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[1] Ecohydrological systems are complex, open dissipative systems characterized by
couplings and feedback between subsystems at many scales of space and time. The
information flow process network approach is developed to analyze such systems, using
time series data to delineate the feedback, time scales, and subsystems that define the
complex system’s organization. Network statistics are used to measure the statistical
feedback, entropy, and net and gross information production of subsystems on the network
to study monthly process networks for a Midwestern corn-soybean ecosystem for the years
1998–2006. Several distinct system states are identified and characterized. Particularly
interesting is the midsummer state that is dominated by regional-scale information
feedback and by information flow originating from the ecosystem’s photosynthetic
activity. In this state, information flows both ‘‘top-down’’ from synoptic weather systems
and ‘‘bottom-up’’ from the plant photosynthetic activity. A threshold in air temperature
separates this summer state where increased organization appears from other system states.
The relationship between Shannon entropy and information flow is investigated. It is
found that information generally flows from high-entropy variables to low-entropy
variables, and moderate-entropy variables participate in feedback.
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1. Introduction

[2] Ecohydrologic processes comprise nonlinear cou-
plings between climate, soils, water cycle and vegetation
[Reiners and Driese, 2003]. In the first part of the paper
[Ruddell and Kumar, 2009] it is argued that in this context,
system state is best represented as a pattern of couplings
between the various processes, rather than by measurements
of individual variables. This arrangement may be described
as a network of directional couplings and feedback cycles
between a system’s variables at a range of spatiotemporal
scale. A process network was defined as ‘‘a network of
feedback loops and the associated time scales that depicts
the magnitude and direction of flow of matter, energy, and/
or information between the different variables’’ [Ruddell
and Kumar, 2009, paragraph 3]. Process networks were
developed where the strength of each directional coupling is
measured by the information flow between pairs of varia-
bles at a specified time scale. Information flow is the
contribution of uncertainty-reducing or predictive informa-
tion provided by the time lag history of one variable to the
future value of another. The transfer entropy statistic
[Schreiber, 2000] was used to measure the asymmetric
information flow between two variables.
[3] Detailed analysis of process networks constructed for

drought and healthy states of an agricultural ecosystem in
the Midwestern United States showed that a healthy system

is characterized by a predominance of feedbacks at a variety
of time scales. On the other hand a drought system is
characterized by a breakdown in the number of information
feedback loops in the interaction between the various
variables and the system seems to shift more to a source-
sink type coupling rather than a feedback driven coupling
[Ruddell and Kumar, 2009, Figures 7 and 8].
[4] Analysis of dynamics over a network poses significant

challenges [Strogatz, 2001]. While a number of approaches
exist for the analysis of structural properties of large network
such as small world [Watts and Strogatz, 1998] and scale-
free properties [Albert and Barabasi, 2002; Newman, 2003],
the study of asymmetric information flow through a network
remains an open and challenging problem. If a system’s state
is defined as a network of feedback couplings, then one
should be able to learn about system states and dynamics by
observing changes in statistics that characterize the properties
of information flow in the process network.
[5] The goal of the present paper is to develop measures

to characterize the organization of process networks, under-
stand how the organization changes in time, and identify
and characterize network-scale emergent properties. By
summarizing a complicated process network using network
statistics, many system states can be quickly and quantita-
tively compared. The result is a powerful and flexible
statistical approach to the analysis of complex ecohydro-
logic systems, which can resolve key characteristics such as
feedbacks, time scale, and subsystem organization. The
organization of the process network is analyzed by identi-
fying feedback, sources and sinks of information, and their
seasonal variability. After characterizing distinct system
states, specific patterns of organization are studied and the
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parameters controlling the emergence of these patterns are
identified.
[6] This paper is organized as follows. In section 2,

statistical measures for characterizing the organization of
the asymmetric information flow in a process network are
derived. In section 3, the seasonal and annual ecohydro-
logical patterns that appear in the network statistics for the
years 1998–2006 are analyzed. Conclusions and discussion
are given in section 4.

2. Statistical Measures of Information Flow in a
Network

2.1. Information Flow Process Networks

[7] Methods used to compute the entropy and information
flow will now be briefly reviewed. They are presented in
detail by Ruddell and Kumar [2009]. Let Xt = {xt}t=1,2,. . .,n be
a discrete time series with marginal probability density
function p(xt). Two time series are denoted as Xt and Yt ,
or equivalently as Xt

(i) and Xt
(j). The Shannon entropy

[Shannon, 1948] of time series Xt is H(Xt) = �
P

p(xt)
log p(xt). H is bounded as 0 � H(Xt) � log(m), where m is
the number of discrete states that may be taken by Xt or the
number of bins used to discretize the probability density
function. The normalized Shannon entropy is H0 = H/
log(m), and it takes values between zero and one. Larger
H0 means a time series is less organized and less predictable,
and therefore has greater variability.
[8] The time-lagged transfer entropy T quantifies the reduc-

tion in the Shannon entropy of time series Yt provided by
knowledge of time series Xt at some time lag tDt, which is
additional to the reduction of entropy because of knowledge of
the single point immediate history of time series Yt , given by

T Xt > Yt ; tð Þ ¼
X

yt ;yt�Dt ;xt�tDt

p yt; yt�Dt; xt�tDtð Þ

� log p ytj yt�Dt; xt�tDtð Þð Þ
p ytjyt�Dtð Þ : ð1Þ

T is bounded by log(m); the normalized quantity T 0= T/log(m)
is used. The transfer entropy effectively measures the
directional flow of information from Xt to Yt at the specified
time scale.
[9] The computation of the entropy statistics T 0 and H 0

from discrete time series data depends on the estimation of a
discrete marginal and joint probability densities. The state
space for each variable is discretized by identifying the
minimum and maximum observed values assumed by the
variable, and then dividing the resulting range into m
discrete state partitions (bins) of equal size. The number
of discrete states is fixed at m = 11 on the basis of arguments
presented by Ruddell and Kumar [2009].
[10] Ruddell and Kumar [2009] compute entropy statis-

tics for a single month at a time, so the minimum and
maximum bounds of each variable’s states are chosen to
match the range of values observed during the specific
month. This will be termed the ‘‘local’’ scheme for the
discretization of state. However, in this paper entropy
statistics are computed for 108 months, with the intention
of comparing the results of one month with those of another.
It is impossible to compare one month to another if the
frame of reference is continually shifting [Gershenson and

Heylighen, 2003]; when making these intermonthly com-
parisons, the minimum and maximum bounds are chosen to
match the extreme range of values observed during all
months compared. This will be termed the ‘‘global’’ scheme
for the discretization of state, and will be used in this paper
unless otherwise stated. A chronic problem facing discreti-
zation schemes is that of inadequate bins and sample sizes.
Using a global discretization scheme increases the likeli-
hood that inadequate bins will be used, since during each
month a variable may only visit a few of the eleven discrete
global states, effectively reducing the number of bins used.
To control for negative impacts on the quality of results
presented here, sensitivity analysis was performed with
varying numbers of bins, and it was found that the methods
are adequately robust, if not ideal.
[11] The basis of this analysis is the information flow

process network consisting of pair wise couplings between a
number nV of observed variables in an ecohydrologic
system. For each month it is rendered as an adjacency
matrix A(i, j, t) = T 0(Xt

(i) > Xt
( j), t) of dimension [nV 	 nV 	

nt], where nt is the number of time steps under consider-
ation. The property A(i, j, t) 6¼ A(j, i, t) captures the
asymmetry of information flow between the two variables.
Consider the entire network (i, j) 2 Vor a subset (i, j) 2 S �
V where the subset S characterizes a subsystem consisting
of ns variables or ns 	 ns nodes (or elements) in the matrix.
For convenience this is denoted as A(S, t). When ns = 1 the
subsystem S contains a single node i in the network which
corresponds to a time series variable Xt

(i). The vector H is
employed; H is of length nS, and contains the normalized
Shannon entropy for each variable in S obtained as H(i) =
H0(Xt

(i)) or H 0
X.

[12] All analyses in this paper are performed using a
weighted network adjacency matrix; unweighted or weighted-
cut matrices are not used [see Ruddell and Kumar, 2009].
The weighted matrix provides clearer results than the cut
matrices, in agreement with the experiments of Wilhelm and
Hollunder [2007]. The authors believe that cut matrices
may give higher-quality statistics for a much larger number
of links in the matrix (i.e., thousands). However, in the
present work the network has on the order of 100 links. For
such a small number of links, the location of the cutting
threshold tends to dominate the resulting network statistics,
obscuring the meaning of the process network structure
itself.

2.2. Derivation of Network Statistics

[13] A number of network statistics can be computed
from the entropy vector H or the adjacency matrix A.
Network statistics can be computed for the entire network
V or for a subset S � V consisting of ns nodes.
[14] 1. The mean normalized Shannon entropy of a

subsystem S is computed from H as

Hm
S ¼ 1

nS

X
i2S

H ið Þ: ð2Þ

HS
m is bounded between zero and one. HS

m is the subset S’s
equivalent to the basic Shannon entropy H 0. It gives the
average entropic uncertainty of the nodes in the subsystem,
and allows comparison of one subsystem with another. It is
important to note that H is computed for the data set time
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scale r; r is omitted from notation because in this study all
analyses are for r = 30 min.
[15] 2. The total system transport (TST) is the sum of all

information flowing within a subsystem. It is computed for
subsystem S for a specific time scale t from A as

TSTS tð Þ ¼
X
i;j2S

A i; j; tð Þ: ð3Þ

The mean TST for subsystem S is

TSTm
S tð Þ ¼ 1

n2S

X
i; j2S

A i; j; tð Þ: ð4Þ

TSTS is bounded as HS
m 	 nS

2 and TSTS
m is bounded as HS

m.
TSTS

m measures the total flow of information in the
subsystem, as a fraction of the total possible flow nS

2, which
occurs if all weights of the couplings between nodes in the
subsystem have their maximum value of 1.
[16] 3. The mean gross information production of a

subsystem is computed for a specific time scale as

T
þ½ �
S tð Þ ¼ 1

nV � nS

X
i2S
z2V

A i; z; tð Þ: ð5Þ

The information production measures the total predictive
information provided by this subsystem to all nodes in the
system. A subsystem which is strongly coupled to other
subsystems will have a large gross information production.
Note, however, that this does not necessarily mean such a
subsystem is controlling the other subsystems, only that it
can be used to predict other subsystems because it is
strongly coupled to them on average.
[17] 4. The mean gross information consumption is

computed similarly as

T
�½ �
S tð Þ ¼ 1

nV � nS

X
i2S
z2V

A z; i; tð Þ: ð6Þ

The information consumption measures the total predictability
that all nodes in the system provide to this subsystem S.
[18] 5. The mean net information production is the

difference between the gross production and consumption,

Tnet
S tð Þ ¼ T

þ½ �
S tð Þ � T

�½ �
S tð Þ: ð7Þ

The net information production becomes meaningful in the
case where subsystem S is synchronized with another
subsystem. Synchronization can be caused by one-way
forcing or balanced two-way feedback, and the net
information production measures the extent to which of
these alternatives applies. A subsystem which is controlling
the rest of the network has a large net positive information
production, serving as a net source of information in the
network. This subsystem controls other subsystems more
than they control it; these tend to be the ‘‘original causes’’ of
changes which occur in the system. The net and gross
information production should be used together, such that
the gross information production measures the strength of
coupling of the subsystem to the rest of the network (on
average), and the net information production measures the
extent to which the subsystem is controlling the rest of the
network, given its gross information production. A ratio of
the two, Tnet/T [+], is potentially useful as an index which
quantifies how large the net export is, compared with the
total export of information. All types of information
production are bounded above by HS

m 	 nS. Information
production and consumption are conserved on the total
network; the net production of the whole system V sums to
zero.
[19] 6. A final statistic, the source-sink redundancy R, is a

measure of the topology of the network’s couplings. Many
interesting topology statistics may be computed, such as
the radius, mean connection length, clustering coefficient
[Strogatz, 2001], and the medium articulation [Wilhelm and
Hollunder, 2007]. The redundancy is particularly interest-
ing because it measures whether the network topology is
dominated by circular connections, that is, feedback be-
tween nodes, or whether the topology is dominated by a few
nodes which are the source or sink of most of the informa-
tion (Figure 1). Because the redundancy serves as an index
of feedback in the network, it can be used to identify
subsystems and time scales where feedback dominates the
flow of information.
[20] Wilhelm and Hollunder [2007] generalized existing

methods that had been applied for the study of food webs
and ecosystem structure, applying the statistics to directional,
weighted binary networks. Their generalization applies a
source-sink analogy to every coupling in the network, and
asks the questions (1) given a source node i, what is the
level of entropy (uncertainty) that exists with regard to the
identity of the sink node j and (2) given a sink node j, what
is the level of entropy (uncertainty) that exists with regard to
the identity of the source node i? To answer these questions
the weighted information flow adjacency matrix A for
subsystem S must be converted into the form of a joint
probability density matrix Ap by dividing it by the TST as

Ap S; tð Þ ¼
A i; j; tð Þ
TSTS tð Þ if i; jð Þ 2 S

0 otherwise:

8><
>:

ð8Þ

For each time scale t, the matrix Ap sums to one across the
indices i and j of subsystem S. For convenience, Ap can
take two forms of notation,Ap(i, j, t), (i, j)2 S, andAp(S, t),
in the same manner as A.

Figure 1. Network feedback statistic illustrated for three
example cases on a four-node network: (middle) circular
flows dominate the network, resulting in a minimum R00

which indicates feedback dominance; (left) flows from a
single source dominate the network, resulting in a higher
R00; and (right) flows into a single sink dominate the
network, resulting in a higher R00.
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[21] Using Ap as a two-dimensional joint probability
density estimate for the identities of the source and sink
nodes, compute the conditional entropies of subsystem S as

H
ij j½ �
S tð Þ ¼ �

X
i; j2S

Ap i; j; tð Þ log Ap i; j; tð ÞX
z2S

Ap z; j; tð Þ
; ð9Þ

which is the answer to question 1 above, and

H
jji½ �

S tð Þ ¼ �
X
i; j2S

Ap i; j; tð Þ log Ap i; j; tð ÞX
z2S

Ap i; z; tð Þ
; ð10Þ

which is the answer to question 2 above. The conditional
entropies are bounded as log(nS). The redundancy of
subsystem S is their sum,

RS tð Þ ¼ H
ij j½ �
S tð Þ þ H

jji½ �
S tð Þ: ð11Þ

The source-sink redundancy is bounded as 0 � RS �
2 log(nS). Normalizing RS by this bound results in a quantity
R0 that is bounded between zero and one. For convenience
the subscript S is dropped when the context of a subsystem
is unambiguous.
[22] The source-sink redundancy may be intuitively un-

derstood as an index for feedback on the system; when R is
low, the network is characterized by equal participation of
all nodes in cyclical flows of mass, energy, or information
(in which case there is a lot of feedback). The lowest value
of R occurs when there is no uncertainty in the identity of
sources and sinks, which can only occur when each node
sends to and receives from exactly one other node. Logi-
cally, in such a case, the network graph must form a loop
about which information flows in a single direction. Such
networks are rare in the physical world; it is more common
for a subset of nodes to dominate the pattern of connectivity
[Wilhelm and Hollunder, 2007].
[23] The absolute value of R0 is not very meaningful,

because this statistic is relative to the size of the network
and the distribution of weights. It is more meaningful to
compare R0 with the equivalent statistic computed from a
shuffled surrogate version of Ap, where the coupling
probability weights are maintained but the source and sink
connectivity of each coupling is randomly ‘‘rewired’’
(rewiring is performed independently for each time scale).
By computing the shuffled surrogate redundancy many
times in Monte Carlo fashion (50 times in this paper), a
mean may be obtained for the distribution of shuffled
surrogate redundancies, m(R0

ss), using a procedure similar
to Ruddell and Kumar [2009] and Wilhelm and Hollunder
[2007]. The difference between R0 and the mean of the
surrogates gives a more useful statistic, the surrogate-
relative redundancy of subsystem S at time scale t, R00

S(t) =
R0
S(t) � m(R0

ss(t)). R
00
S is bounded as �1 � R00

S � 1.
[24] Values of R00 below zero indicate that subsystem S at

time scale t is relatively feedback dominated (i.e., charac-
terized by circular information flow) as compared with a
randomly connected network of the same size and distribu-
tion of weights. Values of R00 above zero indicate that S is

relatively source-sink dominated (i.e., most information flows
in or out of a few dominant nodes).

3. Results: Seasonal Patterns in a Corn-Soybean
Ecosystem

[25] These results attempt to answer three key questions
about the Bondville, Illinois corn-soybean ecohydrologic
system (see section 3.1). First, how is the process network
organized? Corollary questions include: What are the cou-
pling time scales? When does feedback couple those to form
self-organizing structures? What nodes are sources or sinks
of information? What distinct states does the system occupy?
Are there seasonal patterns in network organization? Second,
when does the process network show ‘‘emergent’’ proper-
ties [Corning, 2002], where emergence is defined as a
sudden increase in the production of information by a
process network subsystem, or the strengthening of a key
information feedback loop between two subsystems, during
a specific system state? Finally, what are the system control
parameters [Haken, 1988] which explain the emergence of
organized structures in the process network?
[26] Section 3.1 provides a review of the experimental

framework used for this study, including the data and
preprocessing methods applied. In section 3.2 the derived
network statistics are validated by demonstrating that the
statistics provide qualitatively similar results when com-
pared with a more detailed manual process of network
analysis described by Ruddell and Kumar [2009]. The key
network feedback time scales are also identified, and turn
out to be 30 min and approximately 14 h. In section 3.3 the
seasonal and annual patterns in the network statistics are
analyzed, and it is found that two distinct system states
(summer and winter) and three summer substates (A, B, C)
are distinguishable. One substate, ‘‘summer B,’’ is centered
on the month of July and characterized by emergent
properties including regional feedback and information
production by the ecosystem. In section 3.4, emergent
properties of the ecohydrological system are analyzed, and
the parameters which control the emergent structures are
identified.

3.1. Experimental Framework

[27] To answer the questions posed above, the network
statistics derived in section 2 are applied to the Midwestern
corn-soybean ecohydrological system for each of 108months
spanning the years 1998–2006. The FLUXNET [Baldocchi
et al., 2001b] eddy flux tower at Bondville, Illinois [Hollinger
et al., 2005, Meyers, 2008] is this study site. See Ruddell
and Kumar [2009] for a detailed description of the data
and quality issues. The only departure from Ruddell and
Kumar [2009] is that the cloud cover and net ecosystem
exchange variables are excluded. The net ecosystem exchange
is highly redundant with the gross ecosystem production,
and the meteorological data from which cloud cover is com-
puted is not uniformly available across the full time range
1998–2006.
[28] During each month, 37 independent time scales of

information flow coupling, ranging from 0 to 18 h, are
analyzed using half-hour increments. The time series data
set is preprocessed and transformed using a 5 day periodic
anomaly, such that the data used for this study is the
departure from the average 5 day diurnal pattern, rather
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than observed values [Ruddell and Kumar, 2009]. A typical
month of 30 days has 1440 data, which is a sufficient
number for the robust computation of the transfer entropy
using these methods. However, because of instrument
malfunctions and the circumstances of weather, substantial
gaps exist in the data record for certain months. Any results
computed for months where fewer than 850 data points are
available are dropped from the analysis.

3.2. Subsystems and Time Scales That Characterize
the System

[29] The first challenge is to validate the network statis-
tics discussed in section 2 by comparing them with the more
detailed process network analysis presented by Ruddell and
Kumar [2009, Figure 7]. Network statistics cannot provide
the same level of detail as the detailed process network
analysis, but they should be able to capture the pattern of
feedback, time scale, and subsystem organization.
[30] Ruddell and Kumar [2009] identified three subsys-

tems for the month of July 2003, which is the peak of the
growing season and the warmest month of the year. The
turbulent subsystem includes the sensible heat flux (gH),
latent heat flux (gLE), and gross ecosystem carbon produc-
tion (GEP) variables and is characterized by substantial
feedback at the <30 min time scale associated with turbulent
mixing processes on the land surface [see Katul et al.,
2001]. The atmospheric boundary layer (ABL) subsystem
includes the global radiation (Rg) and precipitation (P)
variables that are coupled to each other at time scales from
3 to 18 h, with coupling peaking at 12 h. This subsystem is
associated with ABL formation processes on the subdaily
time scale [Juang et al., 2007]. The synoptic subsystem
includes the air temperature (Qa), vapor pressure deficit
(VPD), soil temperature (Qs), soil water content (q), and
gross ecosystem respiration (GER) variables which force
the rest of the network on very short >30 min time scales.

These variables are associated with continental-scale weather
patterns [Baldocchi et al., 2001a]. An additional regional
subsystem exists because of the subdaily time scale feedback
of information between the ABL and turbulent subsystems
and is the hierarchical aggregate of these two subsystems.
[31] To identify the relevant time scales, the feedback

index R00 is computed for the turbulent subsystem, regional
subsystem, and the whole system at time scales from 30 min
to 18 h, for the month of July, for the years 1998–2006.
Figure 2a illustrates the mean of the nine July values of R00

for each time scale. The turbulent subsystem is feedback
dominated (R00 < 0) at the same 30 min time scale identified
by Ruddell and Kumar [2009, Figure 7]. The regional
subsystem, which is a coupled hierarchical aggregation of
the turbulent subsystem and the ABL subsystem, shows a
local minimum of R00 (where peak feedback occurs) in the
vicinity of the 14 h time scale, which is similar to the 12 h
time scale identified for the regional hierarchical subsystem
by Ruddell and Kumar [2009, Figure 7]. This 14 h local
minimum is less pronounced than the 30 min minimum of
the turbulent subsystem, but it is significant because it lies
more than one standard deviation below the global maxi-
mum (at 2 h) of R00 for the regional subsystem. These results
demonstrate that the network statistic R00 is able to capture
the same time scale dynamics that were identified using a
more detailed process network analysis, but with an addi-
tional capability to do interseasonal comparisons of dynamics
(see section 3.3). 30 min is used in the rest of the paper as
the characteristic time scale of turbulent subsystem process-
es, and 14 h is used as the characteristic time scale of
regional and ABL processes.
[32] The mean annual pattern in values of R00 is plotted in

Figure 2b, which shows that the regional subsystem has
R00 > 0 during all months, but by contrast the turbulent
subsystem at the 30 min time scale is feedback dominated

Figure 2. (a) Mean July values of R00, for the regional and turbulent subsystems and the whole system,
for each t. Lower values of R00 mean that more feedback is occurring. R00 < 0 means that the subsystem is
feedback dominated. The 30 min time scale has the lowest R00 for the turbulent subsystem, and the 14 h
time scale has the lowest feedback for the regional subsystem. (The regional subsystem includes the
turbulent and ABL subsystems.) Dashed lines show the standard deviations of R00 for the regional
subsystem; R00 for the 14 h time scale is more than 1 standard deviation below R00 at the minimum
regional feedback time scale of 2 h. (b) Mean annual pattern in R00 values for the whole system, regional
subsystem, and turbulent subsystem for each month 1998–2006. R00 values for the whole and regional
subsystems decrease (increased feedback) during the warmest months (June, July, August), but R00 values
increase (decreased feedback) for the turbulent subsystem during the same months.
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(R00 < 0). The feedback index R00 shows an interesting
seasonal trend, in that the regional and turbulent subsystems
both move toward the neutral state (R00 = 0) during the
summer. A physical interpretation of this pattern may be
that more moisture and energy feedback occurs in the
system as a whole during peak summer growing conditions,
as interaction between the land surface and atmosphere
increases. However, at the land surface, the strong domi-
nance of the ecosystem processes over the network’s
dynamics causes a decrease in apparent feedback in the
turbulent subsystem, during the peak summer growing
season. These interpretations are evaluated in section 3.3

below, in which patterns explaining this seasonal variability
of R00 are analyzed.

3.3. Seasonal Patterns in Network Statistics

[33] This section explores the seasonal and annual
patterns in system organization, identifies distinct system
states, and explains the occurrence of emergent structures
during some system states. R00, TSTm, Tnet, and Hm are
computed for all months; the results are plotted in Figure 3
along with the MODIS-derived enhanced vegetation index
(EVI) for the Bondville site. Broad seasonal patterns are
evident: Hm, TST, and the absolute value of Tnet are highest
in the summer months and lowest in the winter months for

Figure 3. Process network statistics plotted for comparison over 9 years, 1998–2006. Vertical lines
indicate July; ticks indicate January. Gaps indicate that fewer than 850 data are available in that month, so
results are discarded. (a) Feedback index R00 for the regional and turbulent subsystem and the whole
system; (b) mean total system transport TSTm for the regional and turbulent subsystems and the whole
system; (c) net information production Tnet for the synoptic, ABL, and turbulent subsystems; (d) mean
Shannon entropy Hm for the synoptic, ABL, and turbulent subsystems; and (e) enhanced vegetation index
EVI, collection 4 MODIS subset for Bondville site (http://www.modis.ornl.gov/modis/index.cfm).
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all subsystems. This means that total Shannon entropy and
information production in the system are higher during the
warm months than during the cold months. Specifically, Hm

and TSTm peak on average in the month of June, but R00 and
Tnet peak on average in the month of July along with the
EVI.
[34] The synoptic subsystem has the highest Shannon

entropy Hm, and the turbulent and ABL subsystems have
lower Shannon entropy. This means that there is more
variability and uncertainty associated with the synoptic
variables, as compared with the turbulent and ABL varia-
bles. From the plot of Tnet, observe that the synoptic
subsystem is a net producer of information, and the turbu-
lent and ABL subsystems are net consumers of information.
When two variables are synchronized but one drives the
other, the driver is a net exporter of information. In this
sense, the synoptic (weather-related) subsystem is the dom-
inant controller of the system. This finding is consistent
with the observation of Ruddell and Kumar [2009] that the
synoptic subsystem is a source of information to the other
two subsystems. Subsystems that are net exporters of
information appear to be those with higher Shannon entropy;
more on this is discussed in section 3.4.
[35] Compare Figure 2b with Figure 3a. Both show that

the regional subsystem and the whole system are source-
sink dominated (R00 > 0) during all months and time scales,
but the turbulent subsystem at the <30 min time scale is
feedback dominated (R00 < 0). The feedback index R00 shows
an interesting seasonal trend, in that the regional and
turbulent subsystems both move toward the neutral state
(R00 = 0) during the summer (Figure 2b). This pattern may
be interpreted to indicate that the feedback in the regional

subsystem increases during the summer, while that in the
turbulent subsystem decreases. What causes this increase in
14 h time scale feedback in the regional subsystem, and a
decrease in <30 min time scale feedback in the turbulent
subsystem, centered on the month of July?
[36] To answer this question, examine the feedback

coupling between the turbulent and ABL subsystems which
causes the emergence of a regional subsystem. Ruddell and
Kumar [2009] demonstrated that the coupling between gLE
and P at the subdaily time scales is a key feedback coupling
that links the turbulent and ABL subsystems. Figure 4 plots
the mean annual pattern in the coupling strength T 0 between
latent heat flux (gLE) and precipitation (P) for time scales of
30 min and 14 h. The 30 min feedback coupling peaks in
June, while the 14 h feedback coupling associated with the
emergence of the regional subsystem peaks during July and
August. This plot demonstrates that one coupling can have
different feedback organization at different time scales
during different system states. As shown in Figure 4,
multiple warm weather substates exist: an early summer
April–June substate, which is termed ‘‘summer A,’’ where
short time scale localized processes are dominant, and a mid
summer June–August substate, which is termed ‘‘summer
B,’’ where regional feedback processes mediated by the
ABL at 14 h time scale are dominant.
[37] Attention is now shifted to the turbulent subsystem,

to learn which variable in that subsystem is dominant during
the ‘‘summer B’’ substate. Figure 5 plots the mean annual
pattern in the gross information production and consump-
tion at a 30 min time scale for sensible heat flux (gH), latent
heat flux (gLE), and gross ecosystem carbon uptake (GEP)
that comprise the turbulent subsystem. Heat fluxes gH and
gLE are net information consumers since T [�] is greater than

Figure 4. Mean annual pattern in the strength T 0 of a key
feedback coupling between the atmospheric boundary layer
and turbulent subsystems, that of latent heat gLE and
precipitation P, plotted for 30 min and 14 h time scales.
Winter and summer are distinguished because summer has
far more information flow than winter. Two summer
substates are apparent, with ‘‘A’’ peaking in June and
‘‘B’’ peaking in July and August.

Figure 5. Mean annual pattern (for 9 years, 1998–2006) of
gross information production T [+] and consumption T [�] for
the turbulent subsystem variables sensible heat flux gH, latent
heat flux gLE, and gross ecosystem carbon uptake GEP. Three
summer substates, ‘‘A,’’ ‘‘B,’’ and ‘‘C’’ are indicated. GEP
and gLE become dominant during summer B.
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T [+], meaning that they receive more predictive information
from the network than they export to the network. There is
also a complementary relationship between them such that
when TgLE

[+] increases, TgH

[+] decreases and vice versa; TgH

[+]

peaks in April through June, then gives way to TgLE

[+] in June
through August. The July peak in gLE information con-
sumption corresponds to a dramatic increase in gross
information export by GEP (Figure 5). An interpretation
is that the turbulent subsystem is controlled by information
export from GEP during summer B, and this explains the
reduced system feedback observed in summer in Figure 3.
[38] The July peak in gLE activity (Figure 5) corresponds

to the increase in 14 h time scale feedback in the regional
subsystem shown in Figure 4; GEP is the source of much of
the information flowing to the turbulent subsystem (at 30 min
time scales) and the ABL subsystem (14 h times scales,
via gLE) during the peak growing months. A third warm
weather state, resembling ‘‘summer A,’’ appears in Septem-
ber after the peak of the growing season; this late summer
substate is termed ‘‘summer C.’’ ‘‘Summer C’’ is different
from ‘‘summer A’’ in that little moisture recycling occurs
between the latent heat flux and precipitation variables
during ‘‘summer C,’’ at any time scale (recall Figure 4).
Figure 5 adds to the understanding of the ‘‘summer A’’ and
‘‘summer B’’ substates. ‘‘Summer A,’’ peaking in April–
June, is characterized by strong short time scale sensible
heat flux processes on the land surface, driven by the
synoptic weather patterns (especially air temperature).
‘‘Summer B,’’ peaking in July, is characterized by strong
latent heat fluxes and strong feedback between the land
surface and ABL, and by strong information export and
coupling strength from GEP and gLE. In April and May
(‘‘summer A’’) temperatures are no longer below the freez-
ing point, and the fields are being cultivated, but no
meaningful vegetation cover has emerged. The planting of
the crops by farmers peaks the first week of May, but no
significant biomass appears until June. June through August
drought during this phase can delay the development of
crops, weakening their later yield potentials. ‘‘Summer B’’
corresponds to the season of peak carbon and nutrient
assimilation, biomass growth, and transpiration for both
the corn and the soybean plant [Hanway, 1966; Hanway
and Thompson, 1967]. The peak of the growth occurs in
July and early August. Drought during one critical phase of
growth, the ‘‘tasseling stage,’’ can disrupt pollination and
seed filling, crippling the crop. By the start of September
most of the growth is complete and the crops are entering
the drying stage, in preparation for harvest, which occurs
from mid-September through October (‘‘summer C’’).
[39] Much of the information flow which forms the

emergent regional feedback structure during the ‘‘summer
B’’ substate originates in the ecosystem photosynthetic-
evapotranspirative processes. This finding is consistent with
the findings of Juang et al. [2007] that plants have a
substantial effect on local ABL conditions, including cloud
cover and precipitation, via modification of gH and gLE.
Furthermore, ‘‘summer B’’ corresponds to the season of
peak carbon and nutrient assimilation and biomass growth
for both the corn and the soybean plant [Hanway, 1966;
Hanway and Thompson, 1967].
[40] The gross information production of all ten variables

for each month 1998–2006 is plotted in Figure 6a to allow

evaluation of the seasonal patterns in total coupling strength
and predictive information for each variable. It is apparent
that all variables show greater information production in the
summer when temperatures and energy fluxes are much
higher, except for P and q which show little seasonal
variability. The strongest gross information producers in
Figure 6a are Rg, VPD, Qa, and GEP, in that order.
Information production by Qa and Rg is strong during the
entire year, but peaks during the ‘‘summer A’’ substate early
in the growing season. During the ‘‘summer B’’ substate
VPD and GEP are also strong producers of information.
Even when compared with the synoptic subsystem’s varia-
bles, the carbon uptake variable GEP emerges as a strong
gross producer of information.
[41] In feedback-based complex systems, two variables

may appear to be strongly coupled and synchronized with
each other (showing a high gross information production),
but the source of the apparent control may be an indirect
‘‘third-party’’ coupling [Kurths et al., 2003; Jorgensen et
al., 2007, p. 85]. In other words, a variable may recycle
information it has received from another variable on the
network, or it may trade equal amounts of information with
a tightly coupled variable with which it participates in
feedback. However, when the net information production
is computed, this recycled information is canceled on
average, leaving only that information for which the vari-
able is the original source. The net information production
of each variable for each month 1998–2006 is plotted in
Figure 6b. In general, synoptic variables are net producers
(sources) and turbulent and ABL variables are net consum-
ers (sinks) of information, in keeping with Figure 3 and
earlier findings [Ruddell and Kumar, 2009]. GER, P, and q
are relatively weak participants in the system’s information
flows. The strongest net information exporters are Qa and
GEP, with Qa net export peaking during ‘‘summer A’’
(April–June) and GEP net export peaking during ‘‘summer
B’’ (especially July, when EVI also peaks). This result
means that the ‘‘summer A’’ subsystem is controlled most
strongly by information flow from the air temperature
(which is controlled by synoptic weather patterns rather
than localized feedback), but the ‘‘summer B’’ subsystem is
controlled by information flow from the ecosystem photo-
synthetic processes (GEP). During ‘‘summer B,’’ both the
synoptic subsystem (largest scale) and GEP (smallest scale)
are sources of information and the regional feedback sub-
system (midscale) is receiving information from both higher
and lower scales.
[42] Strong net information flow from GEP (a short time

scale variable [Baldocchi et al., 2001a]) to the regional
subsystem (which operates on a 14 h feedback time scale),
via modification of gH and gLE, is a good example of
‘‘bottom-up’’ emergence [Hubler, 2005]. Bottom-up emer-
gence is identified by a flow of order which originates at the
smallest scale in a system, but which ends up defining order
at larger scales. Bottom-up emergence is easy to identify
because it stands out in contrast to the more common
situation where order originates at the largest scale in the
system hierarchy (the largest scale in this ecohydrologic
system is the synoptic or weather-related subsystem).
During the ‘‘summer B’’ substate (July), it appears that
order is flowing both from the bottom up (from the
ecosystem carbon uptake variable GEP) and from the
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top down (from the weather-related synoptic subsystem,
especially Qa).

3.4. Emergent Properties of the System: Control and
Order Parameters

[43] It is evident from the above analysis that the Bond-
ville ecohydrological system’s process network feedback
structure changes with the seasons. While the radiation is an
important driver all the time, and the air temperature seems
to be an important driver during the early summer, the
photosynthetic process in the cultivated crop ecosystem
becomes an important driver during the peak of the growing
season in July.
[44] Ecohydrologic systems are complex systems, in that

they comprise many parts linked by cycles of feedback
[Kumar, 2007]. Feedback between multiple interacting parts
can give rise to ‘‘emergent’’ organized structures (system
structures which result from a feedback interaction of
multiple system parts, rather than from the direct action of
a single part [Corning, 2002]). A metric which directly
measures the level of emergent organization resulting from
feedback is called an ‘‘order parameter’’ [Haken, 1979].
Because the mechanism which enables self-organization
and emergence is feedback, the feedback index R00 is a

reasonable order parameter for this system (Figure 2). The
information flow T 0 between precipitation (P) and latent
heat flux (gLE) measures the strength of the feedback which
gives rise to the emergent regional subsystem that forms
during ‘‘summer B’’ (Figure 4) and, therefore, may be
considered as another order parameter. The gross production
of information T [+] by the gross ecosystem carbon uptake
(GEP) measures the strength of the emergent ‘‘bottom-up’’
flow of control during ‘‘summer B’’ (Figure 5) and is
therefore a third-order parameter.
[45] If R00(S, t), T 0(P > gLE, 14 h), and T

GEP

[+] (0.5 h) are
order parameters, what are the independent ‘‘control param-
eters’’ which drive the emergence of order on the process
network? In complex systems, the relevant control parameter
is the throughput [Hubler, 2005]. When the control para-
meter measuring throughput exceeds a certain threshold (or
instability point), ordered structures spontaneously emerge
in the system [Haken, 1988; Nicolis and Prigogine, 1989].
Examples of throughput include heat flow, fluid flow,
information flow, or entropy production [Hubler, 2005].
What are the relevant throughputs in this ecohydrological
system, and furthermore, are there two types of throughputs,
separately controlling the physical and statistical aspects of
the system?

Figure 6. (a) Mean gross information production T [+] and (b) net information production T net, for all
10 variables, every month for 1998–2006 at the Bondville site. Computations are performed at the
characteristic time scale of each subsystem: 14 h for the atmospheric boundary layer subsystem
(shortwave radiation Rg and precipitation P) and 30 min for the synoptic and turbulent subsystems (all
other variables).
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[46] Ozawa et al. [2003] found that the energy dissipation
and thermodynamic entropy production in the atmospheric
portion of the climate system is governed by the throughput
of heat and momentum, because the amount of heat and
momentum in the system, rather than the radiative input of
energy, governs the turbulent fluid transport properties
which dominate energy transport in the climate. The mean
air temperature therefore provides a first-order measure of
the heat in the atmosphere near the land surface, and is a
reasonable choice for a control parameter which approx-
imates the thermodynamic energy throughput of this ecohy-
drological system. Figure 7 plots two-order parameters, the
gross information production of ecosystem carbon uptake
GEP and the information feedback between the latent heat
flux gLE and precipitation P, against the control parameter,
monthly mean air temperature Qa. Figure 7 makes it clear
that there is a strong and positive relationship between the
energy throughput of the system, the gross information
production of the ecosystem and the information flow and
feedback in the regional-scale moisture feedback process.
[47] An apparent threshold exists in Figure 7a at approxi-

mately 17�C, which is the average air temperature exceeded
during the ‘‘summer B’’ substate (section 3.3) months of
June, July, and August. Strong gross and net production
of information by the ecosystem, and increased feedback of
information in the system at the regional scale, both emerge
above this threshold in mean air temperature. Likewise,
the R00 statistic for the regional subsystem shows increased
feedback above the 17� threshold in Figure 2b. On the
basis of the physical arguments of Ozawa et al. [2003] and
this empirical evidence, the authors suggest that mean air
temperature (which approximates atmospheric heat and
momentum) is an important physical control parameter
driving the emergence of information feedback-based self-
organization in this ecohydrological system. Furthermore,
there is clearly a link between the energy throughput of the
system (approximated on average by the air temperature)
and the production and feedback of statistical information

in the system. More energy throughput occurs when more
Shannon entropy and more statistical information are being
produced.
[48] However, the mean air temperature is not the only

control parameter. The Shannon entropy (measuring uncer-
tainty in the variables’ values) is, like the air temperature, an
independent property of the system which varies from
season to season (recall Figure 3). Is there a second layer
of emergent behavior which lies latent in the information
statistics themselves, independent from the physical pro-
cesses which the statistics are used to measure? The answer
is ‘‘yes,’’ and the results may be important for a wide range
of complex systems. The mean total information flow of the
whole system, TSTV

m, is plotted against the mean Shannon
entropy of the whole system, HV

m, in Figure 8. It is clear
from Figure 8 that there is a power law relationship (with a
strong 89% R2 fit) between the average production of
information and the average production of Shannon entropy
in this system. The Shannon entropy controls the production
of information in the system.
[49] Interestingly, the total production of Shannon entropy,

HV
m, and the total flow of information, TSTV

m, do not peak
in July during the summer B substate, but rather during the
April–June summer A substate (recall Figure 3). Maximum
temperature, ecosystem activity measured by GEP and EVI,
and regional feedback measured by R00, all peak in July.
These metrics are one month out of phase with the maxi-
mum Shannon entropy and the information flow (and also
the input of solar radiation Rg; compare with Jorgensen et
al. [2007, p. 132]. In other words, there is a physical control
parameter (energy throughput approximated as air temper-
ature) and a statistical control parameter (throughput of
stochastic variability, measured as Shannon entropy), and
the two are operating slightly out of phase in the Bondville
system. This begs a question for future work, as to whether
all ecohydrological systems behave this way.
[50] To investigate the relationship between H and T in

greater detail, it is necessary to shift the point of view

Figure 7. (a) Mean gross information production of the GEP variable at a 30 min time scale and
(b) transfer entropy of the coupling between the gLE andP variables at a 14 h time scale (regional time scale)
plotted against the monthly mean air temperature. A threshold exists near 17�C such that information flow
can be much greater during the months of June, July, and August than during other months.
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[Gershenson and Heylighen, 2003] from the ‘‘global’’
perspective that uses the same discrete state space to embed
the values of all 108 months, to a ‘‘local’’ perspective,
which embeds the observed values of each month into a
discrete state space that is relative to that particular month
(recall section 2.1). This shift in perspective allows consid-
eration of the relationship between H 0 and T 0 independently
from the confounding effects of the seasonal patterns in the
physical system and the physical control parameter. Figure 9
shows a box plot of the range of Shannon entropy values
assumed by each variable and scatterplots (Figure 9a), net
information production versus Shannon entropy (Figure 9b),
gross information production versus Shannon entropy
(Figure 9c), and gross information consumption versus
Shannon entropy (Figure 9d), for all ten variables in all
months 1998–2006.
[51] In Figure 9a the turbulent subsystem variables gH, gLE,

and GEP have a moderate Shannon entropy 0.4 < H 0
X < 0.7,

synoptic subsystem variables Qa, VPD, Qs, q, and GER have
large Shannon entropy H 0

X > 0.7, and ABL subsystem
variables P and Rg span moderate to low Shannon entropies.
In Figure 9b, variables with Shannon entropy greater than 0.7
(synoptic subsystem variables) tend to be net producers
(sources), those with less than 0.4 (ABL variables, especially
P) tend to be net consumers (sinks), and those in between
(turbulent variables) can be net producers or consumers
depending on the month (GEP is usually a net producer,
gH and gLE are usually net consumers). In Figure 9c, higher
Shannon entropies are associated with higher gross informa-
tion production. This simple relationship is not surprising,
because it was demonstrated in section 2 that the transfer
entropy is bounded as a function of the Shannon entropy
of the source variable. However, Figure 9d shows the
surprising result that variables with high Shannon entropies
H 0
X > 0.7 consume much less information than those where

0.4 < H 0
X < 0.7. This results in an imbalance in information

production and consumption for variables above the 0.7
threshold.
[52] The variability measured by Shannon entropy is a

control parameter that determines the organizational struc-
ture of the process network at the statistical level. Infor-
mation flow, as measured by transfer entropy, can be
considered as an order parameter. Information tends to flow
from high Shannon entropy variables to low Shannon
entropy variables, and only the moderate Shannon entropy
variables participate in feedback. The control parameter H 0

features two critical thresholds at approximately 0.4 and 0.7,
and emergent behaviors are associated with variables in the
moderate range between these thresholds. The hierarchy of
subsystems observed in the ecohydrological system can be
explained in relation to these thresholds: high Shannon
entropy synoptic variables drive the moderate and low
Shannon entropy variables, while moderate Shannon entropy
variables (turbulent subsystem) form feedback-based sub-
systems. These approximate thresholds in the control
parameter H 0 hold for all subsystems, time scales, and
months observed in this ecohydrological system, and as
such appear to be independent of any specific physical
process in the system.
[53] These results demonstrate that the transfer entropy

T 0, feedback index R00 and gross information production T [+]

serve as order parameters where as the air temperature Qa

and Shannon entropy H 0 serve as control parameters for the
ecohydrologic system studied.

4. Summary and Conclusions

[54] It has been demonstrated that the network statistics
H0, R00, T [+], T [�], and Tnet may be used to robustly
characterize the subsystems, time scales, and feedback
structures that exist in a process network based on transfer-
entropy derived information flow couplings. The network
statistics are shown to reveal similar patterns of organization
as compared with a more complete and detailed process
network analysis performed by Ruddell and Kumar [2009].
They are used to study both the ecohydrological and the
emergent properties of the system.
[55] The network statistics are used to identify two

primary ecohydrological system states, summer and winter.
In agreement with previous work on ecosystem networks
[Jorgensen et al., 2007], connectivity and information flow
in the process network are found to increase dramatically
during summer. A more detailed analysis of the turbulent
land surface subsystem reveals three summer substates. The
dynamics of the first summer substate (‘‘summer A,’’
April–June, peaking in June) are dominated by information
export from weather-related synoptic subsystem variables
(especially air temperature) at <30 min time scales. The
dynamics of the second summer substate (‘‘summer B,’’
June–August, peaking in July) are dominated by the
emergence of regional time scale (�14 h) feedback between
the atmospheric boundary layer (ABL) and turbulent sub-
systems, which is indirectly controlled by the ecosystem
photosynthetic process via the strong control of stomatal
transpiration over latent heat during July. This substate is
where emergent properties appear, such as self-organization
in the regional subsystem and strong coupling between
ecosystem and atmosphere controlled by the gross ecosys-
tem production (GEP) variable via latent heat flux (gLE).

Figure 8. Normalized mean total system transport TSTV
m

of the whole system V, averaged across all time lags from
30 min to 18 h, plotted against the mean Shannon entropy
HV

m of the whole system V, for each month in the years
1998–2006. TSTV

m scales as a power law of HV
m.
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The third summer subsystem (‘‘summer C,’’ September–
October) is like ‘‘summer A,’’ except that short time scale
coupling between the turbulent and ABL subsystems is
weaker.
[56] Air temperature (Qa) and radiation (Rg) are the

strongest net producers of information on the network; the
net production of information by Qa peaks during summer
A, but the net production of information by Rg exceeds that
of air temperature during July, at the peak of summer B,
when latent heat flux (gLE) and gross ecosystem production
(GEP) dominate the land-atmosphere coupling. This means
that there are two primary sources of order and control of
the Bondville ecohydrological system’s states: weather-
related synoptic variables (especially Qa) during all seasons,
and the radiative-photosynthetic-evapotranspirative [Ball
and Berry, 1987] ecosystem activity during summer B.

The ABL subsystem (incoming shortwave radiation (Rg)
and precipitation (P)) and the surface energy fluxes (sensi-
ble heat flux (gH) and latent heat flux (gLE)) serve as a sink
of and a medium for transmission of information from these
two sources [Kumar, 2007]. These results show that infor-
mation flows both from the ‘‘top down’’ and from the
‘‘bottom up,’’ as is expected from emergent structures in
complex systems [Hubler, 2005]. The most significant
finding about this ecohydrological system is that plants
are not passive recipients of information and order from
their environment, but rather are themselves a large produc-
er of information during July, acting collectively via feed-
back to control the land surface energy balance and ABL at
the regional scale via latent heat flux modification.
[57] Following the arguments of Ozawa et al. [2003] that

the throughput of heat and momentum in the atmosphere are

Figure 9. Distribution of information transport values compared with the normalized Shannon entropy
H 0

X for all months in 1998 through 2006. (a) Box plot of 10 variables; (b) net information export Tnet,
plotted at the variable X ’s characteristic time scale, 30 min or 14 h; (c) gross information export T [+]; and
(d) gross information import T [�].
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the relevant physical controls on the atmospheric system,
evidence demonstrates that the mean air temperature (a
first-order approximation of atmospheric heat near the land
surface) is the control parameter which governs the emer-
gence of regional-scale feedback and ‘‘bottom-up’’ infor-
mation flow from the ecosystem. Above a threshold of
approximately 17�C, the emergent behaviors associated
with the ‘‘summer B’’ substate begin to appear in the Illinois
corn-soybean ecosystem, as measured by marked increases
in key information flow order parameters. This 17� threshold
begs a question for future work, as to whether all ecohy-
drological systems are adapted to follow the same threshold
relationship controlling the information production response.
[58] The information production and consumption of a

variable is also related to the variable’s Shannon entropy.
Low Shannon entropy variables serve as net consumers of
information, high Shannon entropy variables serve as net
producers of information, and moderate Shannon entropy
variables can both consume and produce information. It is
predominantly moderate Shannon entropy variables (Rg, gH,
gLE, GEP) that participate in feedback, and the information
flow couplings of moderate Shannon entropy variables tend
to be of the second type (type 2) identified by Ruddell and
Kumar [2009]. Moderate Shannon entropy variables are
those with a normalized Shannon entropy between approx-
imately 0.4 and 0.7. A possible interpretation is that
moderate Shannon entropy variables in ecohydrological
systems may be operating at the proverbial ‘‘edge of chaos’’
[Kaufmann, 1993], organizing themselves via feedback into
states which achieve maximum throughput (of energy,
information, etc.), and allowing asmuch variability (Shannon
entropy) as possible without lapsing into chaos (high
Shannon entropy).
[59] The authors conclude that there are at least two

control parameters in the Bondville ecohydrological system,
which have a positive relationship to the system’ informa-
tion production (information measures organization, order,
and predictability in the system). The first control parameter
is physical energy throughput (approximated by mean air
temperature), and the second is the stochastic variability
(measured using mean Shannon entropy). Of the two
control parameters, the mean Shannon entropy has a stron-
ger and cleaner relationship to system information produc-
tion. Does this mean that the process networks are not
realistically measuring the structure of the complex ecohy-
drological system, but rather are predetermined by a simple
Shannon entropy parameter? The authors think not, because
previous work has validated the physical accuracy of the
process networks [Ruddell and Kumar, 2009]. Rather, the
authors believe that these results cast light on the general
structure of complex systems. The authors hypothesize that,
for complex open dissipative systems, the level of statistical
Shannon entropy and information production of a subsys-
tem is closely related to and inseparable from its physical
function in the hierarchical structure of the system. This
hypothesis applies in the context of a scale of reference,
related to the data set time scale r, which defines which
level of the system’s hierarchy that is experimentally
observed.
[60] Readers of part 1 of this paper, Ruddell and Kumar

[2009], may at this point ask as to whether the network
statistics of information production and feedback can clearly

resolve the pattern of drought that impacted the Bondville,
Illinois site during the spring and summer of 2005. The
answer so far is negative. No clear pattern in Figure 3
appears to separate information production, feedback statis-
tics, or Shannon entropy of the system during the drought-
afflicted 2005 year from those during more well watered
years such as 2003 and 2004. This is perhaps surprising,
given that Ruddell and Kumar [2009] found a clear differ-
ence between 2003 and 2005 in terms of the system’s
regional-scale moisture recycling feedback on the process
network. However, it appears that the process network’s
average structure, as measured by several network statistics,
is not strongly affected by drought. The Shannon entropy
and feedback index R00 of July 2005 are slightly lower than
July 2003 or 2004, but one sample is not enough to draw
conclusions. If many more drought-afflicted summer data
sets could be analyzed, it might be possible to say more.
[61] In summary, this paper provides a conceptual ap-

proach and a working set of statistical tools for the analysis
of process networks, identifies characteristic emergent
behaviors of a Midwestern corn-soybean ecohydrological
system, and demonstrates that the order parameters and
control parameters which characterize this complex ecohy-
drological system can be quantified empirically by analyz-
ing the process networks. The generality of the results
across different ecosystems is being investigated through
the analysis of other FLUXNET sites.

Notation

gH sensible heat flux [W m�2].
gLE latent heat flux [W m�2].

Dt, dt discrete interval of time, the units of time
lags and steps [T].

Q soil water content of the surface layer
[m3 m�3].

Qa air temperature [�C or K].
Qs soil temperature (surface layer) [�C or K].
t time lag between variables Xt and Yt [Dt].
t0 characteristic time lag of the coupling

between two variables [Dt].
tmax time lag of maximum information flow

between two variables [Dt].
w number of time lags skipped for variable

Yt’s own history [Dt].
A( j, i, t) network adjacency matrix where indices

store T0 [arbitrary units].
GEP estimated gross ecosystem production

[mmol CO2 m
�2 s�1].

GER estimated gross ecosystem respiration
[mmol CO2 m

�2 s�1].
H vector storing values of H0 for each

variable [fraction].
H 0 normalized Shannon entropy [fraction].

HS
[ij j](t) source-conditional network Shannon

entropy of S [fraction].
HS
[ jji](t) sink-conditional network Shannon entropy

of S [fraction].
HS
m mean normalized Shannon entropy of

subsystem S [fraction].
H(Xt) or HXt

Shannon entropy of variable Xt [bits].
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i, j matrix indices for X and Y [positive
integer].

I 0 normalized mutual information [fraction].
I(Xt, Yt) mutual information of variables Xt and Yt

[bits].
k, l length of time series history used for

variables Xt and Yt [Dt].
m number of states used to classify the data

[positive integer].
N number of data points in the data set

[positive integer].
nt number of time lags t being considered

[positive integer].
nS number of variables in the subsystem S

[positive integer].
nV number of variables in the system V

[positive integer].
P precipitation [mm month�1].

p(xt), p(yt) marginal probability distribution of
variables Xt and Yt [fraction].

p(xt, yt) joint probability distribution of variables
Xt and Yt [fraction].

r resolution of the time series data set [T].
Rg total incoming shortwave radiation

[W m�2].
RS(t) redundancy, a measure of feedback in the

process network [fraction].
R0
S(t) normalized version of RS [fraction].

R0
ss(t) R

0
S computed using a shuffled-surrogate

network [fraction].
R00
ss(t) quantity comparing R0

S with the surrogate
R0
ss(t) [± fraction].

T(Xt > Yt, t) abbreviated version of TG [bits].
T 0 normalized transfer entropy [fraction].

TS
[+](t) mean normalized gross information

production of S at t [fraction].
TS
[�](t) mean normalized gross information

consumption of S at t [fraction].
TS
net(t) mean normalized net information

production of S at t [± fraction].
TSTS(t) normalized total system transport of S at t

[fraction].
TSTS

m(t) mean normalized total system transport of
S at t [fraction].

VPD vapor pressure deficit [kPa].
X, Y source and sink variables, respectively

[arbitrary units].
Xt

(i) and Xt
( j) time series versions of X and Y

[units of data].
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