases. First, because atmospheric eddies
and turbulent mixing occurs over an area of the landscape
upwind of the tower (the area is called the ‘‘footprint’’ or
‘‘fetch’’), changes in wind speed and direction can alter the
composition of the footprint [Hollinger and Richardson,
2005]. Heterogeneous vegetation types, canopy structures,
soil moisture conditions, and obstructions in the vicinity of
the tower will cause measurements to vary with the wind
regime; in cases of extreme heterogeneity, this can mean
that one tower is measuring two different ecohydrological
systems, with the time-averaged data set reflecting a mixture
of the two. Second, nighttime measurements of flux are
notoriously inaccurate, because low wind speeds signifi-
cantly reduce the area of the footprint, resulting in extreme
variability in measurements and skewed (nonnormal) error
[Moffat et al., 2007; Richardson et al., 2008]. Snow and ice
fouling can affect precipitation and surface heat flux mea-
surements during the winter, resulting in unrealistically low
measurements and measurement variability. In addition,
since hundreds of different researchers are involved in
measuring and transcribing FLUXNET measurements be-
fore they reach the archives, it is inevitable that uneven
quality control is applied during data collection and pro-
cessing. This lack of quality control threatens to render data
from different sites incomparable.
[67] Fortunately, ‘‘gap filling’’ reanalysis methods can

address some of these problems, specifically those of (1)
with quality control caused by nonhomogeneous field
methods and transcription and (2) gaps caused by instru-
ment failure and nighttime and wintertime downtime. The
level 4 (L4) data product is such a gap-filled product.
Multiple reanalysis models are used to identify unreliable
data and replace it with more realistic estimates [Moffat et
al., 2007; Juang et al., 2006; Reichstein et al., 2005],
resulting in a product that is free of gaps, has more reliable
nighttime estimates of flux, is free of extreme outliers, and
is generated in a uniform way across all FLUXNET sites.
These reanalyzed data are optimized to give accurate daily
and annual mean totals, and to reproduce the same spectrum
of periodic variability as raw observed data [Moffat et al.,
2007], but the data are not optimized to reproduce the time
correlation structure between variables. Richardson et al.
[2008] found that models generally overestimate autocorre-
lation. If these findings hold for the level 4 data set, it would
impact the quality of the results in this paper by causing us
to underestimate the strength of information flow, and the
data set variability (Shannon entropy) at short time scales.
The present methods are robust against random measure-
ment noise in the data and against errors in the magnitude of
estimates, but are vulnerable to erroneous time-lagged
covariation structures in the data. This sort of error has
not been evaluated in FLUXNET data and may impact the
results and interpretation presented here.

6. Summary and Conclusions

[68] The central conclusion of this paper is that robust
process networks can be delineated from multivariate eco-
hydrologic time series data using information flow statistics.

The flow of statistical information is an effective way to
identify the direction and time scale of process couplings
and an effective basis for the delineation of process net-
works in complex systems, when the appropriate method-
ology is applied. A methodology is developed for the
construction and logical interpretation of information flow
process networks, and a quality control framework is
provided to ensure that entropy statistics are robustly
computed from time series data. Process networks are an
ideal way to define the state of a complex system, because
in these systems the structure of the system as a whole is
more important than the variability of its individual parts.
[69] A second conclusion is that mutual information and

transfer entropy should be used to complement each other in
the analysis of time series data. Mutual information mea-
sures the extent of synchronization between variables, but
transfer entropy alludes to the cause of the synchronization,
where the cause is either forcing or feedback coupling. New
questions can now be answered. Are two variables similar
because one variable forces the other, or because a third
variable forces both, or do they synchronize in a self-
organizing fashion by exchanging information? What is
the time scale of each coupling process? Do the variables
form subsystems, and do those subsystems interact with
each other as organized units? The ‘‘synchronization ratio’’
of the information flow at the peak time lag to the zero-lag
mutual information, Tz, is a fundamental dimensionless
quantity that can be used to classify couplings and sub-
systems. Three types of couplings are logically defined
using this ratio. Type 1 couplings are dominated by shared
information (synchronization), type 3 couplings are domi-
nated by information flow (forcing), and type 2 couplings
represent the middle ground where substantial synchroniza-
tion and forcing both exist. These three types, taken by pairs
of variables, form six combinations; examples and discus-
sion of each of these six ‘‘canonical coupling types’’
observed in the July 2003 process network. These canonical
types are general to time-varying complex systems, and they
should be observable in a wide variety of such systems in
nature.
[70] Using a Tz-based network adjacency matrix, the

healthy state July 2003 process network is interpreted as
an arrangement of three subsystems that interact via types 1,
2, and 3 couplings. The process network is computed for a
healthy corn-soybean Midwestern ecosystem at the peak of
its growing season. A self-organizing ‘‘turbulent’’ subsys-
tem is formed from the sensible heat flux, latent heat flux,
net ecosystem exchange of carbon, and gross ecosystem
carbon uptake, which share type 2 feedback couplings at the
<30 min time scale. A ‘‘synoptic’’ subsystem is formed
from the air temperature, vapor pressure deficit, soil tem-
perature, soil water content, and ecosystem respiration of
carbon, which share type 1 couplings at very short time
scales. A loosely organized ‘‘atmospheric boundary layer’’
subsystem is formed from the incoming shortwave radiation
and cloud cover, which share a variety of couplings at
longer subdaily time scales up to 18 h. The synoptic
subsystem exports significant information to the other
two, and serves as a large-scale forcing on the system.
The turbulent and atmospheric boundary layer subsystems
are coupled via a feedback loop, and form a regional self-
organizing subsystem that is a hierarchical aggregate of
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those two subsystems. This regional-scale feedback subsys-
tem forms the basis for plant ecosystems to self-organize at
the regional scale through collective dynamics, at least
during the peak of a healthy growing season. The resulting
process network reveals couplings and time scales consis-
tent with what is already established in the literature
[Baldocchi et al., 2001a; Katul et al., 2007b; Margulis
and Entekhabi, 2001], but is able to additionally classify
the nature of one-way forcing and circular feedback be-
tween subsystems.
[71] The drought state July 2005 process network is

constructed and compared with the healthy state July 2003
process network. This comparison reveals that key type 3
couplings to the turbulent subsystem at longer time scales
up to 18 h turn off during drought. The result is that the
process network is decoupled, and the regional hierarchical
self-organizing system dissolves because of the lack of
feedback between the ABL and turbulent subsystems. The
disconnection of longer–time scale couplings to the turbu-
lent subsystem is characteristic of the drought state. Eco-
system photosynthetic efficiency is known to increase with
increased cloud cover because of a substitution of diffuse
solar radiation for direct radiation [Baldocchi, 2008], and
cloud cover generally increases with ecosystem transpira-
tion in humid temperate ecosystems [Juang et al., 2007a,
2007b]. Ecosystem transpiration decreases during drought.
Accordingly, we believe that increased self-organization and
feedback involving the ecosystem at the regional scale may
be an evolved collective (or ‘‘emergent’’ [Corning, 2002])
ecosystem behavior that serves to increase photosynthetic
efficiency in the regional ecosystem as a whole.
[72] This conclusion provides evidence to support the

assertion of Carleton et al. [1994, p. 593] that ‘‘the
vegetation-convective-cloud interaction may be a feature
of Mid-west USA summer climate.’’ This collective eco-
system behavior breaks down to a certain extent during
drought. If feedback coupling between the various local
ecosystems breaks down at the regional scale during
drought, one should expect increased heterogeneity on the
landscape, such that local ecosystems which are fortunate to
receive ample rainfall continue to thrive, but are unable to
aid surrounding areas via regional moisture recycling. In
fact this increased landscape heterogeneity is exactly what
Carleton et al. [1994] found, using satellite data: the
summertime spatial variation of land cover data sets is
higher during drought.
[73] These observations confirm that the process network

is able to distinguish between drought and healthy ecosys-
tem states and to provide insight into the nature of the
differences between the states. As key couplings turn on and
off, the organization and feedback in the system changes as
the system enters a new state. Eight logical types of
canonical couplings have been identified to classify the
type of information flow between variables, six of which are
observed in the Bondville July 2003 corn-soybean ecohy-
drological system. Using these canonical coupling types, a
set of measured variables may be sorted into a hierarchy of
subsystem groupings. Now that process networks can be
constructed to describe the coupling of a number of ob-
served time series variables, these exciting tools may be ap-
plied to the new field of complex network theory [Strogatz,
2001] to study the properties of the system as a whole. Ap-

plications of network theory using process ecohydrological
process networks will be explored in part 2 of this paper
[Ruddell and Kumar, 2009].

Appendix A

A1. Estimation of Entropy Statistics From Data

[74] The estimation of the Shannon entropy (H), mutual
information (I), and transfer entropy (T) is dependent on the
accurate estimation of probability densities from data. In
fact, all statistical information is relative to the observer’s
choice of the state space in which to embed the dynamics of
each observed variable [Gershenson and Heylighen, 2003],
so it is important that we choose well. To estimate density
from a finite discrete data set a number of approaches exist
such as function fitting [Wolpert and Wolf, 1995; Knuth et
al., 2005], kernel estimation [Scott, 1979; Kaiser and
Schreiber, 2002; Sharma et al., 2000; Sabesan et al.,
2003; Bauer et al., 2004; Nichols, 2006], and binning with
fixed mass or fixed interval partitions [Marschinski and
Kantz, 2002; Kaiser and Schreiber, 2002]. A good mathe-
matical review is provided by Paninski [2003].
[75] The advantages of fixed interval bin counting are its

simplicity, dependence on a single parameter for the number
of bins, computational efficiency, well-understood biases in
I and T with respect to the density estimation scheme, and
its ability to handle both discrete and continuous data
(convergence of discrete and continuous results is discussed
by Kontoyiannis and Antos [2001]). The main downside of
fixed interval binning schemes is that this method introdu-
ces arbitrary partitions to what is fundamentally a continu-
ous system, resulting in ‘‘edge effects’’ as noted by Kaiser
and Schreiber [2002], Knuth et al. [2005], and K. H. Knuth
(Optimal data-based binning for histograms, unpublished
manuscript, 2006).
[76] Because of edge effects, bin counting is sensitive to

the number of partitions used. With too few partitions, edge
effects become severe and H estimates are positively biased,
resulting in underestimated I and T. If too many partitions
are used, there will not be enough data to accurately
estimate every partition’s probability, resulting in a positive
bias in H and a similar underestimation of I and T.
[77] In theory it is impossible to have too fine a discre-

tization scheme or too many data; more detail and more data
is better. However, data requirements grow with the number
of bins used. In practice this means that we need to find the
smallest number of bins, m, and number of data, N, under
which relatively consistent and unbiased estimates of T may
be obtained. The quality of the discretization scheme may
be evaluated by plotting the entropy metric H, I, or T against
the number of bins and data used that a plateau occurs in the
vicinity of the chosen number of bins and data.
[78] For the synthetic coupled logistic map (section 2.2),

Figures A1a and A1b show that T 0 is estimated consistently
when more than N = 250 data are used, and I 0 requires fewer
than 100 data. Ten or more bins appear to be adequate to
achieve accurate results, but more bins require more data. A
‘‘sweet spot’’ exists for the coupled logistic map in the
vicinity of m = 10–20 bins, where the fewest data are
required to achieve accurate results.
[79] A similar analysis is produced for couplings between

gLE and NEE (Table 2) at a 30min time lag. First entropy
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statistics are computed for many sample sizes N, holding the
bin count constant at m = 11. Figures A1c and A1d show
that T 0 requires more data to achieve a consistent estimate
(>500 data points), as compared with I 0 (>100 data points).
This data set’s sample size of N = 1250 data points is
sufficient to estimate I 0 and T 0 when an m = 11 bin
distribution is used.

[80] Next, entropy statistics are computed for many bin
counts m, holding the sample size constant at N = 1250.
Figures A1e and A1f show that m = 50 bins does not
appear to be enough to achieve a consistent estimate of I 0

and T 0, as indicated by the lack of a plateau in the curves.
This is unfortunate, since there is not enough data to satisfy

Figure A1. Estimation issues for mutual information and transfer entropy. (a) I 0 for the coupled logistic
map, the estimate plateaus above 10 bins and 50–100 data. (b) T 0 for the same, the estimate plateaus
above 10 bins and 250 data. More bins necessitate more data; a ‘‘sweet spot’’ requiring minimal data
exists at 10–20 bins. (c, d) Observed July 2003 gLE > NEE, cross sections of number of data using
11 bins. I 0 plateaus at 100 data, but T 0 requires 500 data. (e, f) Same as Figures A1c and A1d but for
number of bins using 1250 data; for T 0, 35 bins is too fine a resolution for the limited sample size.
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a binning scheme with hundreds of bins. In fact, there is not
enough data to satisfy a binning scheme with more than
roughly 35 bins. In Figure A1f, T 0 attains a consistent
difference from its significance threshold in the range of
roughly 5 to 35 bins, but above m = 35 bins T 0 drops below
the significance threshold, indicating that there is not
enough data to populate such a detailed distribution. Fortu-
nately, the m = 11 discretization scheme is within that range,
so we can be assured of a robust judgment of statistical
significance, if not perfect accuracy.
[81] These estimates of I 0 and T 0 show a consistent

negative bias when 11 bins are used, because both statistics
steadily increase as more than 11 bins are used. This means
that an improved probability density estimation scheme
could improve the accuracy of these results by reducing
the bias. However, because the bias is consistent across the
network of couplings, and because statistically significant
couplings can be qualitatively distinguished from those that
are not, it is concluded that this approach provides adequate
robustness and accuracy for our purposes.
[82] Bin-counting methods have been found to require on

the order of 1000 data points to adequately estimate T
[Bauer et al., 2004; Nichols, 2005]. However, as few as
150 data points may be required for the ideal case where
data is Gaussian distributed, according to Wolpert and Wolf
[1995] and Knuth (unpublished manuscript, 2006). The
authors have found, on the basis of experience, that 10–
20 bins give consistent results for I and T using a wide
variety of time series data, when at least 500–1000 data are
used. Because this experience is consistent with the findings
of other authors who have applied transfer entropy [Knuth et
al. 2005; Nichols, 2005], the authors propose that m = 10–
20 bins and N > 500–1000 data is a good rule of thumb for
the application of transfer entropy using finite-interval bin-
counting probability density estimation schemes.

A2. Time Lag Versus Scale

[83] In a temporal system characterized by processes that
operate at many scales, we have been working exclusively
with time lags (see section 2.1). It is therefore important to
ask the question ‘‘what is the relationship between time lag
and time scale’’? This question can be answered by com-
puting the same statistics using various temporal averaging
resolutions instead of time lags.
[84] This is done by modifying the coupled logistic map

equations presented in section 2, replacing time lag with
time averaging scale, such that LYt is mapped to the average
value of the last six time steps of LXt, instead of being
mapped to the single value at a fixed time length in the past.
This produces a coupling process where the averaging scale
r(LXt) of the source node is six, and the averaging scale
r(LYt) of the sink node is one. This synthetic data set
approximately represents a coarse-scale temporal process
that drives a fine-scale temporal process. Figure A2a, shows
that this method correctly identifies r(LXt) = 6, r(LYt) = 1 as
the peak process coupling scale or time lag.
[85] To apply this variable-scale approach to a variety of

data sets, its application is now generalized. Time series
variable Xt is transformed using a standard moving average
of window size r, such that the new time series Xt

r = (Xt +
Xt � 1 + . . . + Xt � r + 1)/r. When a temporally averaged
variable is used to compute I or T, the notation presented
in section 2 is extended to include the averaging resolution
of the source and sink variables as, I(Xt,Yt,t,r(LXt),r(LYt))
and T(Xt,Yt,t, r(LXt),r(LYt)). When r(LXt) = r(LYt) the fifth
index is omitted.
[86] T 0(gLE > NEE,30min,r) is plotted along with T 0(gLE >

NEE,t,30min), where resolution r is equal to the time lag t,
in Figure A2b. This allows comparison of information
transfer at a time lag with information transfer at an
equivalent averaging scale. When the time lag and resolu-
tion are both 30 min, the two estimates are identical. As the

Figure A2. Examination of the relationship between time lag and averaging scale. (a) T 0(LXt > LYt) for
the coupled logistic map computed against source and sink averaging scales r(LXt) and r(LYt). The
methods identify the correct process averaging scale as a peak in the plot, where source r(LXt) = 6 and
sink r(LYt) = 1. (b) T 0(gLE > NEE) is computed using two different data sets: first, using an averaging
scale r(gLE) = r(NEE) = 30 min and a time lag t up to 18 h and second, using a time lag t of 30 min and
an averaging scale up to 18 h. The two results are similar, proving that the time lag is closely related to
the averaging scale of the process.
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time lag and averaging scale increase, the time-lagged
version of T 0 remains similar to its time-averaged counter-
part. It is concluded that time lag and averaging scale are
closely related in this coupled system. The interpretation of
time lag as a surrogate for scale is therefore justified.
[87] In general, uncertainty and therefore entropy, espe-

cially joint entropy between two variables, will decrease as
the resolution (scale) of the data becomes coarser. Accord-
ingly, mutual information between variables should increase
when scale becomes coarser, as was found for comparisons
of observed and modeled hydrological data by Chapman
[1986] and for scaling in lagged rainfall fields by Molini et
al. [2005]. The effect of scale on transfer entropy is more
subtle; the transfer entropy will remain sensitive to the
process coupling scale present in the data, and will therefore
be strongest when both variables are averaged at the
strongest process coupling scale.

Notation

G(i,j) adjacency matrix where indices
store t 0 values [Dt].

gH sensible heat flux [W m�2].
gLE latent heat flux [W m�2].

D(I), D(T) statistical significance threshold for
I or T [bits].

Dt, dt discrete interval of time, the units
of time lags and steps [T].

Q soil water content of the surface
layer [m3 m�3].

Qa air temperature [�C or K].
Qs soil temperature (surface layer) [�C

or K].
t time lag between variables Xt and

Yt [Dt].
t 0 characteristic time lag of the

coupling between two variables
[Dt].

tmax time lag of maximum information
flow between two variables [Dt].

w number of time lags skipped for
variable Yt’s own history [Dt].

A(j,i,t) network adjacency matrix where
indices store T 0 [arbitrary units].

AI(i,j) adjacency matrix where indices
store I 0 values [fraction].

AIr(i,j) adjacency matrix where indices
store I(Xt,Yt)/H(Yt) [fraction].

Ap(S, t) adjacency matrix where indices
store T 0/TSTS(t).

ATz(i,j) adjacency matrix where indices
store Tz values at t 0 lags [fraction].

CF cloud fraction [fraction].
GEP estimated gross ecosystem

production [mmol CO2 m
�2 s�1].

GER estimated gross ecosystem
respiration [mmol CO2 m

�2 s�1].
H vector storing values of H 0 for each

variable [fraction].
H 0 normalized Shannon entropy

[fraction].

Hs
m mean normalized Shannon entropy

of subsystem S [fraction].
H(Xt) or

HXt Shannon entropy of variable Xt

[bits].
i, j matrix indices for X and Y [positive

integer].
I 0 normalized mutual information

[fraction].
I(Xt,Yt) mutual information of variables Xt

and Yt [bits].
k, l length of time series history used

for variables Xt and Yt [Dt].
LXt, LYt coupled logistic map variables

[arbitrary units].
m number of states used to classify

the data [positive integer].
N number of data points in the data

set [positive integer].
NEE net ecosystem exchange [mmol

CO2 m
�2 s�1].

nt number of time lags t being
considered [positive integer].

nS number of variables in the
subsystem S [positive integer].

nV number of variables in the system V
[positive integer].

P precipitation [mm month�1].
p(xt), p(yt) marginal probability distribution of

variables Xt and Yt [fraction].
p(xt,yt) joint probability distribution of

variables Xt and Yt [fraction].
r resolution of the time series data set

[time].
Rg total incoming shortwave radiation

[W m�2].
T(Xt > Yt, t) abbreviated version of TG [bits].

T 0 normalized transfer entropy
[fraction].

TG(Xt > Yt, t, k, l, w) generalized time-lagged transfer
entropy from Xt to Yt [bits].

TS(Xt > Yt) Schreiber’s original transfer entropy
from variable Xt to Yt [bits].

Tss(Xss > Yss,t) surrogate transfer entropy using
time-shuffled data Xss and Yss
[bits].

Tz synchronization ratio [ratio].
VPD vapor pressure deficit [kPa].

Xss, Yss time-shuffled surrogates for Xt and
Yt [units of data].

X, Y source and sink variables, respec-
tively [arbitrary units].

Xt
(i), Xt

(j) time series versions of X and Y
[units of data].

X-corr linear cross correlation [fraction].
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