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Abstract Methane (CH4) exchange in wetlands is complex, involving nonlinear asynchronous processes
across diverse time scales. These processes and time scales are poorly characterized at the whole-ecosystem
level, yet are crucial for accurate representation of CH4 exchange in process models. We used a combination of
wavelet analysis and information theory to analyze interactions between whole-ecosystem CH4 flux and
biophysical drivers in two restoredwetlands of Northern California from hourly to seasonal time scales, explicitly
questioning assumptions of linear, synchronous, single-scale analysis. Although seasonal variability in CH4

exchange was dominantly and synchronously controlled by soil temperature, water table fluctuations, and
plant activity were important synchronous and asynchronous controls at shorter time scales that propagated to
the seasonal scale. Intermittent, subsurface water table decline promoted short-term pulses of methane
emission but ultimately decreased seasonal CH4 emission through subsequent inhibition after rewetting.
Methane efflux also shared information with evapotranspiration from hourly to multiday scales and the
strength and timing of hourly and diel interactions suggested the strong importance of internal gas transport in
regulating short-term emission. Traditional linear correlation analysis was generally capable of capturing the
major diel and seasonal relationships, but mesoscale, asynchronous interactions and nonlinear, cross-scale
effects were unresolved yet important for a deeper understanding of methane flux dynamics. We encourage
wider use of thesemethods to aid interpretation andmodeling of long-term continuousmeasurements of trace
gas and energy exchange.

1. Introduction

The most challenging aspect of understanding ecosystem functioning is accounting for overlapping, asynchro-
nous, nonlinear processes. This is especially daunting when interpreting long-term continuous measurements
of wetland methane (CH4) exchange where scale-specific, nonlinear, and asynchronous processes can domi-
nate [Kettunen et al., 1996;Moore and Dalva, 1993; Reid et al., 2013; Updegraff et al., 2001]. For example, methane
emission in response to water table fluctuation can be nonlinear and lagged by up to 10days [Moore and Dalva,
1993] while also responding to seasonal variation in soil temperature [Turetsky et al., 2014]. Diurnal carbon
assimilation is known to stimulate CH4 production in rice, but with a 1–1.5 h time lag [Hatala et al., 2012a].
Adequately representing these dynamics in process models is important, especially in the context of emerging
carbon markets where predicted methane emissions will reduce the net greenhouse gas benefit (and financial
incentive) of wetland creation for carbon storage [Mack et al., 2012]. However, our ability to adequately model
whole-ecosystem wetland methane emissions is rudimentary [Bridgham et al., 2013], in part due to poorly
resolved dynamics over a wide range of conditions at the whole-ecosystem level [Turetsky et al., 2014]. As more
long-term eddy covariance studies of wetlandmethane exchange become available, this is increasingly becom-
ing a problem not of data availability but of our ability to interpret it.

Traditional statistical analysis often ignores scale and assumes linearity and/or synchronicity, which outside of
select experiments under controlled environmental conditions limits the characterization of important
dynamics. These complexities call for addressing scale, nonlinearity, and asynchrony directly in analysis of bio-
physical flux time series with more tailored methods such as wavelet decomposition and information theory.

Wavelets have been recognized as a particularly powerful tool to address scale in geophysical and ecological
analysis [Cazelles et al., 2008; Kumar and Foufoula-Georgiou, 1997; Torrence and Compo, 1998], as wavelet
decomposition characterizes both the time scale and location of patterns and perturbations in the data.
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The temporal (or spatial) data series of a continuous environmental variable is the superposition of variation
occurring at many different scales. Biophysical processes drive these patterns, and partitioning variability at
different scales can help to isolate and characterize important processes. Wavelets have been successfully
used to characterize the spatial scales of turbulent fluxes as well as the time scales of interaction between
fluxes and biophysical drivers [Ding et al., 2013; Fares et al., 2013; Katul et al., 2001; Katul and Parlange,
1995; Koebsch et al., 2015; Qin et al., 2008; Yoshida et al., 2010]. Recent application of wavelet analysis to eddy
covariance CH4 flux time series has already expanded understanding of scale-wise wetland CH4 dynamics,
including control of the diel CH4 flux pattern by carbon assimilation in rice [Hatala et al., 2012a] and the
control of seasonal CH4 emissions in a minerotrophic mire by air or water temperature depending on the
position of the water table [Koebsch et al., 2015]. Finally, wavelet spectra have also been useful in evaluating
physiological flux models to identify the time scales (and processes) of harmony and disharmony between
predictions and observations [Braswell et al., 2005; Dietze et al., 2011; Richardson et al., 2007; Stoy et al., 2005].

One limitation of traditional spectral methods to identify flux processes is that they assume linearity. Thus, it is
beneficial to combine wavelet analysis with tools well suited to handle nonlinear, and asynchronous effects.
One such tool is information theory. Originating in the field of communication, Shannon entropy quantifies
the probabilistic uncertainty (i.e., variability) of a process [Shannon, 1948]. Information content and Shannon
entropy are the foundation for ecologically relevant determinants such as the well-known Akaike information
criterion for model selection [Akaike, 1973], optimum spatial resolution of remote sensing imagery in
ecological modeling or upscaling [Stoy et al., 2009a; Stoy et al., 2009b], and numerous measures of ecological
complexity [Parrott, 2010]. Entropy metrics incorporating joint probabilities, such as mutual information and
transfer entropy, quantify information overlap or flow between systems and indicate the dependency of one
variable on another without assuming the analytical form or timing of the relationship. The robustness of
informationmetrics to nonlinearity and asynchrony has already improved our understanding of the feedback
network of processes influencing CO2 and H2O exchange across ecosystems [Ruddell and Kumar, 2009a,
2009b] and the sensitivity and dynamics of biosphere-atmosphere exchange to climate variability [Kumar
and Ruddell, 2010; Ruddell et al., 2015]. Despite these benefits, combining wavelets and information theory
to understandmultiscale eco-atmosphere interactions is rare, and thus far has only been applied to terrestrial
upland sites [Brunsell and Anderson, 2011; Brunsell and Wilson, 2013; Brunsell et al., 2008]. To our knowledge,
multiscale information theory analysis has not yet been leveraged to interpret measurements of whole-
ecosystem wetland methane exchange.

Here we address scale, nonlinearity, and asynchrony directly by using a combination of wavelet decomposi-
tion and information theory to analyze long-term, quasi-continuous, whole-ecosystem CH4 flux time series
from two restored wetlands in Northern California. By using wavelets to isolate the time scales of variation
and information theory to identify biosphere-atmosphere interactions regardless of form or asynchrony,
we systematically identified (1) the dominant biosphere-atmosphere flux processes and the time scales they
act at, (2) their nonlinear and asynchronous characteristics, and (3) how they contributed to the strength and
timing of biosphere-atmosphere exchange. We compare results to those derived from linear correlation ana-
lysis to evaluate what these methods can add to the traditional approach and contribute to modeling efforts.
This analysis allows us to answer the question: What do we miss by assuming linearity and/or synchronicity
and ignoring scale-specific interactions?

2. Methods
2.1. Study Sites

The study sites were in the Sacramento-San Joaquin Delta, a large inland river delta in Northern California,
USA, experiencing a Mediterranean climate. Mean annual air temperature and precipitation are 15.0 ± 0.4
(SD)°C and 324.5 ± 118mm, respectively (1998–2013; California Irrigation Management Information System,
Twitchell Island station). The Delta region was drained for agricultural use beginning in the midnineteenth
century [Atwater and Belknap, 1980; Drexler et al., 2007], and our measurements were conducted at two
restored freshwater wetlands constructed on former agricultural sites and underlain by peat soils. They
shared nearly identical meteorology and were dominated by similar Scheonoplectus acutus (tule) and
Typha spp. (cattail) vegetation, with the plant active period extending approximately between May
and October.
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The first wetland was Ameriflux site US-Tw1, a 0.028 km2 wetland constructed in 1997 (site photos provided
in Figure S7 in the supporting information), with flux measurements beginning in July 2012. Vegetation
coverage was 100% in this “old” wetland over the entire measurement period, with a relatively greater
proportion of S. acutus. The second wetland was Ameriflux site US-Myb, a 1.21 km2 wetland constructed in
2010 approximately 12.5 km southwest of the old wetland. This “young” wetland was designed with areas
of shallow and deep water to create a mosaic of open water and vegetation. Flux measurements at the young
wetland began in December of 2010. Fractional vegetation coverage increased from <10% in 2010 to
approximately 75% in 2015, with a relatively greater proportion of Typha spp. Both wetlands were enclosed
(isolated from tidal influence), and the California Department of Water Resources pumped water in from the
Delta system to maintain water levels, also making water levels insensitive to precipitation. Measurements of
surface sediment in 2012 indicated similar belowground conditions between the wetlands, with slight acidity
(pH~ 6.3 at the old wetland, pH~ 6.7 at the young wetland), similar soil carbon content (~20%), and high total
Fe concentration (~9mg Fe/g soil) (G. McNicol, unpublished data). Salinity (measured by conductivity) was
low but was higher at the young wetland and increased fairly steadily in both wetlands over their respective
measurement periods, from ~0.2 to 1.6mS cm�1 at the old wetland and from ~1 to 6mS cm�1 at the young
wetland. For more information about the history of these sites, we refer the reader to Matthes et al. [2014],
Knox et al. [2015], Byrd et al. [2014], and Miller [2011]. For seasonal dynamics (explained below), we analyzed
the entire available record of flux measurements at each site: from July 2012 to July 2015 at the old wetland,
and from December 2010 to July 2015 at the young wetland. For shorter-term flux dynamics we focused on
the growing season of 2013.

2.2. Flux and Environmental Measurements

Biosphere-atmosphere exchange of CO2 (FCO2), CH4 (FCH4), and H2O (E) were measured using the eddy
covariance method [Baldocchi et al., 1988] and were accompanied by a suite of supporting environmental
measurements (Table 1) as described in Knox et al. [2015]. Flux instrumentation and processing were identical
between the sites. A sonic anemometer (Windmaster, Gill Instruments Ltd., Lymington, Hampshire, UK)
measured high-frequency 3-D wind speed components and virtual temperature at 4.6m and 3.7m above
the typical water surface in the old and young wetlands, respectively. Open-path infrared gas analyzers
measured molar concentrations of CO2, H2O (LI-7500A, LI-COR Biosciences Inc., Lincoln, NE, USA) and CH4

(LI-7700, LI-COR Biosciences Inc., Lincoln, NE, USA). Raw flux measurements were recorded at 10 Hz on an
analyzer interface unit (LI-7550, LI-COR Biosciences Inc., Lincoln, NE, USA) and 30min fluxes were
calculated with in-house MATLAB software (v. 8.4, Mathworks, Inc., Natick, MA, USA) [Detto et al., 2010;
Hatala et al., 2012b; Knox et al., 2015]. Supporting environmental measurements were recorded as 30min
averages on a data logger.

Quality control procedures [Foken et al., 2004] as described in Knox et al. [2015] retained original fluxmeasure-
ments for 37% (62–66%) in the old (young) wetlands. However, 2013 growing season (day of year (DOY)
130–300) data retention was much higher, 74% (85–90%) in the old (young) wetland. Because wavelet

Table 1. Variable Descriptions

Symbol Description Unit

Qp photosynthetic photon flux density μmolm�2 s�1

Ta air temperature °C
Tw water temperature, 10 cm above soil °C
Ts soil temperature, 32 cm depth °C
D saturation vapor pressure deficit kPa
pa air pressure kPa
Hw height of water table above soil cm
O dissolved O2 in the water column mg L�1

θ wind direction °N
u* friction velocity m s�1

E water vapor flux density mmolm�2 s�1

FCO2 net CO2 flux density μmolm�2 s�1

G gross CO2 assimilation μmolm�2 s�1

R ecosystem CO2 respiration μmolm�2 s�1

FCH4 CH4 flux density nmolm�2 s�1
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decomposition requires special treatment of gaps, data gaps were filled prior to wavelet decomposition. We
used an artificial neural network (ANN) approach [Baldocchi et al., 2015; Knox et al., 2015] in order to preserve
the overall shape of the data patterns without assuming functional relationships between variables. FCO2 was
gap-filled with two separate ANNs, one for daytime conditions, and one for nighttime. Gross CO2 assimilation
(G) and ecosystem respiration (R) were estimated by extrapolating the ANN trained for nighttime FCO2 to the
entire day [Baldocchi et al., 2015]. Although the ANN approach does not assume functional relationships, the
ANN gap-filling did not account for potential lagged interactions between variables. Thus, after wavelet
decomposition (see below) original gaps were subsequently removed prior to information theory analysis
in all but the seasonal time scale. We did not remove original gaps at the seasonal scale because gap lengths
were small relative to this scale.

2.3. Linear Correlation Analysis

Bivariate linear correlation was performed on the average FCH4 diel pattern during the 2013 growing season
(DOY 130–300) and on daily average gap-filled FCH4 over the full measurement periods. We chose these two
methods for comparison because they continue to form the traditional analysis performed on eddy covar-
iance and chamber measurements of FCH4 (for example, Alberto et al. [2014], Hendriks et al. [2010], Strachan
et al. [2015], Sun et al. [2013], and Turetsky et al. [2014]). We note that more sophisticated statistical analysis
is certainly in practice, such as the use of classification and regression trees [Sachs et al., 2008], though still
typically employed on daily averaged data.

2.4. Wavelet-based Time Scale Decomposition

Time scales of variability in fluxes and environmental variables were decomposed using the maximal-overlap
discrete wavelet transform (MODWT) [Percival, 1995]. We chose the MODWT over the traditional orthonormal
discrete wavelet transform (ODWT) because MODWT retains the capability of multiresolution analysis while
lacking the sensitivity of the ODWT wavelet coefficients to the starting position of the wavelet averaging
window within the time series [Cornish et al., 2006]. At each scale j the MODWT applies a high-pass wavelet

filterehj;l and low-pass scaling filteregj;l of length l to time series X to respectively yield wavelet coefficients eWj;t

and scaling coefficients eVj;t for every point t in the time series [Percival and Walden, 2000]:

eWj;t ¼
XLj�1

l¼0

ehj;lX ′
t�lmod2N (1)

eVj;t ¼
XLj�1

l¼0

egj;lX ′
t�lmod2N (2)

where X′= X for t= 0…N and X′= X2N� 1� t for t=N…2N-1 represents the use of a reflected boundary
condition [Cornish et al., 2006]. The eWj;t wavelet coefficients distinguish fluctuations in the time series of
scale 2j - 1 data points, while the eVj;t coefficients characterize the fluctuations at scale 2j points and higher.
Expressing equations (1) and (2) in matrix notation, eWj ¼ eWjX and eVj = eVjX, where the nonbolded symbols
are vectors the same length as the time series X and the bolded symbols eWj and eVj are matrices with rows
containing circularly shifted versions of the upsampled and periodized filters ehj;l and egj;l , respectively [see
Percival and Walden, 2000], the detail eDj and smooth eSj reconstructions of the time series at each scale
are derived as:

eDj ¼ eWT
j
eWj (3)

eSj ¼ eVT
j
eVj (4)

so that the sum of the detail reconstructions eDj up to maximum scale J0 and remaining smooth component of
the time series eSJ0 reconstruct the original signal:

X ¼
XJ0
j¼1

eDj þ eSJ0 (5)

This is known as wavelet-based multiresolution analysis [Mallat, 1989]. The time series can be decomposed
into the detail added from successively coarser to finer scales, and either summed or evaluated individually
to analyze patterns at varying scales.
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In our analysis we used the Least
Symmetric 8 (LA8) wavelet filter, as
resultant wavelet coefficients are less
correlated across time scales and con-
tain less contamination from adjacent
scales compared to the traditional
Haar wavelet, while maintaining a rela-
tively low number of coefficients influ-
enced by boundary conditions [Cornish
et al., 2006].

We reconstructed the detail (eDj ) in the
fluxes and environmental variables for
dyadic scales 1 (21 measurements = 1 h)
to 14 (214 measurements = 341 days).
Because patterns resulting from ecolo-
gical processes naturally occur over a
scale range rather than one specific
scale, we summed the detail over adja-
cent scales to analyze four general time
scales of variation: Scales 1 and 2 (1–2 h)
form the “hourly” scale (Figure 1a),
representing perturbations such as
clouds passing overhead and turbulent
scales up to the spectral gap. Scales
3–6 (4 h to 1.3 days) form the “diel”
scale (Figure 1b), representing the day-
night cycle in sunlight and temperature.
Scales 7–10 (2.7–21.3 days) form the
“multiday” scale (Figure 1c), identifying
synoptic weather variability and varia-
tions in water table. Lastly, scales
11–14 (42.7–341 days) form the “seaso-
nal” scale, representing the annual solar
cycle and phenology (Figure 1d).

2.5. Characterizing Eco-atmosphere Interactions Using Information Theory

In information theory, mutual information [Fraser and Swinney, 1986], or I describes the average tendency for
paired states of two variables (say, X and Y) to coexist. IXY is computed using themarginal and joint probability
distributions of X and Y, most commonly expressed in bits (base-2):

IXY ¼
X
xt

X
yt

p xt; ytð Þlog2
p xt; ytð Þ
p xtð Þp ytð Þ (6)

where xt and yt are all the states that X and Y, respectively, can take. The “states” of continuous variables are
delineated by binning the data (discussed below). IXY can also be expressed, albeit less intuitively, in terms of
the Shannon entropy [Shannon, 1948], H, which is a measure of uncertainty:

IXY ¼ HX þ HY � HXY (7)

HX ¼ �
X
xt

p xtð Þlog2p xtð Þ (8)

HY ¼ �
X
yt

p ytð Þlog2p ytð Þ (9)

HXY ¼ �
X
xt

X
yt

p xt; ytð Þlog2p xt; ytð Þ (10)

Figure 1. Example FCH4 variation isolated with wavelet decomposition at
the (a) hourly, (b) diel, (c) multiday, and (d) seasonal time scales. Gray lines
and points are original half-hourly measurements. The red line indicates
the wavelet detail reconstruction.
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The relative mutual information IRXY ¼ IXY=HY represents the proportion of bits needed to represent Y that are
superfluous given the knowledge of X. In other words, it is a normalized measure of statistical dependence of
Y on X, with higher values indicating greater dependence. We use this relative form of mutual information in
presenting our results because it is the most intuitive, and use the term “interaction” to indicate the degree of
mutual information, or nonindependence between X and Y.

The power of IXY lies in the lack of parametric assumptions about the relationship between X and Y and is thus
able to identify linear and nonlinear interactions alike. This utility is enhanced further by adding temporal
directionality in IXY [Schreiber, 2000]:

IXY τð Þ ¼
X
xt�τ

X
yt

p xt�τ; ytð Þlog2
p xt�τ ; ytð Þ
p xt�τð Þp ytð Þ (11)

In relative form:

IRXY τð Þ ¼

X
xt�τ

X
yt

p xt�τ; ytð Þlog2
p xt�τ ; ytð Þ
p xt�τð Þp ytð Þ

�
X
yt

p ytð Þlog2p ytð Þ (12)

where τ represents a lead (τ< 0) or lag (τ> 0) in series Y relative to X (both being functions of time, t). We
define a “synchronous” interaction as one in which the maximum IRXY is observed at zero time lag (τ = 0),
meaning that variations in Y have the strongest dependence on concurrent variations in X. An interaction
is “asynchronous” when it is otherwise. Maximum IRXY at τ> 0 means that variations in Y have a stronger
dependence on previous variations in X. Conversely, maximum IRXY at τ< 0 indicates that variations in Y lead
variations in X. In this way, I is able to identify the statistical strength and asynchrony of complex eco-
atmosphere interactions.

I does not distinguish between linear and nonlinear interactions. To make this distinction we also computed
the linearized mutual information, also called linear redundancy, L [Paluš, 2008]:

LXY τð Þ ¼ �1
2

X2
i¼1

log2 σi τð Þ½ � (13)

where σi(τ) are the eigenvalues of the correlation matrix for Xt - τ and Yt. Mutual information and linear
redundancy are theoretically equivalent when X and Y have Gaussian distributions [Paluš, 2008].

2.6. Identifying Eco-atmosphere Interactions in a Multiresolution Framework

Data were first wavelet-decomposed into the hourly, diel, multiday, and seasonal time scales outlined above
using the WMTSA Wavelet Toolkit in MATLAB [Cornish et al., 2003]. Then, the relative mutual information (IR)
between FCH4 and biophysical drivers was computed within each time scale as well as across time scales over
a range of time lags (τ) using version 1.5 of the ProcessNetwork Software [Ruddell et al., 2008]. Maximum
evaluated lags were limited to 1 day at the hourly scale, 2 days at the diel scale, 10 days at the multiday scale,
and 100 days at the seasonal scale. For cross-scale interactions, evaluated lags corresponded to the larger of
the two scales. We define “upscaling” as a significant interaction between biophysical variables at shorter
time scales and FCH4 at longer time scales, whereas “downscaling” indicates a significant interaction between
biophysical variables at longer time scales and FCH4 at shorter time scales. We define “scale-emergence” as
significant interactions that become dominant at some scales but not others.

For the hourly to multiday scales the analysis was confined to the growing season of 2013 (DOY 130–300). We
chose the growing season as the focus of our analysis at shorter time scales because it is the period when the
fluxes and their variations are strongest and dynamical entropy highest [Ruddell and Kumar, 2009a]. In
addition, the growing season of 2013 presented strong differences in water table variation between the
old and young wetlands, which provided an excellent case study on the significance of differing water table
dynamics on FCH4. To avoid wavelet-induced border distortions at the hourly to multiday scales, we decom-
posed the entire available time series and then clipped the data to the appropriate period. We did not
exclude boundary regions in the seasonal analysis, as the data were near-stationary at this scale, which
minimizes boundary distortions [Cornish et al., 2006].
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To estimate the probabilities in equation
(12), each variable was discretized into
10 fixed-interval histogram bins. This
binning scheme was found to result in
sufficient process resolution to identify
complex interactions while minimizing
bias due to finite sample sizes (see
supporting information). To avoid out-
liers disrupting bin resolution, total bin
range was determined by excluding
the lowest and highest 1% of values, for-
cing the extreme points into the first and
last bins, respectively. Table S1 in the
supporting information presents the
physical resolutions corresponding to
this binning scheme.

Statistical significance at the 95% level
was determined using a Monte Carlo
approach with random walks (see
supporting information), applying the
same sequence of computational proce-
dures as in the analysis. Additional tests
on synthetic time series characterized
the response of IR with interaction
strength (Figure S5) and the minimum
resolvable lag (Figure S6). Very strong
interactions at the hourly to multiday
scales showed IR> 0.5, and IR> 0.35 at
the seasonal scale. Moderate-strength
interactions showed IR> 0.1 at the
hourly and diel scales, IR> 0.07 at the
multiday scale, and IR> 0.05 at the sea-
sonal scale. Lag errors were ~0 for
IR> 0.04 and IR> 0.05 for the hourly

and diel scales, respectively. At the multiday scale, lag error was ~0 for IR> 0.25, increasing to ~1day for
IR< 0.1. At the seasonal scale the lag error was< 4days for IR> 0.2.

3. Results
3.1. Environmental Conditions During the Study Period

Due to their proximity, meteorological conditions were very similar between the sites (Figures 2a and 2b).
Photosynthetic flux density (Qp) followed a strong seasonal pattern, with the time series punctuated by short
periods of cloud cover (Figure 2a). Air (and soil) temperatures peaked later in the season than radiation
(Figure 2b). The water table in the young wetland was consistently managed at a level that was always well
above the surface with generally slow variation (Figure 2c). Conversely, the water table in the old wetland was
a lower height above the soil surface and managed variably, falling sharply to or below the surface several
times and especially throughout the 2013 growing season as a result of pump failure events.

3.2. Methane Fluxes and Time Scales of Variability

Methane fluxes exhibited strong variability in both wetlands (Figure 2f) over a range of time scales (Figure 3a).
The seasonal time scale dominated FCH4 variability in both wetlands and was particularly pronounced in the
young wetland, whereas the seasonal FCH4 variation in the old wetland was more balanced with diel variation.
FCH4 variation at hourly and multiday scales was generally low, although multiday FCH4 variation in the old
wetland was much stronger in 2013 (Figure 3b), which corresponded with multiple FCH4 peaks (Figure 2f)

Figure 2. Daily average environmental conditions and half-hourly green-
house gas fluxes in the old and young wetlands (see Table 1 for variable
descriptions). The vertical shaded area delineates the growing season of
2013 used in the analysis from hourly to multiday scales.
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and a highly variable water table
(Figure 2c) during the 2013 growing sea-
son. Excluding 2011 (the first year after
restoration), annual budgets of FCH4 in
the young wetland were quite stable,
averaging 50gCm�2 yr�1 with an abso-
lute range of only 3.9 gCm�2 yr�1 from
2012 to 2014. In contrast, annual FCH4
emission at the old wetland for the two
full years of measurements differed by
14gCm�2 yr�1 (26±2gCm�2 yr�1 in
2013 and 40±3gCm�2 yr�1 in 2014).

3.3. Linear Correlation Analysis

The diel average pattern of FCH4 was
most strongly correlated with Qp, E,
FCO2, and G in the old wetland (Table 2).
The young wetland shared a strong cor-
relation with E but otherwise showed
stronger correlations with air tempera-
ture (Ta), vapor pressure deficit (D), and
R. These correlations were evident in
the shape of the diel patterns (Figure 4),
where FCH4, E, and FCO2 all peaked
near noon in the old wetland, while
in the young wetland FCO2 peaked near
noon but FCH4, E, and Ta peaked later
in the afternoon (along with D and R,
not shown).

Analysis of daily average FCH4 showed the strongest (positive) correlations with soil and water temperatures
at both sites (Table 2), although correlations were generally weaker in the old wetland. FCH4 in both wetlands
also showed strong positive relationships with E and the partitioned FCO2 components G and R, although
correlations were again weaker at the old site.

3.4. Multiscale Interactions Between FCH4 and Biophysical Variables

Figures 5 and 6 show how the relative mutual information (IR) between FCH4 and biophysical variables chan-
ged from hourly to seasonal time scales in each the old wetland (Figure 5) and young wetland (Figure 6).
These figures indicate the most significant eco-atmosphere interactions at each time scale (indicated by
the length of the bars) and whether a lead or lag was involved in the process (indicated by colored extensions
to the bars). The bolded diagonal subplots in each figure show same-scale interactions, whereas the
off-diagonal subplots show interactions between temporal scales (cross-scale interactions), where variability
in biophysical variables at the scale of each row shared information with FCH4 variability at the scale of each
column. For example, Figures 5l and 6l show how variability in biophysical variables at the multiday scale
shared information with FCH4 variability at the seasonal scale. We note that each subplot in Figures 5 and 6
is another way to visualize a dynamical process network [Ruddell and Kumar, 2009b]. For the interested
reader, we provide analogous Figures 5 and 6 for FCO2 in the supporting information (Figures S8 and S9),
although we interpret only the results for FCH4 here.
3.4.1. Influence of Plant Activity on FCH4
Although there were significant cross-scale interactions, the strongest interactions between FCH4 and biophy-
sical variables occurred within the same temporal scale in both wetlands (diagonal plots in Figures 5 and 6).
At the diel scale (Figures 5f and 6f) the results were similar to those of the linear correlation analysis, with the
strongest shared information between E and FCH4 in both wetlands. In the old wetland, diel variation in FCH4
led E by 1 h whereas in the young wetland FCH4 lagged E by 0.5 h. This analysis of diel variability is slightly

Figure 3. Variance of FCH4 wavelet coefficients at each time scale, as a
percentage of the total variance, for (a) all analyzed data and (b) 2013
only. Alternating gray-white shading highlights the four time scale
groupings used for analysis.
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different from the correlation analysis of the diel pattern in that IR reflects not only similarity in the shape of the
diel pattern but also in the magnitude of diel variability. Thus, although the lags differed between the wetlands,
they both shared similarity in day-to-day differences in the diel magnitude of E and FCH4. The different synchro-

nies between diel FCH4 and other vari-
ables reflects the different timings of
the diel FCH4 patterns between the wet-
lands (Figure 4), FCH4 peaking with light
and FCO2 near noon at the old wetland
versus later in the afternoon with Ta in
the young wetland. Interestingly, infor-
mation on the diel variability in Qp, E,
FCO2, and G scaled up to seasonal varia-
bility in FCH4 (Figures 5h and 6h),
indicating that diel variation in
photosynthesis-related variables was
related to the shape, strength, and
timing of the seasonal FCH4 pattern.

The dominant interaction between FCH4
and E at both sites was also present in
the hourly scale (Figures 5a and 6a).
However, this was synchronous and to
the exclusion of the other strong inter-
actions observed at the diel scale. The
exception to this was the additionally
dominant IR between FCH4 and wind
direction (θ) in the young wetland,
which was also observed at the diel
and multiday scales (Figures 6a, 6f,
and 6k) yet was unidentified in the
linear correlation analysis of the diel
average pattern and daily averages
(Table 2). This indicated that spatial
variability was an important aspect of
subseasonal FCH4 variation in the young
wetland as the flux footprint shifted
with θ over various patches of vegeta-
tion and open water.

Table 2. Bivariate Correlations Between the FCH4 and Biophysical Variables

Diel Average FCH4 Pattern (2013 Growing Season) Daily Average FCH4 (All Data)

Variable Old New Old New

Qp 0.96 0.83 0.50 0.71
Ta 0.77 0.98 0.60 0.80
Tw 0.41 �0.02 0.67 0.81
Ts �0.78 0.34 0.66 0.81
D 0.74 0.98 0.41 0.62
pa 0.56 0.06 �0.52 �0.60
Hw 0.01 0.07 �0.11 �0.03
O �0.83 0.56 0.06 �0.07
θ 0.74 0.53 0.15 0.37
u* 0.68 0.42 0.45 0.71
E 0.95 0.95 0.63 0.77
FCO2 �0.94 �0.79 �0.57 �0.59
G �0.94 �0.84 �0.64 �0.79
R 0.46 0.97 0.66 0.73

Figure 4. Diel average patterns of (a) Ta, (b) FCO2, (c) E, and (d) FCH4 during
the 2013 growing season. Error bars represent the standard deviation of
the mean.
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3.4.2. Influence of Water Table Fluctuation on FCH4
At the multiday scale the dominant interactions changed considerably at the old wetland (Figure 5k), with
significant IR between FCH4 and water table height (Hw) as well as R. Examination of IRHw,FCH4 with lag
(Figure 7a) showed a primary interaction where variation in FCH4 slightly led variation in Hw (τ =�16 h),
but also a secondary interaction where FCH4 lagged Hw. The wavelet detail reconstruction for these
variables (Figure 7b) showed that large CH4 pulses (up to 200 nmolm�2 s�1) typically occurred with
minimums in water table but preceded the minimum for large water table declines. The lower strength
but synchronous interaction between FCH4 and dissolved oxygen (O) at this scale (Figures 5k and 7a) hints

Figure 5. Relative mutual information (IRX,FCH4) between FCH4 and biophysical variables (X represents each variable on the
y axis) from hourly to seasonal time scales in the old wetland. The bolded diagonal subplots show same-scale interactions,
and the off-diagonal subplots show cross-scale interactions, where variability in biophysical variables at the scale of
each row shared information with FCH4 variability at the scale of each column (upper diagonal subplots show upscaled
information; lower diagonal subplots show downscaled information). The length of the black portion of each bar indicates
IR at zero time lag, and a colored extension indicates the maximum IR and the lead or lag at which it occurred (indicated by
color, color bar units in days). Negative lag (blue) indicates that variability in FCH4 led variability in the biophysical variable.
Positive lag (yellow-red) indicates FCH4 lagged the biophysical variable. The vertical gray line in each subplot is the 95%
significance threshold.
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to the reason: peak FCH4 occurred as the water table crossed the soil surface and before the minimum in
water table. Lower IRO,FCH4 reflects the fact that that water table declines that did not cross the soil surface
(O remaining relatively constant) still corresponded with increased FCH4 (Figure 7b), thus diminishing
the average interaction between O and FCH4 at this scale. This complexity is also highlighted in the
differential magnitude of FCH4 pulses for similar declines in water table (Figure 7b) and in the statistically
significant information on Hw variation included in FCH4 up to a lag of 10 days (Figure 7a). This lagged
secondary interaction was a result of often lower FCH4 after a subsequent rise in water table than before
the drop (Figure 7b).

Information on diel and multiday Hw and O variability in the old wetland also scaled up to multiday
(Figure 5g) and seasonal (Figure 5l) FCH4 variability, respectively. Diel Hw contributed information to multiday
FCH4 variation at a peak lag of 3 days, which corresponded well with the lagged portion of IRHw,FCH4 observed
in the same-scale multiday interaction (Figure 5a). Diel Hw variation in the old wetland represented the sharp
increases in water table after managers reset the pumps, thus capturing the lagged decrease in FCH4 after Hw

Figure 6. Relative mutual information (IRX,FCH4) between FCH4 and biophysical variables (X represents each variable on the
y axis) from hourly to seasonal time scales in the young wetland. For explanation see Figure 5.
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returned to normal, higher levels. Upscaled multiday Hw and O variation led the FCH4 pattern by ~40 days
(Figures 5l and 7c). This corresponded with peak growing season FCH4 emissions that occurred prior to
periods of highly variable water table, and the lower magnitude of the FCH4 seasonal pattern during 2013
when water table variation was greatest (Figure 7d). The shift to the stronger IR between O and FCH4 in this
multiday to seasonal cross-scale interaction indicates that water table declines that fell below the surface
were most responsible for this pattern.
3.4.3. Influence of Temperature on Seasonal Scale FCH4
At the seasonal scale, the strongest IR between FCH4 and biophysical drivers in both wetlands was with air (Ta),
water (Tw), and 32 cm soil temperatures (Ts), where all lagged the seasonal increase in light availability (Qp)
(Figures 5p and 6p). The short lead in the seasonal FCH4 pattern from that of Ts likely reflected the strongest
link to soil temperature at a depth nearer the soil surface than at 32 cm. Notably, seasonal FCH4 variability in
the old wetland shared less information and was not synchronous with G and R, compared to stronger and
synchronous interactions in the young wetland, perhaps reflecting the disruptive influence of multi day Hw

and O on the FCH4 seasonal pattern in the old wetland.

Seasonal variability in biophysical variables scaled down to variability in FCH4 at shorter time scales (Figures
5m–5o and 6m–6o) that matched the general pattern of interactions observed in the same-scale seasonal
interactions (Figures 5p and 6p). This indicated that FCH4 variability from hourly to multiday scales experi-
enced seasonality along with the seasonal pattern of biophysical drivers. These downscale interactions
tended to be stronger in the old wetland and generally corresponded with the greater partitioning of FCH4
variability to shorter scales at that site (Figure 3).
3.4.4. Multiscale FCH4 Analysis With a Linear Estimator
Comparison of the mutual information results presented in Figures 5 and 6 with those of the linear redun-
dancy (Figures S10 and S11) revealed that all of the same-scale interactions (diagonal subplots in Figures 5
and 6) were resolvable with the linear estimator. However, none of the cross-scale interactions were identi-
fied. This was because a linear process results in a proportional response that by definition only occurs at
the same time scale. Most importantly, the linear estimator missed the upscaling of shorter-scale plant
activity and water table variability to the seasonal pattern of FCH4 (compare subplots h and l of Figures 5
and 6 with those of Figures S10 and S11, respectively).

4. Discussion

This is the first study to address scale, asynchrony, and nonlinearity directly with a combination of wavelet
decomposition and information theory to analyze time series of wetland CH4 exchange. Addressing scale
separated the dominant seasonal FCH4 control by soil temperature so that additionally important dynamics
associated with plant activity and water table variation could be resolved. Scale-emergent asynchrony
between the diel patterns of CO2 and CH4 exchange in the young wetland points to the mechanism of
internal gas transport in linking CH4 exchange with transpiration (detailed below). Isolating the control of
water table on CH4 exchange across scales revealed both synchronous and asynchronous effects which
opposed each other, promoting immediate CH4 release while subsequently inhibiting it. Finally, addressing
nonlinearity (and scale) revealed that information on diel plant activity and multiday water table variations
propagated to the seasonal scale to modulate cumulative emissions. Identification of these cross-scale
interactions was by definition not possible with a linear estimator and serves as strong motivation to use
nonlinear estimators in multiscale analysis.

4.1. Dynamics of CH4 Exchange

Owing to the greatest proportion of FCH4 variability at the seasonal scale in both wetlands and the strong IR

between FCH4 and Ts at this scale, this study agrees with many others across a range of wetland ecosystems
that have indicated soil temperature as the greatest control over wetland CH4 emission (for example, Chu
et al. [2014], Ding and Cai [2007], Long et al. [2010], Sachs et al. [2008], Sun et al. [2013]. Turetsky et al.
[2014], and Wille et al. [2008]). This result was expected given that the majority of previous studies used
correlation analysis of daily average fluxes to analyze seasonal variability. However, the identification of
upscaled information from diel and multiday scales to the seasonal scale identified how plant activity and
water table dynamics at shorter time scales also moderate seasonal CH4 emission.
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4.1.1. Influence of Plant Activity on FCH4
Evapotranspiration (E) was consistently and dominantly linked to FCH4 variability at hourly and diel scales in
both wetlands and additionally at themultiday scale in the young wetland (i.e., in the absence of strong water
table variation). At short time scales, the interaction with E likely represents transport of CH4 through aer-
enchyma [Garnet et al., 2005; Miller, 2011; Morrissey et al., 1993], and this variability in E and carbon assimila-
tion (G) was upscaled to influence seasonal FCH4 by representing the strength of plant activity and likely also
increased labile carbon supply [Hatala et al., 2012a; Minoda and Kimura, 1994; Whiting and Chanton, 1993].

The combination of wavelet decomposition and information theory revealed the dominance of gas transport
as the driving mechanism for short-term variability in CH4 flux. Although most studies agree that plant
activity largely controls short-term (diel) patterns of wetland FCH4, it is difficult to separate whether the
strength of internal gas transport, stomatal conductance, or stimulation of methane production by recent
carbon assimilation is the most direct mechanism [Hatala et al., 2012a; Hendriks et al., 2010; Koebsch et al.,
2015;Morin et al., 2014; Van der Nat et al., 1998;Whiting and Chanton, 1996]. Our analysis showed the synchro-
nous link between E and FCH4 in the absence of corresponding links to G and Qp at the hourly scale, indicating
that internal gas transport, not recent photosynthate or stomatal conductance (represented by Qp) controls
the shortest-scale perturbations of FCH4. This was further supported by comparing diel scale FCH4 patterns
between the young and old wetlands, dominated by different species of emergent vegetation with contrast-
ing gas exchange traits. The old wetland had a higher proportion of S. acutus, which uses diffusion to trans-
port oxygen to roots [Van der Nat et al., 1998]. Diffusive transport is associated with greatest CH4 emission
during peak light availability when stomatal aperture is largest [Van der Nat et al., 1998], and this was the
observed pattern in the old wetland. The young wetland had a greater proportion of Typha spp., which uses
pressurized ventilation generated by a difference between internal and external humidity to force air down
to roots which then exits through older, broken leaves [Brix et al., 1992; Chanton et al., 1993; Grosse et al., 1996;
Stengel, 1993]. Maximum internal gas flow rates in Typha spp. therefore occur later in the day with increased
vapor pressure deficit (D) [Brix et al., 1992; Sorrell and Brix, 2003], while stomatal conductance remains
synchronous with light availability [Whiting and Chanton, 1996]. This matches the shift in the diel peaks of
E and FCH4 observed in the young wetland toward the afternoon when D was highest. We note that the shift
in E toward the afternoon in the young wetland was largely unrelated to the patchy open water at that site, as
portable tower measurements in a densely vegetated portion of the wetland during 2014 showed the same

Figure 7. Relative mutual information (IR) (a and c) between FCH4 and water table (Hw) or dissolved oxygen (O) in the old
wetland as a function of lag and (b and d) subsets of the wavelet detail reconstructions of FCH4, Hw, and O. Figures 7a and
7b show same-scale multiday interactions, whereas Figures 7c and 7d show cross-scale multiday to seasonal interactions.
Note that the mean is removed in wavelet detail reconstructions; thus, the y axes in Figures 7b and 7d are relative rather
than absolute, and O in Figures 7b and 7d is offset for clarity. The horizontal line in Figures 7a and 7c denotes the 95%
statistical significance level, and the lag (τ) of maximum IR is included on the plot if not equal to zero.
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afternoon shift in E (Figure S12). Disentangling the effects of gas transport, photosynthetic carbon, and
stomatal conductance on FCH4 is challenging and often addressed using costly tracers and isotopic
techniques in laboratory environments. Wavelet decomposition and information theory are a valuable post
hoc tool that can inform process modeling of the influence of plant activity and vegetation dynamics on
CH4 production and CH4 transport.
4.1.2. Water Table Influence on Short- and Long-term Patterns of CH4 Exchange
The strong water table variation in the old wetland during 2013 shifted CH4 flux variance toward the time
scales that water table varied (Figure 3) and contributed upscaled information to multiday and seasonal
patterns (Figures 5g and 5l), demonstrating the important role of water table in modulating CH4 emission
at multiple time scales. Similar CH4 pulses during water table drawdown have been noted by others
[Hatala et al., 2012b; Moore and Dalva, 1993; Windsor et al., 1992]. The complex interactions identified in
the old wetland (Figure 7) are consistent with the release of stored CH4 as hydrostatic pressure decreased,
with peak release occurring as the water table crossed the soil surface. Differential magnitudes of CH4 pulses
therefore depend on the rate of production and the current pool. The prolonged reduction in CH4 emission
upon water table rise could result from a period of replenishment of the soil CH4 pool or the recharge of
alternative electron acceptors (such as the large soil pool of Fe in both wetlands) during unsaturated
conditions, causing a slow return to higher methane production potentials [Kettunen et al., 1999; Moore
and Dalva, 1993]. Our analysis suggests the latter given that Hw and O variation at the multiday scale contrib-
uted information to seasonal FCH4 variability and that cumulative CH4 emission in 2013 (when there were
several drainage events) was lower than that of 2014 in which the water table was more stable.
Intermittent drainage has been linked to overall lower CH4 emissions in rice [Alberto et al., 2014; Wassmann
et al., 2000; Yagi et al., 1996], as well as in temperate wetland chamber measurements [Altor and Mitsch,
2006, 2008], but has thus far not been reported in temperate marshes at the whole-ecosystem level.

Similar to other studies of wetland methane exchange in which the water table remains above the surface
[Hargreaves et al., 2001; Song et al., 2011 1243; Strachan et al., 2015], CH4 emission in the young wetland
was not linked to water table variation at any scale, and a test of our analysis to the growing season of other
years in the old wetland with less water table variation revealedmuch weaker Hw-FCH4 interactions. This high-
lights the limitation of observational studies to detect controls that do not vary, and the need for long-term
continuous measurements of whole-ecosystem CH4 exchange.

The asynchronous and cross-scale control of FCH4 variability by water table was not identified in the bivariate
linear correlation analysis, and the linearized multiscale analysis was unable to capture the influence of
shorter-scale water table variation on seasonal CH4 emission. As proof of concept that this type of analysis
can guide modeling efforts, incorporation of the lagged reduction in FCH4 after rewetting identified by this
analysis into a FCH4 process model was key for good performance (Oikawa et al., Farming carbon instead
of corn: A biogeochemical model for carbon market-funded wetland restoration, submitted to Global
Change Biology, 2015). Thus, while this analysis does not provide a predictive model it provides the timing
and scale-dependent variance information for guiding modeling efforts as well as the capability to evaluate
how well models represent cross-scale, asynchronous, and nonlinear processes observed in the data.

4.2. Limitations

Two limitations highlight ways in which the application of information theory in a multiresolution framework
can be improved. First, we did not explicitly account for partial or interactive effects among drivers. Although
separating the time scales of variation was successful in isolating and therefore identifying dominant
processes with mutual information, we acknowledge the work of Sharma and Mehrotra [2014] in developing
partial information metrics, which may enable characterization of multiple drivers competing for dominance
at the same time scale. In a conditional linear causal analysis, Detto et al. [2013] showed that interactions
which appear direct and significant in bivariate analysis can actually be indirect when conditional relation-
ships are accounted for. This is an important area of advancement for nonlinear estimators. The second
improvement addresses causation in a nonlinear multiresolution framework. Mutual information quantifies
information overlap between two variables, which is more akin to correlation. Assigning causation in envir-
onmental time series using Granger causality (a linear estimator) is fairly well developed [for example,
Detto et al., 2012; Hatala et al., 2012a; Molini et al., 2010] and involves identifying relationships in which the
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driver is able to predict future observations of the response variable better than the response can predict
itself. One nonparametric information theory metric that implies causation is transfer entropy, which quanti-
fies information flow rather than simply overlap [Schreiber, 2000] and reduces to Granger causality for vector
autoregressive processes [Barnett et al., 2009]. We chose mutual information over transfer entropy in our
analysis due to its lower data requirements [Ruddell and Kumar, 2009b] and more intuitive statistical interpre-
tation. In addition, we note that asynchronous mutual information at negative lag (response precedes driver)
was useful in characterizing the timing of FCH4 pulses during drainage events. Since causality analysis
assumes that variability in drivers precedes variability in the response, the timing of this effect would remain
unresolved. However, testing the application of transfer entropy in a multiresolution framework is a logical
next step.

5. Conclusion

Applying information theory in a wavelet-based multiresolution framework provided a systematic approach
to address scale, asynchrony, and nonlinearity directly to provide a rich understanding of the controls and
timing of biosphere-atmosphere flux dynamics needed for process modeling. Results from two case studies
of hourly to seasonal methane flux variability in Northern California restored wetlands revealed important
cross-scale, nonlinear, and asynchronous interactions that were not well resolved in traditional linear correla-
tion analysis. Although seasonal variability in CH4 exchange was dominantly and synchronously controlled by
soil temperature, water table fluctuations and plant activity were important controls at shorter time scales
that upscaled to modulate seasonal CH4 emissions. Evapotranspiration, as driven by stomatal conductance
and photosynthesis, most likely represented the strength of internal gas transport. It was responsible for
hourly to multiday CH4 flux variability in one wetland and hourly to diel variability in the other. Water table
fluctuations in the latter wetland overrode the link between methane flux and evapotranspiration at the
multiday scale, where subsurface drops in water table induced strong short-term CH4 pulses, though
ultimately reduced annual CH4 emission via subsequent inhibition of CH4 flux after rewetting. Methods that
intrinsically account for scale, asynchrony, and nonlinearity deserve wider use in interpreting long-term
continuous measurements of trace gas and energy exchange.
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