
1

XML4MAT: Inter-conversion between MatlabTM
structured variables and the markup language MbML

Jonas S Almeida*, Shuyuan Wu, Eberhard O. Voit
Department of Biometry & Epidemiology, Medical University of South Carolina
135 Cannon Street, Suite 303, P.O. Box 250835, Charleston, SC 29425, USA

* corresponding author, almeidaj@musc.edu

Abstract
The MatlabTM programming environment and related public license environments
such as Octave are gaining in popularity for the identification of algorithms and the
rapid prototyping of applications in bioinformatics. At the same time, there is a
strong push to standardize the identification of extended modelling languages (XML)
and their underlying ontologies, to facilitate bioinformatic integration of data and
methods. We hereby introduce a new m-file library, XML4MAT, that supports the
inter-conversion between any MatlabTM structured variable and a specialized extended
markup language (XML), designated as MbML. The library developed also includes
functions to import non-MbML compliant XML structures. The functionality
described is achieved without object-oriented programming, which makes it ideal for
inclusion in declarative programming and implicitly turns m-structures into general-
purpose object models for data structures. The new library is made freely available at
http://bioinformatics.musc.edu/xml4mat. It is ideally suited for 1) computation of
XML structures in Matlab programming environments and 2) its inter-conversion to
and from a specialized markup language, MbML. This also enables using Matlab
structures as a format to identify new markup languages that are MbML compliant,
with the corresponding gain in clarity and computability for bioinformatic
applications in that environment.
Keywords
XML, Matlab, data structures, ontology, XML4MAT, MbML

Introduction
The unfolding of the “post-sequence era” (Kanehisa 2003) has been accompanied by
increasingly diverse data formats and methods. Correspondingly, the initial focus on
algorithm development for sequence analysis is expanding to establish a more general
computational basis for systems biology (Kitano, 2002). The pursuit of this goal is
challenged not only by the complexity of interactions in biological systems but also
by the diverse nature of the data that need to be integrated in systems modelling.
Consequently, comprehensive programming environments that are suited for calculus
and matrix algebra, string processing, as well as for computationally intensive
numerical and symbolic methods for differential calculus, are becoming a critical
necessity. Moreover, issues of general access and relevance for life scientists mandate
that such environments must be simple enough to permit fast learning and training.

Balancing computational power with simplicity and versatility in programming
environments has been a long-sought goal within the engineering community. As a
result, programming environments were developed with the intent of creating such an

1 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

2

industry standard. The premier example is arguably MatlabTM (Mathworks Inc.,
http://www.mathworks.com), but other options exist, such as the similarly conceived
open source GNU public license Octave (http://www.octave.org) and the somewhat
analogous Scilab (http://www.scilab.org). The popularity of these environments is
now beginning to expand from the engineering community into the bioinformatics
community and others that face similar computational challenges of multidisciplinary
integration. The convenient combination of simplicity and power in these
programming environments is based on the transparent use of intuitive languages that
are dynamically linked to C, C++, JAVA, FORTRAN and other languages endowed
with efficient compilers. The code written in the MatlabTM language is often referred
to as m-code or m-functions, because of the conventional .m suffix in filenames
originally proposed by Mathworks Inc. By extension, the structured variables defined
in this environment will be designated as m-variables in this report. Over the years,
numerous public domain and a fair amount of commercial m-function libraries
(“toolboxes”) have been created for almost every conceivable area of scientific
computation, from theoretical biology to statistical mechanics, some of them making
generous use of the recently incorporated support of regular expressions (Fried,
2002).

The emerging urge to integrate diverse computing techniques in bioinformatics
applications has been accompanied by the parallel necessity of including very diverse
types of data. The challenge presented by these differing data types is to capture and
store the data themselves simultaneously with their experimental and methodological
context (“metadata”), with the goal of creating truly new information. Since the early
days of bioinformatics, when GeneBank was configured by formatting DNA sequence
data using ANS.1 standards (Benson et al., 2002), a consensus has gradually been
emerging to standardize data storage and handling using extended markup languages
(XML). Today, XML is de facto the standard for intercommunication between
applications (Ambrosio, 2003), as well as for the communication of biological data
(Achard et al., 2001; Freier et al., 2002; Hanisch et al., 2002; Juty et al., 2001;
Kitano, 2002; Lacroix, 2002; Martin, 2001; Matsuno et al., 2001). It is even argued
by some (Barillot and Achard, 2000) that XML will eventually reach the status of
lingua franca for computation in both biology and other areas of science.

The convenience of MatlabTM for computation and that of extended markup
languages (XML) for representation calls for tools of inter-conversion between XML
data structures and Matlab’s structured variables. Four specific applications in
particular would benefit from a library supporting the inter-conversion:
a) Data warehousing of m-variables. The m-variable full text equivalent, namely an

alphanumeric XML string (MbML), could be stored as individual entries in text
fields of relational databases. Consequently, in addition to searching the data
structure explicitly, this would also enable faster plain-text queries using regular
expressions and other text processing tools that will recognize structures with
specific components.

b) Web-services. The deployment of web-services using m-code could be easily
configured to process arbitrary submissions formatted as XML (for example using
SOAP standards). This significantly shortens the typical development cycle,
which consists of identifying a novel theoretical solution, developing the
corresponding algorithm, and deploying it.

c) Fast identification of novel schemas for diverse biological data types. When a new
experimental method is devised, the new data types often trigger secondarily the
identification of a data model. Ultimately, the relevant context should be closely

2 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

3

reflected by the structure of the variables, which is facilitated by the flexibility of
structure and dimensionality accommodated by m-variables. Consequently, the m-
variable can be viewed as a clarifying template for schema formalisation, because
the inter-conversion would automatically create an equivalent XML schema.

d) Bioinformatics training. Bioinformatics trainees have to focus their attention on
both understanding biology and making use of computer science. The use of
XML is often too technical for novices, requiring a good command of object
oriented programming and object model structures. The inter-conversion
proposed here sidesteps these technical issues by allowing, at least initially, the
use of the more intuitive Matlab environment to identify both new algorithms and
markup languages for new data structures.

The need for inter-conversion tools described above has been recognised by other

researchers and software developers. The recognition of this need has driven the
development of a number of tools elsewhere, in addition to Matlab’s own native
commands to read, write and process XML:

http://www-sop.inria.fr/epidaure/personnel/Guillaume.Flandin/xml/index.php
http://www.geodise.org/Pages/xml_toolbox.htm

The tool proposed here differs from those others by the combination of its
simplicity, unrestricted public license release and by not relying on explicit object
model structures (such as Document Object Model, DOM, and Java Data Object
Model, JDOM), which may complicate its use in a Matlab-like declarative
programming environment. Instead, the m-variable structure itself is used as a de
facto object model.

Results
Formal representation of MbML structures
The XML4MAT m-file toolbox presented here supports direct inter-conversion
between Matlab-type variables of arbitrary structure (m-variables) and properly
formed XML alphanumeric strings. The syntax of the resulting markup language is
designated as MbML. A conscious effort was made not to use object models as to
make the inter-conversion transparent for declarative programming. In practice, m-
variables are themselves used as de facto object models which has the advantage of
containing the inter-conversion within the convenience of a Matlab-like declarative
programming environment. A more conventional albeit more technically demanding
solution would have been to use Java Object Model (JOM) as an intermediate
between the m-variable and the MbML equivalent string, as implemented elsewhere
(see Introduction).

An important formal issue is the validation of MbML strings. The proposed
MbML syntax is too general to be described by conventional DTD or XSDL
standards. However, any specific MbML generated from a structured variable can
certainly be conventionally documented. In particular, it is easily possible to
automatically generate the DTD and XSDL documentation using one of widely
available web-based tools such as (http://www.pault.com/pault/dtdgenerator and
http://www.hitsw.com/xml_utilites).

3 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

4

MbML Syntax
The MbML syntax closely follows the structure of m-variable objects. Accordingly,
the tag name is the variable (root) or field (branch) name, and the attributes are the
size and coordinates of the content elements. Thus, the general syntax is

<name class=“class value” size=“size value” ith=“coordinate
values”>contents</name>

where name is the variable or field name and the three tag attributes are described
in Table 1. The syntax is recursive, which means that contents is formatted with
similar syntax and so forth until the character or numeric content is reached.

Two main properties emerge from the syntax description in Table 1. First, the use
of default values for class and size anticipates the possibility of parsing any XML
statement into an MbML compliant string. This can be achieved by converting all
attributes in non-MbML compliant XML into new nested fields with the attributes as
new fields. This leads to a universal conversion and mathematical processing of
XML: any XML string � MbML �� any m-variable (see next section for
description of supporting functions).

Second, the ith attribute is not required for inter-conversions, because it is derived
directly from the attribute size vector elements. Its inclusion in syntax of MbML has
the purpose of facilitating the updating of existing m-variables using MbML
statements. Conveniently, the ith attribute uses linear indices to document which
contents are being updated. Consequently, if specified, this attribute is a simple
vector, regardless of the dimensionality (i.e., the length of vector size) of the contents.

Structure of inter-conversion toolbox XML4MAT
The general structure of the toolbox (m-file library) is described in figure 1. The inter-
conversion between m-variables and MbML compliant XML strings is the central
feature of the toolbox, supported by the functions xml2mat and mat2xml. This
conversion is achieved without resorting to any external object model, which turns
Matlab variables (m-variables) into de facto object models.

As described in table 1, MbML compliance involves adhering to syntactic rules
that make a restricted use of tag attributes. Consequently, in order to parse other XML
formats into MbML, it is necessary to turn all non-MbML compliant attributes into
tagged contents. This is implemented by the mbmling function (figure 1). The
conversion of non-compliant MbML XML strings into m-variables has to deal with
the general nature of XML formats, which does not impose consistent cross-reference
between multiple tags occurring multiple times within the same tag. As a
consequence, two options exist for importing XML into MbML compliance. If no
cross-reference consistency is to be enforced, xml2cell will convert the XML structure
into nested cell arrays. Otherwise, a conversion into dimensional structures, using
xml2struct, is more appropriate.

A number of peripheral functions provide additional functionality, such as an
approach for encoding of special characters (spcharin, spcharout) that in one step
overcome incompatibilities with transfer media (e.g. http), database applications and
Matlab string representation. This particular feature is worth noting because xml2mat
will automatically decode MbML strings encoded by spcharin. Similarly, mat2xml
will automatically encode character content in anticipation of potential conflicts with
Matlab display, for example, as regards the “ ’ ” character. Additional peripheral
features are described in the documentation of the m-files, displayed in the Matlab
command window by using help.

4 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

5

Illustration of inter-conversion between m-variables and MbML strings
As an illustrative example, an m-variable was created to describe a genetic regulation
dynamic model that was originally proposed by (Hlavacek and Savageau, 1996). The
system was formulated as an S-system (Savageau, 1976; Voit, 2000) and used
recently as a benchmark problem for the reverse engineering of biological networks
(Kikuchi et al., 2003: Table 1, Fig. 1).

The m-variable ode contains all relevant information to define the corresponding
system of differential equations:

ode =
 subject: 'genetic regulation network'
 refs: {'Bioinformatics 16(11): 1023-1037' 'Bioinformatics 19(5): 643-650'}
 dx: 'a.*prod(x.^g,2)-b.*prod(x.^h,2)'
 x0: [5x1 double]
 a: [5x1 double]
 g: [5x5 double]
 b: [5x1 double]
 h: [5x5 double]

This m-variable is included with the toolbox in the ode.mat file. Using mat2xml it

can be converted into the equivalent MbML string:

>> mbml=spcharout(mat2xml(ode,'ode'))
mbml =
<ode class="struct" size="1 1"><subject class="char" size="1 26">genetic

regulation network</subject><refs class="cell" size="1 2"><cell class="char" size="1
32"> Bioinformatics 16(11): 1023-1037</cell><cell class="char" size="1 29">
Bioinformatics 19(5): 643-650</cell></refs><dx class="char" size="1 31">
a.*prod(x.^g,2)-b.*prod(x.^h,2)</dx><x0 class="double" size="5 1">0.7 0.12 0.14 0.16
0.18</x0>5 10 10 8 10<g class="double" size="5 5">0 2
0 0 0 0 0 -1 0 0 1 0 0 2 0 0 0 0 0 2 -1 0 0 -1 0</g><b class="double" size="5 1">10 10
10 10 10<h class="double" size="5 5">2 0 0 0 0 0 2 -1 0 0 0 0 2 0 0 0 0 0 2 0 0 0
0 0 2</h></ode>

The resulting MbML string may, optionally, be shortened by taking advantage of the
default values of the MbML attributes (Table 1), which is achieved using the function
simplify_mbml. The shorter string was saved in the text file ode.xml, included with the
toolbox, which is visualized in figure 2 using Microsoft Explorer web-browser.

By comparing this string with the full syntax, one notices the absence of size
attributes for horizontal vectors and of class attributes for character (but not numeric)
fields. Either version of MbML, encoded or not, will be fully converted back to the
exact same original m-variable by using the command xml2mat:

>> xml2mat(mbml)
ans =
 subject: 'genetic regulation network'
 refs: {'Bioinformatics 16(11): 1023-1037' 'Bioinformatics 19(5): 643-650'}
 dx: 'a.*prod(x.^g,2)-b.*prod(x.^h,2)'
 x0: [5x1 double]
 a: [5x1 double]
 g: [5x5 double]
 b: [5x1 double]
 h: [5x5 double]

A definite demonstration that the conversion of m-variables is bi-directional,
independently of the use of encoding or simplification can be appreciated by finding
out that the value of the interpretation of the expression below by Matlab is 1 (unit):

prod((mat2xml(xml2mat(simplify_mbml(mat2xml(ode))))==mat2xml(ode))*1)

5 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

6

Discussion
The results section was centred on the documentation of the inter-conversion of
MbML and m-variables (Figure 1). This is achieved in the MbML syntax (Table 1) by
making a restricted use of tag attributes, which in non MbML compliant XML is often
undistinguishable from non-tagged contents. That is often a source of confusion as it
frequently reflects a subjective option between styles of representation rather than a
difference in the underlying data model. It can be argued, perhaps more forcefully for
data sets that will likely be processed in a Matlab-like environment, that a clearer
distinction between attributes and content is achieved by identifying the structure of
the data first as an m-variable. Indeed, the attributes of MbML tags are restricted to
providing information about the way contents should be computed. This may be of
particular relevance to bioinformatic applications given the highly structured nature of
molecular biology data and the current proliferation of multiple data models for the
same types of data.
Since inter-conversion between MbML and m-variables is bijective, it raises the
possibility of other uses of MbML representations of m-variables beyond the narrow
goal of representing m-variables as strings. For example, a much wider variety of
symbolic processing operations can now be applied to the comparison of m-variables,
by processing their MbML representations. As above, for the discussion of the
advantages of distinct use of contents and attributes, this may be of particular
relevance to bioinformatic applications given the highly structured nature of
molecular biology data.

Conclusions
A new m-file library (“toolbox”) is offered for the inter-conversion between Matlab-
like structured variables (m-variables), and a specialized markup language, MbML, is
accordingly defined. This toolbox differs from existing ones (see Introduction) by its
small size, suitability for declarative programming and focus of the dimensional
structures that make this programming environment so popular. It was suggested that
in addition to the practical value of centring the identification of the MbML schema
on the structure of m-variables, MbML compliance may have a deeper value by
explicating dimensionality in the data structure through a specialised use of tag
attributes.

Methods
Computation
The accompanying toolbox was developed in the MatlabTM 6.5 environment
(Mathworks Inc). However, there is relatively little development effort in porting the
library to public licensed environments like Octave or maybe even Scilab. This may
be done in the future, after the current version goes through one more development
cycle (as an open source library), in order to consider fundamental changes in
algorithm design in response to user feedback. On the other hand, m-file programming
has captured the interest of other open source developments, namely the MatPy
project using Python (http://matpy.sourceforge.net/), which may offer better
conditions for porting XML4MAT to GNU Public License platforms. With regard to
supported operating systems, XML4MAT it requires a functional MatlabTM
installation. Consequently it currently runs on supported Windows, Linux, UNIX and

6 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

7

Macintosh platforms (see Mathworks Inc, http://www.mathworks.com, for operating
system support details).

Availability
The XML4MAT toolbox is freely available at
http://bioinformatics.musc.edu/xml4mat.

Acknowledgements
This work was supported in part by the NHLBI Proteomics Initiative through
contract N01-HV-28181, and a Cancer Center grant from the Department of Energy
(C.E. Reed, PI).

References
Achard, F., Vaysseix, G. and Barillot, E. (2001) XML, bioinformatics and data

integration. Bioinformatics, 17, 115-25.
Ambrosio, J. (2003) Toolmakers embrace XML. Application Development

Trends, 10, 34-36.
Barillot, E. and Achard, F. (2000) XML: a lingua franca for science? Trends

Biotechnol, 18, 331-3.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A. and

Wheeler, D.L. (2002) GenBank. Nucleic Acids Res, 30, 17-20.
Freier, A., Hofestadt, R., Lange, M., Scholz, U. and Stephanik, A. (2002)

BioDataServer: a SQL-based service for the online integration of life science
data. In Silico Biol, 2, 37-57.

Fried, J.E.F. (2002) Mastering Regular Expressions. O'Reilly.
Hanisch, D., Zimmer, R. and Lengauer, T. (2002) ProML--the protein markup

language for specification of protein sequences, structures and families. In
Silico Biol, 2, 313-24.

Hlavacek, W.S. and Savageau, M.A. (1996) Rules for coupled expression of
regulator and effector genes in inducible circuits. J Mol Biol, 255, 121-39.

Juty, N.S., Spence, H.D., Hotz, H.R., Tang, H., Goryanin, I. and Hodgman, T.C.
(2001) Simultaneous modelling of metabolic, genetic and product-interaction
networks. Brief Bioinform, 2, 223-32.

Kanehisa M., Bork, P. (2003) Bioinformatics in the post-sequence era. Nature
Genetics, 33, 305-10.

Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K. and Tomita, M. (2003)
Dynamic modeling of genetic networks using genetic algorithm and S-system.
Bioinformatics, 19, 643-650.

Kitano, H. (2002) Systems biology: a brief overview. Science, 295, 1662-4.
Lacroix, Z. (2002) Biological data integration: wrapping data and tools. IEEE

Trans Inf Technol Biomed, 6, 123-8.
Martin, A.C. (2001) Can we integrate bioinformatics data on the Internet? Trends

Biotechnol, 19, 327-8.
Matsuno, H., Doi, A., Hirata, Y. and Miyano, S. (2001) XML documentation of

biopathways and their simulations in Genomic Object Net. Genome Inform
Ser Workshop Genome Inform, 12, 54-62.

Savageau, M.A. (1976) Biochemical Systems Analysis: a Study of Function and
Design in Molecular Biology. Addison-Wesley, Reading, MA.

7 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

8

Voit, E.O. (2000) Computational Analysis of Biochemical Systems. Cambridge
University Press, Cambridge, UK.

Figures
Figure 1 - General structure of XML4MAT m-file toolbox core functions
The central feature is the inter-coversion between MbML strings and m-variables,
supported by the two central functions mat2xml and xml2mat. A second group of
functions deals with non-MBML compliant XML structures in order to link them to
the central inter-conversion functionality.

any XML

m-variableMbML
xml2mat

mat2xml

xml2cell , xml2struct

mbmling

Figure 2 - Example of MbML structure
Representation of ode m-variable as an MbML string, as displayed by Microsoft
Explorer version 6. This display can be reproduced simply double clicking the
ode.xml file provided with the toolbox.

Tables
Table 1 - Description of attributes in MbML tags.
Each tag has the attributes described in this table. However, their values do not have
to be explicit - if not specified, default values will be assumed (detailed in Description
column). The existence of default values is used by simplify_mbml to simplify MbML
representation, as described below by the illustrative example in the Results section.

Attribute Values Description
Class double

char
struct
cell

Corresponds to native classes in Matlab, with the same name
containing, respectively, numbers, strings, structures and cells.
Conditions: if this attribute is absent, its value will be assumed
to be “char” unless the content is tagged, in which case it will

8 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

9

be assumed to be “struct”.
Size Vector of

integers
Each element of the vector sets a new dimension with that
many instances. This vector is the same as the one that the
Matlab native function size() would return for the same
variable. Conditions: This attribute does not have to be
specified if there is a single dimension, e.g., if the contents are
single elements or linear vectors of elements.

Ith Vector of
integers

This optional attribute is useful for a more compact definition
of sparse matrices or to make small updates in large objects. It
specifies which elements of the matrix are included between
the tags. Conditions: the default value of the i-th vector is an
integer progression between 1 and the product of all elements
of size vector (Π(size)).

Additional files
Additional file 1 – XML4MAT toolbox
m-files, examples and public license files, compressed as a .zip file.

9 of 9

Tuesday , December 30, 2003

http://www.compscipreprints.com

