
Nonlinear Optimization

Ying Xiong
School of Engineering and Applied Sciences

Harvard University
yxiong@seas.harvard.edu

Created as NonlinearLeastSquares.pdf: January 19th, 2014.
Updated: January 30th, 2014 (v0.2).

Migrated to NonlinearOptimization.pdf: April 28, 2014.

1 Nonlinear Minimization

1.1 Problem Statement
The nonlinear minimization problem is to find a (local) minimizer for an objective function f(·), which takes in a
vector x ∈ Rn as input and a scalar f(x) as output. We denote the gradient of the function f as f ′ : Rn 7→ Rn and the
Hessian as f ′′ : Rn 7→ Rn×n.

1.2 Descent Algorithms [1]
A broad and important class of algorithms take an iterative form

xk+1 = xk + αkhk, k = 0, 1, 2, . . . , (1)

where if f ′
(
xk
)
6= 0, we choose direction hk so that f ′

(
xk
)>

hk < 0 and the step size αk so that f
(
xk + αkhk

)
<

f
(
xk
)
.

1.3 Descent Algorithms — Descent Directions
1.3.1 Newton-Type Methods [2]

At current ponit x, consider the second order Taylor expansion of f

f(x+ h) ≈ q (h) = f(x) + h>f ′(x) +
1

2
h>f ′′(x)h. (2)

Newton’s Method In its pure form, Newton’s method minimize q(h) with respect to h, getting

hn = −
(
f ′′(x)

)−1
f ′ (x) . (3)

It also chooses αk = 1 at every step. The pure Newton’s algorithm converges quadratically when x is sufficiently
close to a local minimizer, but it has some significant draw back: (1) f ′′ (x) might not be invertible; (2) f ′′ (x) might
be expensive to compute; (3) hn is not necessarily a descent direction.

1

Quasi-Newton Methods In Quasi-Newton methods, the Hessian matrix f ′′
(
xk
)

is approximated and updated at
each iteration with Bk. The descent direction is therefore

hk
qn = −

(
Bk
)−1

f ′
(
xk
)
, (4)

and usually a line search is performed to find optimal αk, although αk = 1 is a good guess when xk is close to a local
minimum. Also note for hk

qn to be a descent direction, the Bk is required to be positive definite.
One of the most popular approximation formula is the BFGS formulae [3, 2]

Bnew = B +
yy>

αh>y
− uu>

αh>u
, (5)

where
y = f ′(x+ αh)− f ′(x), u = αBh. (6)

When computing hk
qn, we need

(
Bk
)−1

instead of Bk itself, which can be directly updated without performing an
inverse (

Bnew)−1 = B−1 +

(
αh>y + y>v

) (
α2hh>

)
(αh>y)

2 − vh> + hv>

h>y
, with v = B−1y. (7)

One key property is that if B is positive definite and h>y > 0, then Bnew is also positive definite [1]. Note that
h>y > 0 is satisfied if α is chosen to satisfy the Wolfe’s conditions (more specifically, the curvature condition).

The initial B0 is usually set as an identity matrix.

1.4 Descent Algorithms — Line Search [1]
At current point x and given a search direction h, define a univariate function

ϕ(α) = f(x+ αh), (8)

whose derivative can be calculated as
ϕ′(α) = h>f ′(x+ αh). (9)

The line search algorithms seek to (approximately) minimize ϕ(α) for α ≥ 0.

1.4.1 Exact Line Search

In the exact sense, line search minimizes ϕ(α) for α ≥ 0 or α ∈ [0, s]. But this minimization can be expensive, and
its accuracy is usually not critical. Therefore people usually perform a “soft line search”, i.e. find an α ≥ 0 such that
certain condition on ϕ(α), ϕ′(α) is satisfied.

1.4.2 Wolfe Conditions [4]

A step length α is said to satisfy the Wolfe’s condition if the following inequalities hold

f (x+ αh) ≤ f (x) + c1αh
>f ′ (x) , or equivalently, ϕ(α) ≤ ϕ(0) + c1αϕ

′(0), (10)

h>f ′ (x+ αh) ≥ c2h>f ′(x), or equivalently, ϕ′(α) ≥ c2ϕ′(0). (11)

with 0 < c1 < c2 < 1. The first condition is also known as Armijo rule, and the second curvature condition.
Typical values are c1 = 10−4 and c2 = 0.9 for Newton or quasi-Newton methods. The geometric meaning for Wolfe
conditions are shown below.

We note that the curvature condition (11) is not trivial if ϕ(α) is concave at α = 0 (right plot of the following
figure), in which case the left limit of the acceptable region does not goes to 0+ even when c2 → 1−. The curvature
condition is also crucially necessary for positive-definite properties in BFGS-like algorithm.

2

Acceptable region Acceptable region

Figure 1: Wolfe conditions.

There is also a strong Wolfe condition on curvature, which replaces (11) with∣∣h>f ′ (x+ αh)
∣∣ ≤ ∣∣c2h>f ′ (x)∣∣ , or equivalently, |ϕ′(α)| ≥ c2 |ϕ′(0)| . (12)

1.4.3 Backtracking Algorithm

The backtracking line search algorithm starts from an initial step size, say 1.0 for most quadi-Newton methods, and
keep decreasing the step size by a factor of β until the Armijo rule (10) is satisfied. The β is usually chosen from 1/2
to 1/10 depending on the confidence on the quality of the initial step size (use big β if the confidence is high).

However, the result of backtracking algorithm does not necessarily satisfy the curvature condition (11), and there-
fore is not directly suitable for BFGS algorithm.

1.4.4 Bracketing Algorithm [2]

Algorithm 1: Bracketing line search algorithm
Input : The univarite function ϕ(·) such that ϕ′(0) < 0.
Input : Initial interval [a, b] for result α, use [0, 1] as default.
Output: A step size α that satisfies Wolfe conditions (10) and (11). Note that α does not necessarily lie in

the original [a, b] interval.

1 while (10) holds and (11) does not hold for α = b do
2 [a, b]← [b, 2b].
3 end
4 α← b.
5 while (10) or (11) does not hold do
6 c← (ϕ(b)− ϕ(a)− (b− a)ϕ′(a)) /(b− a)2
7 if c > 0 then α← min{0.9a+ 0.1b, max{0.1a+ 0.9b, a− ϕ′(a)/2c}};
8 else α← (a+ b)/2;
9 if (10) holds then a← α;

10 else b← α;
11 end

The first loop makes sure that (1) a satisfies sufficient descent condition and (2) b satisfies curvature condition or b
does not satisfy sufficient descent condition. This makes sure [a, b] includes at least one point in the acceptable region.

In practice, we avoid infinite loop by requesting b < bmax in the first loop and apply a maximum number of
iterations to the second loop. If this fails to make progress on ϕ(α), we set α = 0. Thus the line search algorithm is
guaranteed to finish and in finite time and not increase the objective, even if input with a non-descending direction.

3

2 Nonlinear Least Squares

2.1 Problem Statement
The nonlinear least squares problem is to find a (local) minimizer for cost function

F (x) =

m∑
i=1

(fi(x))
2
= ‖f (x)‖2 = f (x)

>
f (x) , (13)

where fi : Rn 7→ R, i = 1, . . . ,m are given nonlinear functions.
A nonlinear least squares problem is a special variant of the more general nonlinear optimization problem, and the

special form provides useful structure that we can exploit. Define

(J (x))i,j =
∂fi
∂xj

(x) (14)

the Jacobian matrix of f (x), then we have

F′ (x) =2J (x)
>
f (x) , (15)

F ′′ (x) =2J (x)
>
J (x) + 2

m∑
i=1

fi (x)f
′′
i (x) , (16)

which means even when we do not have second-order information of f (x), we still know something about F ′′ (x)
from J (x) alone. Furthermore, if f (x) ≈ 0 near the minima, then 2J(x)>J(x) is a good approximation of F ′′(x).

2.2 Algorithms
We make a linear approximation on f (x) near a given x as

f (x+ h) ≈ ` (h) = f (x) + J (x)h, (17)

which yields

F (x+ h) ≈ L (h) =` (h)
>
` (h) (18)

=f>f + 2h>J>f + h>J>Jh (19)

=F (x) + 2h>J>f + h>J>Jh. (20)

Note that this is equivalent to perform a second order Taylor expansion on F (x) and approximate F ′′ as 2J>J .

2.2.1 Gauss-Newton Algorithm

The Gauss-Newton algorithm minimize (20) directly, with

hgn = −
(
J>J

)−1
J>f . (21)

The algorithm has at least two short-comings: (1)
(
J>J

)
might be singular and (2) hgn might not be a descending

direction.

4

2.2.2 Levenberg-Marquardt Algorithm [5, 6, 7]

Levenberg-Marquardt algorithm is a damped Gaussian-Newton method

hlm,1 = −
(
J>J + µI

)−1
J>f , (22)

or, as suggested by Marquardt

hlm,2 = −
(
J>J + µ diag

(
J>J

))−1
J>f . (23)

We write the two forms together as

h>lm = −
(
J>J + µD

)−1
J>f , (24)

where the “damping matrix” D can either be I or diag
(
J>J

)
.

Choice of Damping Factor [8] Define a gain ratio

% =
F (x)− F (x+ hlm)

L(0)− L(hlm)
, (25)

where L(h) is defined in (18), and the denominator can be calculated as

L(0)− L(hlm) = h>lm

(
µDhlm − J>f

)
(26)

The update rule for µ will be

µk+1 =

{
µ ·max

{
1
3 , 1− (2%− 1)

3
}
; ν = 2 if % > 0,

µ · ν; ν = 2 · ν otherwise.
(27)

The initial µ is usually set as τ · maxi

{(
J>J

)
i,i

}
, where τ is a user specified parameter, which should be a

small value, e.g. τ = 10−6 if x0 is a good approximation to the final local minimum, and 10−3 or even 1 otherwise.

Algorithm Description The full Levenberg-Marquardt is described as below.

Algorithm 2: Levenberg-Marquardt method
Input : f (x) ,J (x): Input function and its Jacobian matrix.
Input : x0: Initial guess.
Input : τ : A parameter specifying initial damping factor, default 10−3.
Input : A stopping criterion.
Output: x: A local minimum.

1 x = x0, µ = τ ·maxi

{(
J>J

)
i,i

}
, ν = 2.

2 while the stopping criterion is not met do
3 Calculate hlm according to (24).
4 Calculate % according to (25).
5 if % > 0 then
6 x = x+ hlm, µ = µ ·max

{
1
3 , 1− (2%− 1)

3
}
, ν = 2.

7 else
8 µ = µ · ν, ν = 2ν.
9 end

10 end

5

Implementation Notes A few remarks on implementation details.

1. When the step size hlm is very small, the calculation of % in (Step 4) can suffer from numerical underflow. One
needs to check whether L(0)− L(hlm) < ε, where ε is the machine’s numerical percision, and if so, terminate
the algorithm. When the algorithm terminates this way, we are usually very close to a local minimum.

2. Due to possible ill-conditioning, the matrix
(
J>J

)
can be singular, and when µ is very small — which hap-

pens after a number of consecutive success descent — the matrix
(
J>J + µI

)
can also be close to sin-

gular, which causes numerical issues. To circumvent this, we put a minimum on µ in (Step 6), changing
it to µ = max

{
µmin, µ ·max

{
1
3 , 1− (2%− 1)

3
}}

, in order to make sure
(
J>J + µI

)
is always well-

conditioned. We choose µmin = 10−12 in our implementation.

2.3 Bounded Constraints
One of the common variants of the unconstrained nonlinear least squares problem is to add bounded constraints

li ≤ xi ≤ ui, (28)

with −∞ ≤ li < ui ≤ +∞ (infinity bound means not constraint). To incorporate such constraint, we define a
mapping from the unconstrained space to constrained space

x (y) : Rn 7→ [l,u] =
∏
i

[li, ui], (29)

and perform an unconstrained optimization on the function f(x(y)) with respect to y.

Mapping Function We list the specific mapping function from the unconstrained space to constrained space. The
general rule is that (1) the mapping is smooth and (2) the absolute value of derivative is smaller than 1 (but also close
to 1 in most of the place). We also provide one possible inverse of the mapping y0i (xi), which is used for initialization.

• li = −∞, ui = +∞, xi unconstrained

xi = yi,
dxi
dyi

= 1; y0i = xi. (30)

• li = −∞, xi ≤ ui < +∞

xi = ui + 1−
√
y2i + 1,

dxi
dyi

= − yi√
y2i + 1

; y0i =

√
(ui + 1− xi)2 − 1. (31)

• −∞ < li ≤ xi, ui = +∞

xi = li − 1 +
√
y2i + 1,

dxi
dyi

=
yi√
y2i + 1

; y0i =

√
(li − 1− xi)2 − 1. (32)

• −∞ < li ≤ xi ≤ ui < +∞

xi =
li + ui

2
+
ui − li

2
sin

2yi
ui − li

,
dxi
dyi

= cos
2yi

ui − li
; y0i =

ui − li
2

arcsin
2xi − (ui + li)

ui − li
. (33)

6

References
[1] D. P. Bertsekas, Nonlinear programming, 2nd ed. Athena Scientific, 1999.

[2] P. E. Frandsen, K. Jonasson, H. B. Nielsen, and O. Tingleff, Unconstrained optimization, 3rd ed., 2004.

[3] Wikipedia, “Plagiarism — Wikipedia, the free encyclopedia,” 2014, [Online; accessed 28-April-2014]. [Online].
Available: http://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

[4] ——, “Plagiarism — Wikipedia, the free encyclopedia,” 2014, [Online; accessed 28-April-2014]. [Online].
Available: http://en.wikipedia.org/wiki/Wolfe_conditions

[5] K. Levenberg, “A method for the solution of certain problems in least squares,” Quarterly of applied mathematics,
vol. 2, pp. 164–168, 1944.

[6] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for
Industrial & Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[7] Wikipedia, “Plagiarism — Wikipedia, the free encyclopedia,” 2014, [Online; accessed 20-January-2014].
[Online]. Available: http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

[8] K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for non-linear least squares problems, 2nd ed., 2004.

7

http://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm
http://en.wikipedia.org/wiki/Wolfe_conditions
http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

	1 Nonlinear Minimization
	1.1 Problem Statement
	1.2 Descent Algorithms bertsekas1999nonlinear
	1.3 Descent Algorithms — Descent Directions
	1.3.1 Newton-Type Methods frandsen2004unconstrained

	1.4 Descent Algorithms — Line Search bertsekas1999nonlinear
	1.4.1 Exact Line Search
	1.4.2 Wolfe Conditions wiki:WolfeConditions
	1.4.3 Backtracking Algorithm
	1.4.4 Bracketing Algorithm frandsen2004unconstrained

	2 Nonlinear Least Squares
	2.1 Problem Statement
	2.2 Algorithms
	2.2.1 Gauss-Newton Algorithm
	2.2.2 Levenberg-Marquardt Algorithm levenberg1944method,marquardt1963algorithm,wiki:LevenbergMarquardtAlgorithm

	2.3 Bounded Constraints

