SOLVING INDEX 1 DAES IN MATLAB AND SIMULINK*

LAWRENCE F. SHAMPINE!, MARK W. REICHELT}, AND JACEK A. KIERZENKAS$

Abstract. This paper describes mathematical and software developments needed for the effec-
tive solution of DAEs of index 1 in the integrated computing environment MATLAB and the dynamic
simulation package SIMULINK. The developments are applicable to other problem solving environ-
ments and some are applicable to general scientific computation.

Key words. differential-algebraic equations, DAE, ordinary differential equations, ODE, PSE,
stiff systems, BDF, Gear method, software

AMS subject classifications. 65L05, 65Y99, 34A99

1. Introduction. Problem solving environments, PSEs, like MATLAB [11] and
SIMULINK [11] need capabilities for the solution of differential-algebraic equations,
DAEs. Solving DAEs in PSEs differs in important ways from solving them in general
scientific computation. PSEs are in such wide use that it is worth studying algorithms
and software appropriate for them. Although we study here the solution of DAEs in
MATLAB and SIMULINK, our mathematical and software developments are applicable
to other PSEs and some are applicable to general scientific computation.

The ode1bs code of the MATLAB ODE Suite [16] is based on a variant of the
backward differentiation formulas, BDF's, called NDFs. It was developed to integrate
stiff ordinary differential equations, ODEs, of the form

(1.1) M(t)y' = f(t,y)

When the mass matrix M (¢) is singular, this is a DAE rather than an ODE. Compu-
tation of a new step with an NDF or BDF does not require M (t) to be non-singular,
a fact that underlies the “direct approach” to solving DAEs of index 1 seen in the
popular codes DASSL [2], LSODI [10], and SPRINT [1]. Solving a DAE is more
complicated than solving an ODE because a DAE has a solution only if the initial
conditions y, are consistent in the sense that the equation M (t9)y(= f(te,y,) has
a solution yy for the initial slope. Most codes for DAEs ask the user to supply con-
sistent y, and y{. DASSL and SPRINT have options for the automatic computation
of consistent initial conditions. However, Petzold [13] observes that “Probably the
biggest complaint of DASSL users has been the lack of a robust and general code
for finding a consistent set of initial conditions.” Our goal was not merely to extend
odel5s so that it could solve problems with singular M (t), rather to make solving
a DAE of index 1 with this code as much like solving an ODE as possible. With
the extended odel5s, a user need not make any distinction between solving a DAE
and an ODE. The code recognizes automatically that the problem is a DAE, com-
putes automatically consistent initial conditions close to the given y,, and goes on to
solve the problem with the direct approach. All the capabilities of this powerful ODE
solver are available when solving a DAE. We describe how this is done in section 2.
Although we do exploit the possibilities of MATLAB in accomplishing this, some of
the developments are of general interest. In particular, the scheme for computing

* Draft of February 22, 1999.

t Math. Dept., Southern Methodist University, Dallas, TX 75275. (Ishampin@mail.smu.edu)
 Peanut Press, 11 Coolidge Road, Wayland, MA 01778. (mark@peanutpress.com)

§ The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760. (jkierzenka@mathworks.com)

1

2 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

consistent initial conditions described in section 2.1 can be used in general scientific
computation.

SIMULINK is a widely used tool for simulating physical models specified in a di-
rectional block diagram language. An “algebraic loop” in a block diagram is a set of
blocks connected in a loop so that their outputs affect directly their own inputs. In
mathematical terms, such loops correspond to algebraic equations, hence give rise to
DAEs. We prove here that DAEs formulated in SIMULINK must have the semi-explicit
form

u' = .fl(tauav)
0= f2(tau;'u)

Previous versions of SIMULINK use an “ODE approach” to solve these semi-explicit
DAEs of index 1. These versions had a limited capability for solving models with
algebraic loops, so users had to resort to ad hoc changes to models in order to solve
DAEs beyond the capabilities of the language. Our goal was to extend greatly these
capabilities. We retained the ODE approach because it would not be possible to im-
plement the direct approach in SIMULINK without significantly changing the package.
Besides, in a simulation context this approach is attractive because it is not closely
tied to the method for solving ODEs. We describe in section 3 how to solve effectively
semi-explicit DAEs of index 1 in SIMULINK using this approach with both the NDFs
and an explicit Runge-Kutta method. It is natural to ask if the ODE approach can
compete with the direct approach in MATLAB. After a thorough investigation that
we report in section 3.2, we concluded that it cannot.

Source code for the solvers and examples of this paper are available at
ftp.mathworks.com. The programs require MATLAB version 5.2 or later.

(1.2)

2. Direct Approach. In this section we study the direct approach to solving
DAE:s of the form (1.1) with ode15s in MATLAB. As mentioned earlier, our goal was to
make solving a DAE of index 1 with ode15s as much like solving an ODE as possible.
To this end, we considered it essential that the program recognize DAEs automatically.
When solving an ODE, the user supplies a vector y, of initial conditions. When
the program recognizes a DAE, it must regard this vector as a guess and compute
automatically a set of consistent initial conditions ¢ that are “close” to the y, input.
In accordance with our goal, the program cannot ask for a guessed initial slope. We
also considered it essential that all the capabilities available when solving ODEs be
available when solving DAEs, a decision with serious implications in the cases of event
location and sparse mass matrices. The goal was ambitious, but for problems of the
form (1.1), it proved possible to achieve by means that we now describe.

Although it might appear that odel15s can be used without change to solve a
problem with singular M (y), it cannot for two reasons. The first is revealed in the
computation of an on-scale initial step size, which is where the original code fails
when given a DAE. The fundamental issue is the computation of consistent initial
conditions, i.e., finding a y, for which the system M (to)y, = f(to,¥yy) has a solution
yq, that serves as initial slope. This issue is the subject of the next section. For now
we note that computation of the initial step size in ode15s has several phases. The
last phase involves the solution of a linear system involving M (¢y), which is singular
for a DAE. By simply dropping this phase, a satisfactory scheme is obtained that
involves only y;.

The other reason why ode15s gets into trouble appears when solving linear sys-
tems of the form (M — hyJ) A = r. Here M is the mass matrix evaluated at some

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 3

tm, J is an approximation to the Jacobian of f evaluated at (¢tm,v,,), v is a con-
stant characteristic of the method, and h is the current step size. These matrices are
ill-conditioned for stiff ODEs, but in the role they play as iteration matrices when
evaluating an implicit formula, only a few accurate digits are required of the A. When
solving an ODE, reducing h causes the iteration matrix M — hvyJ to behave more
like the non-singular matrix M, placing a limit on how ill-conditioned the iteration
matrix can be. There is no limit of this kind when the mass matrix is singular. It is
shown in [15] that when solving stiff ODEs that degenerate into semi-explicit DAEs
as a parameter ¢ — 0, the condition is O(h™1), see also [2], p. 145, case 1. Further,
it is shown that scaling of the equations corresponding to the algebraic variables by
h~! provides a system with a condition that is O(1). The matter is more difficult
for mass matrices that are not diagonal because it is easy to construct examples for
which row scaling is not helpful. The MATLAB linear equation solvers do not scale,
so we supplement them with explicit row scaling. This corrects the scaling of the
matrices arising from semi-explicit DAEs and may be helpful in other cases. The lin-
ear equation solvers always approximate a condition number and provide a warning
message when the matrix is “nearly singular or badly scaled.” Such messages serve no
useful purpose in the present circumstances, so we take advantage of the possibility
in MATLAB 5 of suppressing them.

2.1. Consistent Initial Conditions. DASSL calculates consistent initial con-
ditions by taking a backward Euler, BDF1, step with a “small” step size h and
SPRINT takes two such steps. A virtue of the approach is that the computations are
much like those of any other step in these BDF codes. However, there are some seri-
ous disadvantages. First, the integration starts at to + h instead of to. This conflicts
with the event location capability of ode15s because an event might occur at any
time during the integration. Second, something special must be done about assessing
the accuracy of these steps. In SPRINT the error is not estimated until the second
step. Because the second step is taken from consistent values, the usual estimate is
applicable and it is assumed that the error of a first step starting from consistent
initial values at o would have been equal to the error estimated at the second step.
In DASSL the error test is equivalent to requiring the guess to be no further than
the error tolerance from a consistent set of initial conditions. Asking the user to
guess consistent initial conditions so accurately is unacceptable in ode15s. Indeed,
the scheme of DASSL cannot be justified in the mathematical framework of a fixed
guess and step size tending to zero because for all sufficiently small h, the guess is not
accurate enough for the step to be accepted. We have found a way to compute consis-
tent initial conditions that retains the advantage of the standard approach and avoids
its disadvantages. Although the scheme is applicable to more general problems, here
we study only index 1 DAEs of the form (1.1). It should be appreciated that these
problems are not as general as those accepted by LSODI and SPRINT, and nothing
like as general as those accepted by DASSL.

For a guess y, we compute consistent initial conditions ¢ at the initial point %o
by solving the system of nonlinear algebraic equations

(2.1) M (ty) (@ —hyo) = f(to,¥)

This can be interpreted as a BDF1 step from ¢y — h to to. This is possible because
BDF1 does not require a function evaluation for ¢ prior to the initial point ¢3. As
with the standard scheme, the computations are much like those of any other step in

4 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

ode15s. The § computed in this way is a consistent set of initial conditions with ¢’
defined as (¥ — y,)/h. We prove first that this scheme “works” for linear, constant
coefficient problems because the analysis is more transparent and the results are
stronger than in the general case.

THEOREM 2.1. When applied to a linear, constant coefficient DAFE of index 1, the
initialization scheme is well-defined for any guess y, for consistent initial conditions
and all but a finite number of values of the parameter h.

Proof. Tt is shown in [2] that the general linear, constant coefficient DAE

Ay' + By = f(t)

with real n x n matrices A and B is solvable if and only if the matrix pencil A\A + B
is regular. The analysis makes use of a change of variables that for a problem of index
1 results in a semi-explicit system of the form

u' + Cu = q,(t)
v = gy(t)

Here u contains the differential variables and v, the algebraic ones. Because our
initialization scheme is invariant under the change of variables, we can restrict our
attention to such problems without loss of generality. With guess (ud v)T, we solve

the system

u — Ug

h

+ Cu = ql(to)
D = qy(to)

The algebraic variables ¥ are defined uniquely and the differential variables @ are
defined uniquely by

@ = (I +hC) ' (uo + hg,(to))

for all but at most n values of h. O

It is illuminating to note that in the transformed variables, the computed consis-
tent initial conditions converge to (ul q,(to)T)T as h — 0. These limit values are as
close as possible to the guess because any consistent set of algebraic variables must
be equal to g, (o) and the differential variables are the same as the guessed values.

In the general case we have to make the usual assumptions about the existence
of a solution and the problem being of index 1 for this solution. Correspondingly, the
result we prove about the initialization scheme is local in nature. Roughly speaking,
the result says that for any guess close to a set of consistent initial conditions, the
scheme is well-defined for small h and the computed consistent initial conditions are
close to the guess.

THEOREM 2.2. Suppose that M (t)y' = f(t,y) has a solution y(t) and that near
this solution, the functions M and f are smooth and the problem is of index 1. For
all guesses y, sufficiently close to y(to) and all sufficiently small h, the initializa-
tion scheme (2.1) is well-defined. The computed consistent initial conditions § are
continuous in both yo and h. As h — 0, § — y(to).

Proof. Let UXVT be a singular value decomposition of M(t;). Here U and
V are orthogonal matrices, ¥ = diag{D 0}, and D is a diagonal matrix of non-zero

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 5

singular values of M (ty). With the time-independent change of variables Y = VTy,
(2.1) is equivalent to

) (%) —UTF (to, fo) - F (to,f/)

The structure of ¥ yields a natural partition of Y into (u? v?)T and F; into
~T ~
(f1 fg)T. If we let f,(to,@,®) = D™ f,(to, @, ®), the equation is equivalent to

U — ug — hfl(to,’l],’lj) =0

(22) fZ(t(): ﬁ,,f)) =0

We write this system as G(uo, h;@,?) = 0. After transformation, y(t9) and y,
correspond to (u(to)T v(te)T)T and (ul vl)T, respectively. Accordingly, when uy =
u(tg) and h = 0, (2.2) has the solution & = u(tg), ¥ = v(to). When evaluated at
(u(to), 0;u(to),v(to)), the Jacobian of (2.2) with respect to the variables @ and ¥ has
the form

(6f2I/8u 8f20/3v)

Because the DAE is of index one, the block f,/0v is non-singular at (u(to)T v(t9)T)T,
hence this Jacobian is non-singular. For smooth f;, f,, both the function G and its
Jacobian are continuous in a neighborhood of (u(tp),0;u(te),v(to)). The implicit
function theorem implies that for all ug sufficiently close to u(tp) and all sufficiently
small h, (2.2) has a solution (@’ #)T. This solution is continuous with respect to o
and h. As h — 0, it converges to (u(to)” v(tg)”)T. These conclusions are equivalent
to those stated in the theorem. |

2.2. Implementation Issues. Theorems 2.1 and 2.2 show the initialization
scheme to be quite satisfactory in principle. However, there are some difficulties
of a practical nature and there is an important issue not yet raised. The analysis
suggests that a “small” h be used. However, as pointed out earlier, this leads to an
ill-conditioned iteration matrix M — h~yJ and row scaling may not be able to correct
this, so h should not be “too” small. If no initial step size is specified, we take h to
be the smaller of 10~%¢; and the maximum step size allowed. In the rather common
situation of ¢y = 0, the final point of the integration, t¢, is used instead. However, it
is also not unusual that to = 0 and t; is “large”, leading to a trial A that is much too
big. To deal with this, the Jacobian of f at (to,y,) is approximated by J and h is
reduced if necessary so that |M|| = h||J|| in the Frobenius norm, the aim being to
balance the contributions of M and J to the iteration matrix.

A simplified Newton (chord) method is used to solve the algebraic equations for
9. A weak line search with affine invariant test is used to enhance the robustness of
the solver with respect to the quality of the guess y,, c.f. [7], p. 225 ff. and [4], p. 99
ff. Nonetheless, it is assumed that the guess is good enough that each iterate will be
rather more accurate and if it is not, a new Jacobian is formed. The last Jacobian of
the initialization can be used as the first of the integration itself because ode15s saves
Jacobians and forms a new Jacobian only when it appears advantageous. Two kinds
of convergence test are employed, both requiring the algebraic equations to be solved
about as well as possible. The residual test is passed when ||M (to)y' — f(to,g)” <
1000 * eps * max (| M (to)¥'||, || £ (to,#)||) where eps is the unit roundoff. The other

6 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

test is passed when the estimated error in ¢ is no greater than 1000 eps * ||g||. If
convergence cannot be achieved in 15 iterations, h is reduced by an order of magnitude
for another try and up to three tries are allowed.

The initialization procedure provides initial conditions ¢ and slope §' = (§—1y,)/h
that are consistent, but the slope tends to be large because vy, is inconsistent and as
h = 0,7 — y(to) # yo- We would prefer consistent initial conditions with a smaller
slope, so we make a second pass through the initialization procedure with gy replacing

y(];

M (to) (%) = f(to, 9),
With a consistent guess, the procedure converges quickly to nearby consistent initial
conditions § and a corresponding slope (g — ¢)/h that is of modest size because it
approximates the slope of the solution with the consistent initial values ¢. For two
of our example problems the norm of the initial slope is reduced in this second pass
by more than two orders of magnitude, quite enough to have important effects in the
code.

Now that we understand what ode15s does when presented a DAE, let us consider
how to recognize a DAE and the consequences of a mistake. The only DAEs that the
code attempts to solve are those arising from a singular mass matrix. If a mass
matrix is present, the user has the option of answering the question, “Is this a DAE?”
Possible answers are ’yes’, ’no’, and the default of maybe’. Without a definitive
answer the code tests eps*nnz(Mt) *condest (Mt) > 1. Here eps is the unit roundof,
Mt is M (o), the nnz function counts the number of non-zero entries of a matrix, and
the condest function is Higham’s modification of Hager’s method for estimating a
condition number of a matrix. The latter function produces a lower bound for the
condition, so if this test is passed, the matrix is surely very ill-conditioned for the
precision available. We assume that the mass matrix is clearly singular for a DAE
and that this test will diagnose the problem as a DAE. It is conceivable that the
mass matrix of an ODE is so close to singular that the code diagnoses it as a DAE. A
mistake of this kind carries with it little penalty. The automatic selection of the initial
step size is a little less efficient. The integration itself differs only in that explicit row
scaling is done. The unnecessary computation of consistent initial conditions is not
costly. Although it might cause the code to integrate a problem with initial conditions
that are not exactly those input, the initial conditions will be quite close and so have
little effect on the solution.

We investigated two other schemes for recognizing singularity. A scheme based
on the singular value decomposition worked well, but we could not use it because it
was not compatible with the sparse matrix capability of ode15s. A scheme based on
the QR decomposition with column pivoting was compatible and fast, but it was not
nearly as reliable as the scheme based on condest that we adopted.

2.3. Semi-explicit DAEs. In MATLAB it is easy to recognize DAEs with diag-
onal mass matrices, i.e., semi-explicit problems. Some of the difficulties of the more
general case are not present then, so ode15s tests for a semi-explicit problem and uses
different algorithms for some of the computations when it recognizes one. It is easy to
diagnose a semi-explicit problem as a DAE by testing for zero entries on the diagonal.
The zero entries identify the algebraic variables and the others are differential vari-
ables. In the computation of consistent initial conditions, only the algebraic variables
of the guess are altered. It would be good in any event to preserve the components of

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 7

the guess that correspond to differential variables, but this has the important practi-
cal advantage of reducing the size of the system of nonlinear algebraic equations that
is solved. Using condest we test the Jacobian of this reduced system for singularity
because if it is singular, the problem is of index greater than 1. The components of the
initial slope corresponding to algebraic variables can simply be set to zero, making
unnecessary the second pass of the general scheme for computing consistent initial
conditions. As pointed out earlier, explicit row scaling corrects the scaling difficulties
with the iteration matrix when the problem is semi-explicit. Semi-explicit problems
are common and these advantages are quite important, so it is well worth the compli-
cation of recognizing these problems and treating them in a special way. It may not
be difficult to reformulate a more general problem in semi-explicit form and the user
of ode15s should appreciate the advantages of doing so.

2.4. Examples. The odel5s code is accompanied by more than a dozen example
programs that solve problems taken from the literature. The program is able to
integrate the equations without difficulty, so here we make a few remarks about how
the code performs when initializing some illustrative problems. The last Jacobian
formed during initialization is used to begin the integration, so we report only the
number of Jacobian evaluations required for the initialization itself. We also report
the number of function evaluations required, not counting those used in forming the
Jacobians.

One example solves three variations on the Robertson problem, a classic test
problem for codes that solve stiff ODEs:

yi = —0.04y1 + 104y2y3
yh = 4+0.04y; — 10*yay3 — 3 x 107y2
ys =3 x 107y3

The problem is to be integrated from initial values ¢(0) = (1,0,0)7 to steady state.
The equations admit a linear conservation law that can be used to replace one of the
differential equations by an algebraic equation. This is done as an example in the
prolog to LSODI [10]:

yi = —0.04y; + 10*y2y3
yh = 4+0.04y; — 10*yays — 3 x 10792
O=y1+y2+ys—1

Obviously the algebraic variable ys is uniquely determined by the differential variables
so this problem is of index 1 and consistent initial values are obvious. This DAE is
equivalent to the ODE and is also stiff. Before effective codes for stiff ODEs were
widely available, chemists coped with stiffness by resorting to steady state approxi-
mations. Edsberg [6] treats the Robertson problem as an example:

y; = —0.04y; + 10%yy3
0 = +0.04y; — 10*yoy3 — 3 x 10793
yh = 3 x 107ys?
Among the disadvantages of the approach listed by Edsberg is the need to find con-

sistent initial conditions. With the initial values y1(0) = 1, y3(0) = 0, it is easily seen
that there are two consistent choices for y,(0), namely +3.65 x 10~°. The physical

8 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

requirement that y2(0) > 0 determines the value that should be used here, but it is
to be appreciated that with a suitable guess, odel5s will compute the other value
and then compute a non-physical solution. For both DAEs the example program ex4
guesses the algebraic variable to be 1073, The algebraic equation of the first form is
linear and the code forms only one approximate Jacobian during the initialization.
This Jacobian is “free” because it is used for the subsequent integration. Two addi-
tional function evaluations were required for initialization. The nonlinear algebraic
equation of the second form was surprisingly difficult, requiring 6 extra Jacobians and
11 function evaluations. In a separate computation we solved the quadratic with a
simplified Newton method and found that with the same guess, 10 iterations were re-
quired to obtain equivalent accuracy. Evidently the guess is not close enough to a root
for this method to exhibit rapid convergence. It appears, then, that the initialization
did perform in an acceptable manner.

Dew and Walsh [5] present a program for solving elliptic-parabolic partial dif-
ferential equations, PDEs, in one space variable by the method of lines. The semi-
discrete equations are ODEs unless there are elliptic PDEs in the system, in which
case they are DAEs in semi-explicit form. Interestingly, initial conditions obtained
by discretization of the initial condition for the PDEs are generally not consistent for
the DAE. Fortunately, as the spatial mesh is refined and the number of equations in-
creases, initial conditions obtained in this way are closer to being consistent. Dew and
Walsh initialize in a way much like that used by ode15s for semi-explicit problems.
Specifically, they use a Newton iteration to solve the algebraic equations for consistent
initial values. Also, their BDF code requires the initial slope and like us, they set to
zero the components of the slope corresponding to algebraic variables. The example
program ex12 solves Problem 1 of [5]. With the discretization used, the semi-explicit
DAE has 19 differential variables and 21 algebraic variables. The PDEs are nonlinear
with the consequence that all the algebraic equations are nonlinear. To solve this
problem, ode15s required no extra Jacobian evaluations and only 3 extra function
evaluations for the initialization. In the program of Dew and Walsh, DAEs arise only
in the relatively unusual case of both elliptic and parabolic equations being present
in the system. We have drafted a program for the solution of PDEs by the method of
lines that is based on ode15s and the semi-discretization of Skeel and Berzins [17]. In
this discretization, Dirichlet boundary conditions give rise to algebraic equations, so
when solving systems of parabolic equations with our draft program, DAEs involving
one or two algebraic equations are common. Just as with the discretization of Dew
and Walsh, elliptic equations give rise to many algebraic equations. Obviously the
automatic computation of consistent initial conditions in ode15s is of great value in
this application of the solver. Although the basis of their discretization is different,
Skeel and Berzins use lumping in such a way that they also obtain only semi-explicit
DAEs, a very desirable characteristic that we exploit with ode15s.

A particularly interesting example of initialization is the DAS 2 problem of
Cameron [3] that we solve in the example program ex10. In the course of the simu-
lation a number of events occur, such as the opening or closing of a valve, at which
times the differential equations may change discontinuously. At such times a new
integration must be started with initial value equal to the solution at the end of the
previous integration. Because the equations may change, this initial value may not
be a consistent initial condition. For the first integration ode15s requires one extra
Jacobian and 6 extra function evaluations to compute consistent initial conditions.
The code is able to recognize that the initial conditions are consistent for three of

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 9

0.8 b

1 2 3 4 5 6 7 8 9 10

2.64

261 q

258 q

254 q

252 q

251 q

1 1.001 1.002 1.003 1.004 1.005 1.006

F1c. 2.2. Height of liquid near first event.

the remaining six integrations. Each of the other three integrations required only one
extra function evaluation to initialize. The plot of one solution component shown in
Figure 2.1 shows what appear to be vertical lines and discontinuities at events. As
Figure 2.2 shows, this is a consequence of the solution changing on vastly different
time scales.

Hairer, Lubich, and Roche [8], p. 106 ff. discuss the solution of a two phase
plug flow problem due to Byrne and Hindmarsh. After some preparation they ob-
tain a DAE in semi-explicit form involving one differential equation and two algebraic
equations. There are two sets of parameter values that lead to quite different solu-
tions. If the consistent initial conditions of [8] are used as guess, ode15s does one
simplified Newton iteration at a cost of one extra function evaluation. The example
programs ex5 and ex6 use half the correct values of the algebraic values in y,. For

10 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

157 T T
— le-7*(,1)
- YG3)

10 T

FIG. 2.3. Choked two phase plug flow. The first component is multiplied by 10~7.

both problems two additional Jacobians and 9 extra function evaluations are required
for initialization from this guess. The example programs reproduce the solutions dis-
played in [8] as Figures 9.1 and 9.2. The solution to the second problem, shown here in
Figure 2.3, is especially interesting because it corresponds to a choked flow, meaning
that there is a vertical tangent to the graph of the solution. The ode15s code termi-
nates the computation at time 1.095789 x 107 with a message that there appears to be
a singularity. The location of the singularity agrees with the value reported by other
authors. Stopping short of the singularity by integrating to 1.095 x 107 furnishes a
graph that has the same appearance, but runs in about one third the time; evidently
the bulk of the cost occurs as the step size goes to zero on approach to the singularity.

Three of the example problems, ex7, ex8, and ex13, are not semi-explicit. The
one transistor amplifier model studied in [9], p. 376 f. arises naturally with a constant
mass matrix that is not diagonal. Hairer and Wanner show how to write the problem
in semi-explicit form, but we use the original form to test the initialization of problems
that are not semi-explicit. The example program ex7 adds 0.1 to the consistent values
6 and 0 of the two algebraic variables. No extra Jacobians and only 6 extra function
evaluations are needed for the initialization. The value of the parameter h selected by
the code suffices. The computed ¢ differs in a relative sense from the consistent initial
conditions of [9] by 2 x 10™*. Nevertheless, it satisfies the consistency condition to
high accuracy because || M (to)§' — f(to,9)| = 5x 10717 and | M (to)3'|| = 3 x 107*.
A two transistor amplifier model studied in [8] is solved in the example program ex8.
When the consistent initial conditions provided by Hairer, Lubich, and Roche are used,
odelbs requires no extra Jacobians and 7 extra function evaluations to initialize. The
first value of the parameter h tried by the code works. The computed initial conditions
differ from the consistent initial guess in a relative sense by 2 x 10~%. The computed
initial conditions are consistent to high accuracy because ||M (to)y' — f(to,'g)H =
5x 1076 and | M (to)g'|| = 5x 10~%. As posed by Preston, Berzins, Dew, and Scales,
the discharge pressure control problem studied in [8] is of index 2. In proving this,
Hairer, Lubich, and Roche introduce for analytical purposes a variable s = ¢+ p/15

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 11

and reduce the problem to one of index 1. The example program ex13 solves this index
1 problem. However, it does not introduce the variable s in order to have a problem
with a mass matrix that is not diagonal. When the first few digits of the consistent
initial conditions of [8] are used as guess, odelbs requires no extra Jacobians and
3 extra function evaluations for the initialization. The first value of h tried by the
code works. The computed initial conditions differ from those of [8], but they are
consistent to high accuracy.

2.5. Trapezoidal Rule. Although the initialization procedure has been de-
scribed in terms of steps with BDF1 and exemplified only with the ode15s code, it
is not restricted to BDF codes. The trapezoidal rule code ode23t added to MATLAB
at version 5.2 makes the point. Because this implicit Runge-Kutta formula is not
damped at infinity, it has not received much attention as a method for the solution of
DAEs of index 1. However, for the simulation of important kinds of electrical circuits,
this stability behavior is precisely what is desired. It is shown in [8] and [2] that the
method converges for DAEs of index 1 and has the same rate of convergence for both
differential and algebraic variables. Extending ode23t to solve DAEs of index 1 in-
volved nothing more than copying the algorithms of ode15s for recognizing DAEs and
computing consistent initial conditions. The extended code solves efficiently all the
examples supplied with ode15s for which the stability properties of the trapezoidal
rule are appropriate.

3. ODE Approach. In this section we study the ODE approach to solving
semi-explicit DAEs of index 1 in the form (1.2). The approach is based on the usual
treatment of existence and uniqueness for such problems, see e.g. [2, 9]. The equations
are to be solved on an interval [to,ts] with initial condition u(to) = uo and a guess
vo for v(tg). Assuming that the algebraic equations 0 = f,(to, ug, v) have a solution
V near vy, the key requirement is that the Jacobian df,/0v is non-singular in a
region containing (to,ug, V). This assumption on df,/0v makes the problem of
index 1. The implicit function theorem implies the existence of a function R(t,u)
such that R(to,uo) = V and 0 = f,(¢,u, R(t,u)). The differential equations are
then u' = f, (t,u, R(t,u)) = f(t,u) and the task reduces to solving an initial value
problem for an ODE. In this approach an ODE is solved with a function f(¢,u) that
happens to be complicated to evaluate because it involves the solution of a system
of nonlinear algebraic equations. In the literature this approach is often called the
“indirect approach”, but we think “ODE approach” is apt. A powerful attraction of
the ODE approach is that it can be used with any of the methods implemented in
the codes of the ODE Suite and SIMULINK. These include two explicit Runge-Kutta
codes and an Adams-Bashforth-Moulton PECE code for non-stiff problems and an
NDF code, a modified Rosenbrock code, and a trapezoidal rule code for stiff problems.

3.1. SIMULINK. The ODE approach assumes that the DAE is semi-explicit
and of index 1. We prove that the DAEs in SIMULINK are semi-explicit, but it is
not hard to construct examples that have index greater than one. We have made no
provision for solving such DAEs in SIMULINK.

THEOREM 3.1. A system of equations can be represented in a SIMULINK block
diagram if and only if the system can be written as a DAFE in semi-explicit form (1.2).

Proof. First, if a DAE system has the form (1.2), then the block diagram shown
in Figure 3.1 represents it in SIMULINK. In this figure the first two blocks implement
u' = f;(t,u,v) and the last two blocks implement v = f,(t,u,v) + v, i.e., 0 =

f2(tauav)'

12 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

Now suppose that we are given a block diagram. Label the output of each inte-
grator block with a unique u;, and label the output of each non-integrator block with
a unique v;. This labels all lines in the model, except for those that depend solely on
t. For each integrator block, write down the equation u} = u; or u} = v;, depending
on the label of the input to the block. These differential equations are in the form
u' = f,(t,u,v). The output v; of each non-integrator block is a function of its inputs,
namely v; = g;(t,u,v). When this is rewritten as 0 = v; — ¢;(¢,u,v), the algebraic
equations are in the form 0 = f,(t,u,v). This accounts for all the equations of the
system, so we see that it has the semi-explicit form (1.2). 0

G

t

t t

u’ 1 u 0
u fL(tu,v) » - pu f2(tu,v)
s -

v Integrator v

\ 4
\ 4
+
<

\ 4

Sum

F1G. 3.1. A block diagram representing the semi-explicit DAE system (1.2).

In the ODE approach, we rely upon standard ODE solvers. The thing that is
different is that each time the integrator needs a value of f,(t,u,v) for given (¢, u),
the algebraic equations 0 = f,(¢,u,v) must first be solved for v. The issue is how
to solve these equations efficiently, and more important, reliably. The first question
is how accurately to solve the algebraic equations. The simplest answer is to solve
them about as accurately as possible in the precision available, which proves to be
both convenient and practical in the SIMULINK environment. For one thing, there is
no provision in this package for specifying tolerances on algebraic variables, though it
would be possible to change this.

Because signal flow in a SIMULINK block diagram is directional, the blocks can be
topologically ordered. Strongly connected components of the directed graph represent
the algebraic constraints. Accordingly, the first step of solving 0 = f,(¢,u,v) for v is
to partition the equations into subsets that can be solved independently in topological
order, node tearing. Solving the subsets successively is an important advantage of the
ODE approach because it is generally faster and more robust. By solving each of the
smaller systems about as accurately as possible, we avoid the difficult question of how
errors compound in successive solution.

We solve each subsystem of nonlinear algebraic equations with the algorithm of
the MINPACK [12] code HYBRD1, customized for the context. This provides a strong
foundation for the reliable and efficient solution of algebraic equations. The algorithm
makes use of a Jacobian that in the circumstances must be approximated numerically.
We found it necessary to strengthen greatly the scheme for doing this. We began
by replacing it with the scheme of D.E. Salane [14] used by ode15s. However, we
found that scaling difficulties sometimes led to columns in the numerical Jacobian
that were zero. For DAEs of index 1 the Jacobian cannot have zero columns, so we

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 13

must recognize such columns and compute them more accurately. We also found it
necessary to use central rather than one-sided differences to deal with signals that
have discontinuous first derivatives.

A good starting guess is of obvious importance. The popular codes using the
direct approach are based on methods that approximate the algebraic variables by
polynomial interpolants, just like the differential variables. Although it would require
more interaction with the integrator than is convenient, it would be possible to do
this in SIMULINK when using ode15s. However, prediction of the algebraic variables
is fundamentally different for the Runge-Kutta and Rosenbrock methods of the pack-
age. Where the true solution (¢, u(t),v(t)) is smooth, an interpolant could be used
to predict the solution to the same order of accuracy as the method for taking a
step. There are well-known difficulties with this, but the fundamental difficulty in
the present context is that the one-step methods evaluate f,(t,8,v) at judiciously
chosen arguments 6 and points ¢ in the span of a step of size h. These intermedi-
ate arguments are close to u(t), but differ typically by O(h2?). Predicting v(t) to a
high order of accuracy for these ¢ is pointless because it corresponds to the argument
(t,u(t)) and so is not especially close to the v corresponding to the actual argument
(t,0). We have tried a number of schemes for the initial guess and the simplest has
worked best. Suppose that we have reached (t,,un,vy). In the computation of the
stages for the step from %,, we start with the initial guess v, and thereafter use the
result from one computation of v as the initial guess for the next stage. This scheme
can be used with any method for ODEs, which is important in the application.

3.2. MATLAB. The ODE approach is the natural one in SIMULINK, but can it
compete with the direct approach in the rather different environment of MATLAB? To
investigate this we modified the Runge-Kutta code ode45 and the NDF code odelbs
to use the approach for semi-explicit problems.

There are a number of questions that arise in connection with the software inter-
face. The structure of SIMULINK makes it natural to access the algebraic equations
independently of the differential equations. This would be advantageous in MATLAB,
too, but it would complicate the user interface and require the user to code the equa-
tions for independent evaluation, so we did not treat these equations differently in the
modified codes.

In their discussion of the ODE approach, Thompson and Tuttle [18] say “This
frequently proves impractical for several reasons. The first is caused by the interaction
of the convergence error in the iteration with error control in the integrator. If the
convergence tolerance is too small, the program’s execution time is high (due to
the iteration); whereas if the tolerance is too large, the integrator error test fails
repeatedly, leading to prohibitively small step-sizes and resulting in high execution
times as well as possibly erroneous results.” The key point is that to compute the
differential variables to a specified accuracy, it may be necessary to compute the
algebraic variables more accurately because the value of the function f;(¢,u,v) is
sensitive to v. We avoided this in SIMULINK by computing the algebraic variables
about as accurately as possible in the precision available, but that is not practical in
MATLAB because function evaluation is slower. The matter does not arise in the direct
approach because all the variables are computed simultaneously, hence the algebraic
variables are automatically computed as accurately as necessary. If the iteration for
the algebraic variables is converging quickly to v*, the error of an iterate v* can be
approximated by v* — v¥ ~ v**t! — v* and the error of the scaled function value
hf,(t,u,v*) by hf,(t,u,v*!) — hf,(t,u,v"). Because estimating the error in the

14 L.F. SHAMPINE, M.W. REICHELT, AND J.A. KIERZENKA

scaled function value costs a function evaluation, we first iterate until the algebraic
variables are estimated to be as accurate as the tolerance on the differential variables.
We then iterate until we estimate the scaled function value to be sufficiently accurate.
Two function evaluations are needed to recognize convergence, but because we insist
on rapid convergence of the iterations, usually only two were made in our experiments.

In section 3.1 we explained why it is harder to predict the algebraic variables in
the ODE approach when using a Runge-Kutta method. There is a related difficulty
in both ode45 and odelb5s with intermediate output. All the codes of the ODE
Suite have continuous extensions of the formulas that are used to obtain approximate
solutions between steps for “free”. This is basic to the event location capability
available in all the codes. This stays the same in the direct approach because there
are interpolants for both algebraic and differential variables, but in the ODE approach
there is the additional cost of computing algebraic variables that correspond to the
interpolated differential variables. Unfortunately, this computation is less effective
than when taking a step because the algebraic variables computed at the end of the
step and an approximation to df,/0v there are used to predict and compute the
variables at intermediate points, and they may not be good approximations near the
beginning of the step. It might be thought that this difficulty would not be important
except when locating events, but because ode4b takes relatively large steps, by default
it approximates the solution at four points in the course of every step in order to
produce a smooth graph. Accordingly, there is a considerable additional cost due to
computing algebraic variables at intermediate points for a typical integration with
this code.

odelbs is based on an implicit formula and a step ends with a final correction of
the differential variables. The algebraic variables must also be corrected if they are
to correspond to the accepted differential variables. A related issue is the formation
of approximate Jacobians by finite differences, the default in odel15s. In this it is
necessary to evaluate f;(t,u,v) a good many times at perturbed values of the dif-
ferential variables and the algebraic variables corresponding to (¢,u) are not exactly
the same as those corresponding to the perturbed differential variables. Rather than
go to the expense of computing accurately the algebraic variables in this situation,
we obtain them by means of a single simplified Newton iteration using the current
approximation to 0f,/0v at (t,u). Because only a small perturbation is made to
the differential variables, a single iteration should suffice, especially since only an
approximate Jacobian is required. The same is done with the final correction to the
differential variables. There is an analogy for ode45 because the formula is first-same-
as-last, FSAL. The final evaluation is the first stage of the next step and it seemed
better in the situation to compute the algebraic variables in usual fashion so as to
verify their accuracy.

Despite our best efforts to deal with the issues raised, and others, the version
of ode15s based on the ODE approach is not competitive with the one based on
the direct approach, quite aside from the fact that it deals with a smaller class of
problems. To be fair, the code is an acceptable way to solve semi-explicit DAFEs,
it is just not as efficient, and this is true even without special provision for semi-
explicit problems in the direct approach. The situation is less clear in the case of
ode45. It might be thought that the implicit method of ode15s would place it at a
great disadvantage when solving non-stiff problems. However, this code is surprisingly
effective for non-stiff problems because it forms few Jacobians then and linear algebra
is relatively fast in MATLAB. Also, we have pointed out a number of ways in which the

SOLVING INDEX 1 DAE’S IN MATLAB AND SIMULINK 15

ODE approach is relatively expensive in an explicit Runge-Kutta code as compared
to the direct approach in the extended ode15s. The conclusions might be different in
another computing environment, but in MATLAB we did not find the ODE approach
to be competitive with the direct approach.

(14]
(15]
(16]
(17]

(18]

REFERENCES

M. BEerzINS, P. DEw, AND R. FURZELAND, Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators, Appl. Numer. Math., 5
(1989), pp. 375-397.

K. BRENAN, S. CAMPBELL, AND L. PETZOLD, Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, Society for Industrial and Applied Mathematics,
Philadelphia, 1996.

I. CAMERON, Solution of differential-algebraic systems using diagonally implicit Runge-Kutta
methods, IMA J. Numer. Anal., 3 (1983), pp. 273-289.

P. DEUFLHARD AND A. HOHMANN, Numerical Analysis, de Gruyter, Berlin, 1995.

P. DEw AND J. WALSH, A set of library routines for solving parabolic equations in one space
variable, ACM Trans. Math. Software, 7 (1981), pp. 295-314.

L. EDSBERG, Numerical methods for mass action kinetics, in Numerical Methods for Differential
Systems, L. Lapidus and W. Schiesser, eds., Academic, New York, 1976, pp. 181-195.

1. GLADWELL, Shooting methods for boundary value problems, in Modern Numerical Methods
for Ordinary Differential Equations, G. Hall and J. Watt, eds., Clarendon Press, Oxford,
1976, ch. 16.

E. HAIRER, C. LUBICH, AND M. ROCHE, The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods, vol. 1409 of Lecture Notes in Mathematics, Springer,
Berlin, 1989.

E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations II, Springer, New York,
1991.

A. HINDMARSH, LSODE and LSODI, two new initial value ordinary differential equation
solvers, ACM SIGNUM Newsletter, 15 (1980), pp. 10-11.

THE MATHWORKS, INC., MATLAB 5.8 and Simulink 2.3, 24 Prime Park Way, Natick MA.

J. MoORE, D. SORENSEN, K. HILLSTROM, AND B. GARBOW, The MINPACK project, in Sources
and Development of Mathematical Software, W. Cowell, ed., Prentice-Hall, Englewood
Cliffs, NJ, 1984, ch. 5.

L. PETZOLD, Numerical methods for differential-algebraic equations—current status and future
directions, in Computational Ordinary Differential Equations, J. Cash and I. Gladwell,
eds., Clarendon Press, Oxford, 1992, pp. 259-273.

D. SALANE, Adaptive routines for forming Jacobians numerically, Tech. Report SAND86-1319,
Sandia National Laboratories, Albuquerque, NM, 1986.

L. SHAMPINE, Conditioning of matrices arising in the solution of stiff ODEs, Tech. Report
SANDA82-0906, Sandia National Laboratories, Albuquerque, NM, 1982.

L. SHAMPINE AND M. REICHELT, The MATLAB ODE suite, SIAM J. Sci. Comp., 18 (1997),
pp. 1-22.

R. SKEEL AND M. BERZINS, A method for the spatial discretization of parabolic equations in
one space variable, STAM J. Sci. Stat. Comput., 11 (1990), pp. 1-32.

S. THOMPSON AND P. TUTTLE, The evolution of an ODE solver in an industrial environment,
in Stiff Computation, R. Aiken, ed., Oxford Univ. Press, Oxford, 1985, pp. 180—202.

