Author:

Nitin S

Senior Engineer

www.Tataelxsi.co.in

About this document

TLC or Target language compiler is one of the most advanced features of RTW. RTW will generate C code from your model. The format of C/ADA code will change in accordance with target chosen. MATLAB provides an option to write TLC files and alter the way the code is generated. Thus the user can fully customize the code generated or even generate code in another language. Lack of proper documentation is one problem if you work with TLC. Very few people ever felt the need for TLC that may be the reason. As RTW becomes more and popular this situation will change. Here I have consolidated my ideas on TLC’S. Please feel free to contact me & help me with your suggestions:

Contact me: nitins@tataelxsi.co.in

All explanations are given with respect to MATLAB 6.1 and Simulink 4.1.

What you should know

You should know something to understand this tutorial and to work with TLC’S. First you should have an idea of what TLC does. Then you should know about model.rtw and its structure ie: what are contents of rtw file. You should be able to understand TLC commands also. I will be posting a beginners tutorial on TLC which provides all this information. So you can refer to that first.

Where you need to concentrate

If you are working with lot of S-functions and code generation, then you must concentrate on Block TLC’s alone. I have posted a tutorial on Block TLC’s.

If you want to change the overall structure of code generation because none of the target environments meet your requirement then you should look in detail on how modelwide target files work. You may not write new mdlwide tlc’s but you can achieve lot of power just by modifying existing TLC’s.

In my case I had to work with Block TLC to inline an S function. I also had to work with mdlwide TLC’s so that code generated by RTW-Embedded coder is wrapped into C++ class.

Code generation structure

RTW creates a build directory of name model_target_rtw for keeping the files generated. The folder nit_exp1 has got the code generated from exp1.mdl using RTW Embedded coder as target. The description of various files generated by RTW is listed below.

· Model.c: Algorithmic implementation of the model functionality (exp1.c)

· Model.h: Header file (exp1.h)

· Model_export.h: Definition of variable that are to be exported to user program. Ex: suppose the value of a signal variable is to be displayed.

· Model_reg.h: Model registration function. Also provides model initialize and model terminate functions.

· Model_common.h: Contains declarations of Block IO, Signals, Parameter as well other functions used in model.

· Model_prm.h: Contains information about all the parameters used in the model

Depending upon the target used and the options set the contents of the files will change considerably.

To get details on how to generate code I have posted 2 tutorials on that topic. Please check in file exchange forum for the same.

Role played by TLC in code generation

The above section has shown you the structure of code generated. How this code is generated. Or more specifically how this code structure is obtained. The answer is system wide target file does that. They decide how the code must look like, whether there should be comments, where the functions must come, where the variable must come etc. So to put it “ System wide target files decide the code structure, actual code generation is done by block TLC”.

 Block Target File Mapping:

The block target file mapping specifies which target file should be used to generate code for which block type. This mapping resides in matlabroot/rtw/c/tlc/genmap.tlc. All the TLC files listed are located in matlabroot/rtw/c/tlc for C. By changing this mapping you can change the way code is generated for an existing block The Target Language Compiler works with various sets of files to produce its results. The complete set of these files is called a TLC program. If you want to generate customized code like say C++ code then you must play with system wide TLC’s. If you look from a broad perspective you will think that there is only one system wide TLC for each target platform. For example: for RTW-Embedded ert.tlc. How ever this is a misconception. There is a network of TLC’s that are called from one another. It is somewhat like nesting. There are sets of TLC’s that are common for all the target platforms and there is another set which is specific for each target. This target specific TLC is the ones you must play with.

Structure of TLC program

As described earlier a set of TLC files constitutes a TLC program. The entry point for this TLC program is a system target file called “codegenentry.tlc”. This is like main () in a C program. This TLC file will further call 3 other TLC files that are

1. genmap.tlc: this file does the mapping of block target file ie: it tells which TLC file is to be used for code generation for a block of some name. So if you want to alter the code generation settings of any of these blocks or if you want to add your S-Function TLC to the list you must update this file

2. commomsetup.tlc: This file setup TLC global variable needed for code generation. Don’t mess up with this thing unless necessary.

3. commonentry.tlc: this is a common entry point to code generation. This TLC will decide the select of system target file based on target chosen. If you want to add a new target it will necessitate modifying this file.

Commonentry.tlc is responsible for generation of the files mentioned in code structure. This tlc files call a *wide.tlc file based on code format chosen. For example if code target is ert then ertwide.tlc is called. If code target is mytarget then this file must be modified to add mytargetwide.tlc. This file will calls the following files:

1. mytargetbody.tlc: this file generates the model.c source code file. If you want to make any changes in C source code consider altering this one.

2. mytargethdr.tlc: this file generates model.h. So any modifications in header file generated is to be brought about by modifying this tlc file.

3. mytargetreg.tlc: generates model_reg.h. Modify this if you want to change this header file

4. mytargetexport.tlc: generates model_export.h. Modify this if you want to change this header file.

5. mytargetcommon.tlc: generates model_common.h

6. mytargetprm.tlc: generates model_prm.h

As part of developing a wrapped C++ file I had to alter the contents of many tlc files as mentioned above. I also had to modify the entire code structure so that variables defined in model_export.h must come inside model.c file. So it may be necessary to study each tlc file in detail for making such changes.

It can be seen that lot of TLC library functions are there which are widely used in the TLC files. These functions will generate code section in buffers. These buffers are then dumped on to *.C and *.h file in the end.

If you need any assistance on these matters. Do contact me I will try to help to the max.

How to develop on your own

In MATLAB under the section “Targeting real time systems” there is a section called Tutorial on Custom target configuration. This will give you fair idea how to get started. This along with other sections near it will get you started. Since this documentation is very clear I don’t think I need to explain on it.

I have attached a C++ code generation TLC program in the folder cpptarget. This I done just for a hobby and is not a developed version. If anyone interest he can take it up as needed. This is not a working TLC program. But it will give you an idea about how to proceed.

I have also given the CPP code generated by using mytarget. This is a working code. You can see for that.

Thank you very much

Nitin S

