
How to use the „Geodetic Transformations

Toolbox“?

For a start, this toolbox does nothing which is “new” – all the functionality is well known and

used in hundreds of commercial and non-commercial products all over the world. There

even are similar tools on Matlab File Exchange with different key aspects and usability, of

course. Now, why another geodetic transformation and projection toolbox then?

Basically, these functions are meant for usage in the exercises of “Geodesy and

Geoinformatics” studies at Technische Universität München. So it was the goal to combine

a set of functions which fits exactly our educational needs with full control on source code,

updates etc.

Additionally, I was not very satisfied with some code I found on the net; e.g. I did not find

any Matlab-coded transformation to UTM projection which could handle non-standard zone

width or includes polar stereographic projection.

And last reason, programming is fun and instructional: if you can code it, you have

understood it 

Now have a few examples and explanations on the usage of the implemented functions.

Whenever a function is mentioned the first time, it is highlighted in yellow. For further

function details in the examples, please refer to the function help text.

A great acknowledgement goes to Andrea Pinna from the University of Cagliari. He

improved my coding in the Helmert parameter estimation functions for speed and memory

efficiency, so that it can work on millions of points now (which I never tried). Thanks a lot!

1. A first look on different transformation types

Before starting with applications, let’s have a short look on different standard transformation

types included in the toolbox and what has to be obeyed. The commonly used

transformation types in geodesy are similarity transformation, affine transformation and

projective transformation.

Many tasks in geodesy are done using similarity transformations, i.e. coordinate relations in

both systems may differ in position, orientation and scale, but segment ratio and angles are

preserved. One may use similarity transformations in 1D (using 1 translation in z and 1 scale

factor), in 2D (using 2 translations in x,y, 1 orientation rotation around z-axis and 1 scale

factor identical for both axes) and in 3D (using 3 translations, 3 rotations and 1 scale factor):

(
𝑥′
𝑦′

𝑧′

)

𝐵

= (

𝑥0
𝑦0
𝑧0
)

𝐵

+ 𝑠 ∙ 𝑅(𝛼, 𝛽, 𝛾) ∙ (
𝑥
𝑦
𝑧
)

𝐴

This toolbox offers the function-files d1trafo.m, d2trafo.m and d3trafo.m.

For proper handling, we first need to define how the parameter set needs to look like. In

geodesy we have coordinates given in a source system A (e.g. WGS84) and want to

transform them to a destination system B (e.g. state system).

In the transformation formulas for any dimension used in this toolbox,

 the systems are right-handed

 the translation vector describes the origin of the system A in terms of the system B.

 the rotation is defined to convert the source system axes A in the direction of the

destination system axes B as a passive rotation (i.e. it describes the orientation of

system B in system A).

There are also opposite definitions of the rotation angle which describe the

orientation of system A in system B. If your parameter set is that way, you need to

change the rotation element signs.

For 3D transformations the rotation matrix R is a combination of three elemental rotations

around the three axes. As there are many possibilities to combine these elemental rotations

in different order, we need to define which rotation order is to be used in the Geodetic

Transformations Toolbox1. We use the Tait-Bryan angle order XYZ for passive intrinsic

rotations2:

𝑅 = (

cos𝛽 cos𝛾 cos𝛼 sin𝛾 + cos 𝛾 sin𝛼 sin𝛽 sin𝛼 sin𝛾 − cos𝛼 cos𝛾 sin 𝛽
−cos𝛽 sin𝛾 cos𝛼 cos 𝛾 − sin𝛼 sin𝛽 sin 𝛾 cos 𝛾 sin𝛼 + cos𝛼 sin𝛽 sin𝛾

sin𝛽 − cos𝛽 sin𝛼 cos𝛼 cos𝛽
)

The necessary parameters can be calculated by use of a least-squares adjustment if

sufficient identical points are given to solve the corresponding equation system (2 points

in1D or 2D, 3 points in 3D). Please make sure, that the ID points are sufficiently distributed,

i.e. they must not lie close to a line in 2D and close to the same plane in 3D as you would

get a configuration defect then.

The toolbox offers the functions helmert1d.m, helmert2d.m and helmert3d.m

Transformation formulas are highly non-linear and therefore need to be linearized when

parameters are estimated. This is of no harm for 1D or 2D and also in 3D if rotation angles

are small3, but bears problems if they are not. For big rotation angles in 3D, adjustment may

fail if initial approximation values are not good enough, so you will need an idea of the most

probably result in advance. If at least 4 identical points are given, an affine approach is used

to determine the (possibly big) rotation angles automatically. This works well – with one

exception: if rotation around y-axis is close to /2 or 3/2, rotations around x- and z-axes

cannot be solved unambiguously4. In that case a warning is thrown. To overcome that

1 A good overview on rotation definitions is given by Wikipedia: http://en.wikipedia.org/wiki/Euler_angles. See
especially the “Rotation matrix” section.
2 If you need to use d3trafo.m with rotation parameters according to another angle order, you may simply do
so by adopting the function source code (“Create rotation matrix” section). Please be aware, that other
functions in this toolbox which also handle with transformation parameters also rely on the defined rotation
order.
3 In many cases, especially when transforming GNSS data to local systems, this is an acceptable assumption.
4 This does not mean that the solution will be wrong – it just will bring up one of different possible solutions
which all are nearly of the same accuracy.

http://en.wikipedia.org/wiki/Euler_angles

limitation, if at least 4 ID points are given, an affine transformation may be used instead of a

similarity transformation.

Mathematically speaking, similarity transformations are just special cases of affine

transformations. An affine transformation is a linear 12-parameter approach where each

transformed coordinate is dependent on all 3 coordinates in the initial system

𝑥′ = 𝑥0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧

𝑦′ = 𝑦0 + 𝑎4𝑥 + 𝑎5𝑦 + 𝑎6𝑧

𝑧′ = 𝑧0 + 𝑎7𝑥 + 𝑎8𝑦 + 𝑎9𝑧

with x0, y0, z0 being the translation and a1 to a9 being additional affine parameters.

The major advantage is the linearity of the equation system which makes it easy to calculate

the parameters without iteration or the need of approximation values. On the other side,

nine affine parameters a1 to a9 need to be used to describe only six geometric parameters: 3

rotations and 3 scale factors (one per axis). Therefore the values of the affine parameters do

not have a geometric meaning directly. Of course, it is possible to derive the geometric

parameters from the affine ones (except y-axis-rotation is /2 or 3/2, as mentioned above),

but if they are not needed e.g. for geometric interpretation of the results, this is usually not

done. Additionally, it is not possible, e.g., to use only one scale factor or keep one scale

factor fixed as different geometric parameters are combined with others in the affine

approach.

This toolbox offers d2affinetrafo.m and d3affinetrafo.m to do the transformation,

and helmertaffine2d.m and helmertaffine3d.m to calculate the parameters.

Another transformation type used in geodesy is projective transformation. As these formulas

are used for mapping a 2D/3D scene on 2D, it is related to tasks in photogrammetry. The

basic formulas for image coordinates derived from 3D points are

𝑥′ =
𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4
𝑎9𝑥 + 𝑎10𝑦 + 𝑎11𝑧 + 1

𝑦′ =
𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑧 + 𝑎8
𝑎9𝑥 + 𝑎10𝑦 + 𝑎11𝑧 + 1

which e.g. describe how a 3D object will be seen in camera view. It does not longer

preserve segment ratio and angles. As the affine transformation is a linear approach to a

geometric problem, the parameters of the 3D projective formulas can be converted to inner

and outer camera orientation parameters if necessary5. Really, this is the main task of its

usage, at it allows camera calibration together with image acquisition as long as at least 6

reference points are known distributed in 3D space (called DLT – Direct Linear

Transformation). The reverse transformation is of not much interest as it cannot be

unambiguous6. In 2D case, projective transformation mainly is used for image (photography)

rectification with respect to a given plane.

This toolbox offers d2projectivetrafo.m and d3projectivetrafo.m to do the

5 Outer orientation is the location of the projection center and its corresponding axes’ rotations with respect to
the source coordinate system (6 parameters). Inner orientation is the principal point and camera constant (3
parameters). Additionally image shear and scaling parameters can be calculated.
6 Of course, it will become very interesting if more than one viewpoint are combined, because then 3D
coordinates can be obtained using 2D images – the principle of stereo image photography.

transformation and helmertprojective2d.m and helmertprojective3d.m to

calculate the parameters.

2. Transform GNSS (GPS) coordinates to a projection system

Let’s assume, we have some coordinate information from a GNSS7 system with respect to

the WGS84 ellipsoid and want to get projected coordinates in a given national system, e.g.

for mapping.

P1: L = 11°20’ B = 48° h = 600 m

If the coordinates are geographic (ellipsoidal), we need to transform them to Cartesian

coordinates:

P2=ell2cart(P1,'wgs84')

P2 = 4192737.07607126 840328.46328838 4717322.21701069

Don’t forget to specify the ellipsoid to use (‘wgs84’), as it is not the default one. Now we

need to know which ellipsoid is the reference of our mapping system, as we have to

transform the WGS84-coordinates to that ellipsoid. This is done using a 7-parameter

similarity transformation (3 translations, 3 rotations, 1 scale factor) which is also known as

“Helmert-Transformation”. Sometimes standard parameter sets can be used (e.g. there are

parameter sets for a whole state, but with limited accuracy), but if not, they need to be

calculated first. To do so, we need identical points in both systems, i.e. points from which

coordinates are known with respect to both ellipsoids. The closer these points lie to P1, the

better. We may use official cadastral coordinates or personal measurement data (e.g.

GNSS measurements acquired when standing on a known point). So let’s assume, we know

the following point coordinates of cadastral points around P1 (spanning an area of about 40

x 80 km²)

ID WGS84 X WGS84 Y WGS84 Z GK east GK north
GK

height
Undula

tion
ID1 4178260.42 828039.59 4732196.07 4441346.294 5340573.080 539.124 46.150

ID2 4175739.94 853475.29 4729951.18 4466749.642 5336972.649 565.442 45.668

ID3 4190726.62 839398.78 4719382.28 4449866.289 5321182.832 644.308 46.131

ID4 4213686.65 820422.71 4702783.31 4426535.047 5296320.270 957.808 46.643

ID5 4239168.32 828294.41 4678299.48 4428934.586 5260198.724 731.910 48.857

In this example, as P1 is in Bavaria, we are working with German GK coordinates which is

type of transverse Mercator (TM) projection based on the Bessel-Ellipsoid (‘besseldhdn’).

To be able to compute the transformation parameters, we need to know the Cartesian

coordinates with respect to the Bessel ellipsoid, so we need to “unmap” the GK

coordinates.

7 GNSS (Global Navigation Satellite System) is more general than GPS, which only names the US system.
Modern receivers can additionally use GLONASS (Russia),GALILEO (Europe), BEIDOU (China), and others.

a) Unmapping without use of undulation

NOTE: The height in most national systems is not an ellipsoidal height which is purely

mathematic, but connected to physics by use of gravimetric information.8 Therefore

it is not really accurate to use the GK height as ellipsoidal height, because both vary

by the undulation (in Bavaria about +47m); but as we want to calculate a

transformation with respect to our identical points, a pure shift in height is of no

interest as long as it is constant in all points. If the calculation area is relatively small,

we may assume it is (but, of course, we may lose little accuracy). This is the case for

working areas which do not extend more than a few km².

With our point field being broader, let’s see what happens without undulation first:

ID_ELL=tm2ell(ID_GK,'gk')

ID_ELL = 11.2108503729801 48.2013560143094 539.124
 11.5529036293617 48.1708116428913 565.442
 11.3277515252722 48.0276937195613 644.308
 11.0191756457828 47.8018381331175 957.808

 11.0570713190464 47.4772324075114 731.910

We could have omitted the ‘gk’ projection definition as it is the default value.

Now, again, transform geographic coordinates to Cartesian ones:

ID_CART=ell2cart(ID_ELL,'besseldhdn')

ID_CART = 4177627.88519728 828014.781833995 4731750.31639371
 4175107.44627091 853450.591600544 4729505.59844331
 4190094.2012223 839374.173512799 4718936.71090978
 4213054.13253265 820398.152807951 4702337.82116581

4238534.84436367 828270.013511677 4677852.7653253

We already can see that the coordinates of the identical points vary by several 100m

between the two systems on WGS84 and Bessel ellipsoid due to different ellipsoid shape

and gravity center.

Now compute the transformation parameters in the direction WGS84 -> Bessel. First we will

use the 7-parameter similarity transformation, Bursa-Wolf type:

[tp,rc,ac,tr]=helmert3d(ID_WGS84,ID_CART)

8 „The same height“ often is defined by the fact that water would not flow from one point to the other. Using
ellipsoidal heights, this is not fulfilled as mass attraction is not considered. If you do so, you get heights with
respect not to an ellipsoid, but to a so-called geoid which is a reference surface of the same geopotential.
Regrettably, the geoid is a bumpy surface which cannot be described mathematically. Because of that, there
are interpolation models which comprise the difference between ellipsoid and geoid zero-level, the so-called
undulation. In terms of mathematical notation, we calculate: hell = hproj + undulation.
Undulation values worldwide are -110m to +80m, of course in closer areas they are widely constant and might
by omitted. But e.g. in mountains it may be that even neighboring points vary in undulation by several cm due
to the irregular distributed masses.

tp = -701.568073251141
 -102.281892479284
 -359.905945863748
 7.37636968498118e-006
 -1.75862691992326e-005
 -1.04660412621071e-005
 0.999998745963201

rc = 0 0 0

ac = 26.0286028109207
 83.767630473504
 32.06845055104
 1.04987177218062e-005
 4.92078882323577e-006
 8.98529048792421e-006
 3.85864936172485e-006

tr = -0.280973413959146 -0.124859500792809 -0.324613041244447
 0.0626319842413068 0.0597453825175762 -0.0120819211006165
 0.194919862318784 0.055114968214184 0.146854887716472
 0.218333503231406 -0.0372454045573249 0.47009860817343
 -0.194911937229335 0.0472445546183735 -0.280258538201451

The tp are the transformation parameters (3 translations of the ellipsoid origin, 3 rotations

and 1 scale factor), the values in ac give their standard deviations.9 The rc value is the

rotation center of the transformation which is the center of the source ellipsoid WGS84. Of

more interest are the tr values which show the coordinate residuals in the identical points

after transformation. It gives the best hint on the quality of identical points and the

parameter set. Here we can see 2D position quality of up to 22 cm and height quality of up

to 50 cm, which is expectable within our working area, but of course not very good.

There is another type of calculation for the datum transformation, which is called the

Molodensky-Badekas type. It also is a 7-parameter similarity transformation in principle, but

rotation center is the centroid of the identical points in the source datum, so 3 additional

parameters are needed to specify it. We can calculate its parameters also:

[tp,rc,ac,tr]=helmert3d(ID_WGS84,ID_CART,'10p')

tp = -632.688082638383
-24.613346606959

 -445.821552417798
 7.37636970144985e-006
 -1.7586269220385e-005
 -1.04660412703721e-005
 0.999998745963186

rc = 4199516.39 833926.156 4712522.464

9 Don’t mind them being relatively big – this is a result of the geocentric calculation. The distance of the
rotation and coordinate origin (earth radius) is much bigger than the distance between the identical points, so
by leverage effect it results in a very big statistical uncertainty. Additionally, using the Bursa-Wolf
transformation type translation and rotation values are highly constrained.

ac = 0.128351334226784
 0.128351334226784
 0.128351334226784
 1.04987177251999e-005
 4.9207888258544e-006
 8.98529049022552e-006
 3.85864936250565e-006

tr = -0.280973414424807 -0.124859501142055 -0.324613039381802
 0.0626319833099842 0.0597453826339915 -0.0120819201692939
 0.194919862318784 0.0551149684470147 0.146854889579117
 0.218333504162729 -0.0372454046737403 0.470098609104753
 -0.194911936298013 0.0472445547347888 -0.280258536338806

As can be seen, the values of rotation and scale are identical to some 10-15 while, of course,

translation is significantly different. In 10-parameter-type also standard deviations of

translations have quite interpretable meaning. The results of transformation and identical

point residuals, though, are identical. So it does not make a difference which type is used10.

At this point we’ll break the mapping process without undulation and do the same while

using it. Further results without are shown later.

Unmapping with undulation

Now let’s see what happens when we add undulation information11. Again we compute the

geographic ellipsoidal coordinates from the projected ones:

ID_ELL=tm2ell(ID_GK,'gk',UND)

ID_ELL = 11.2108503729801 48.2013560143094 585.274
 11.5529036293617 48.1708116428913 611.110
 11.3277515252722 48.0276937195613 690.439
 11.0191756457828 47.8018381331175 1004.451
 11.0570713190464 47.4772324075114 780.767

It gives the same Latitude, Longitude results and undulation value is just added to projected

height. Now transform them to Cartesian coordinates,

ID_CART=ell2cart(ID_ELL,'besseldhdn')

ID_CART = 4177658.05791163 828020.762130513 4731784.7208391
 4175137.28577171 853456.691213534 4729539.62733011
 4190124.45132214 839380.233317501 4718971.0078395
 4213084.88486561 820404.141137641 4702372.37551972
 4238567.25299313 828276.346618975 4677888.7733652

10 Strictly speaking, the 10-parameter transformation is a one-way transformation only. As the rotation center
coordinates are defined and applied to the source datum only, they must not be used to transform points back
from destination to source. For practical purposes though, a datum transformation is always connected with
very small rotations only and the vector from destination centroid to source centroid is small compared to
ellipsoid center distance, so the back-transformation may be used without significant divergence.
11 Undulation values may be gotten by federal cadastral offices, usually they are not for free.

and compute transformation parameters

[tp,rc,ac,tr]=helmert3d(ID_WGS84,ID_CART)

tp = -539.273135594615

 -73.2804996002362
 -510.593550254333
 8.69722747224154e-007
 1.69069540584007e-005
 -1.08350902896085e-005
 1.00000618671287

rc = 0 0 0

ac = 8.52208615017402
 27.4259681804932
 10.4989159387799
 3.43737834858921e-006
 1.61104121645571e-006
 2.94181397157601e-006
 1.26334079821778e-006

tr = 0.0416802992112935 -0.0571302799507976 0.0464044557884336
 0.00277828890830278 0.0438527016667649 -0.0784803116694093
 0.0644033406861126 0.0298502605874091 0.00179089792072773
 -0.160344012081623 -0.109273210749961 0.0374712059274316
 0.0514820823445916 0.0927005278645083 -0.00718624796718359

We can see that the transformation parameters tp have changed significantly. Looking at

the residuals, we now recognize that they are much smaller than without using undulation

values. Except point ID4, we are talking about cm-level now which is quite common over

10s of km as cadastral accuracy is about 2-3 cm and has a key aspect on adjacency

preserving.

Now we know about the transformation process from WGS84 to Bessel ellipsoid, so we can

transform our point P2

P3=d3trafo(P2,tp)

P3 = 4192134.88018414 840309.91249954 4716910.9634969

Before we continue with mapping steps, let’s think about a further possible correction:

When transforming new points, we could interpolate the residuals of the supporting points

to preserve adjacency to neighboring points. Otherwise, for example, the transformation of

a point very close to one of the supporting points used for determining the transformation

So whenever you use a transformation parameter set which you did not compute

by yourself, be sure to know about its achievable accuracy.

parameter set would get an additional discrepancy of the supporting point’s residual.12

So we can use

P4=P3+rescorr(P3,ID_CART,tr)

P4 = 4192134.92157003 840309.928570152 4716910.96438803

which calculates the residual corrections and adds it to P3. There are different correction

modes, which in principle are all based on a weighting of the supporting point residuals by

their distance to the transformed point, we used the standard mode here. Note that residual

corrections may be not suitable if there are clusters of supporting points or the correction

needs to be an extrapolation rather than an interpolation (supporting points do not surround

transformed points).

Now we convert to geographic coordinates again

P5=cart2ell(P4,'besseldhdn')

P5 = 11.3346755657941 48.000900584251 600.057858406566

It can be seen that differences in longitude and latitude are several seconds between the

two reference ellipsoids.

Last step is the projection to GK again; here we also need to know about the undulation

value at our measurement position (+46.146m):

P6=ell2tm(P5,'gk',[],[],46.146)

P6 = 4450356.94262121 5318199.56186201 553.911858406566

Note that the input of the central meridian and the latitude origin for the TM projection are

left empty so that the function detects it automatically. We’re done!

Now, what if we had no undulation information at all? Then we would need to work with the

transformation parameters we computed in case a), and the following results would be:

P3 = 4192104.41389327 840303.80636562 4716876.4614353
P4 = 4192104.54214521 840303.839144725 4716876.55856218
P5 = 11.334675567171 48.0009006213383 553.757195455022
P6 = 4450356.94275954 5318199.56598437 553.757195455022

As the identical points lie around our measurement, we see only a minor difference in 2D

(few mm), but of course a bigger one in height (16 cm) which is due to undulation variances

in the measurement area. If we hadn’t used residual corrections, the height difference would

have been even worse (~ 28 cm).

12 Whether to apply residual corrections or not depends on what we are intended to do: If we have a highly
consistent source system and want to preserve relations between the points after transformation to a
somewhat distorted target system, we will not correct for residuals (e.g. construction points of a building
project are transformed into cadastral system). If we want to transform our source points in a way that the
resulting points match the neighboring points, we have to obey the residuals (e.g. property line points are
mapped to the cadastral system – it is important that they match surrounding land parcels).

Apart from TM projection, there are also functions for the Lambert conical projection using

two standard parallels (e.g. used in France, Belgium, New Zealand): lambertcc2ell.m

and ell2lambertcc.m. Its use is basically identical to the TM mapping functions.

3. Using PROJ.4 EPSG transformation parameters

When you want to use EPSG transformation parameters as defined in the PROJ.4 project,

beware of the different unit definitions and rotation signs.

PROJ.4 uses arc seconds [“] and difference values regarding a scale = 1 [ppm, e.g.

45 ppm], while the d3trafo function uses radians [rad] and full scale value [e.g. 1.0000045].

For the rotation, d2trafo uses EPSG:9607 definition (coordinate frame rotation). Usually,

PROJ.4 uses EPSG:9606 definition (position vector rotation). That means you need to

change the signs of the three rotation values.

And finally, be aware that +towgs parameters are also used in PROJ.4 for transformations

FROM WGS84 ellipsoid to others. In d3trafo, you can use the 4th parameter “dir” to define

the direction of the parameters entered.

4. Other possibilities to do the transformation

In some cases the (individual) 3D datum transformation cannot be used, because e.g. there

are not enough identical points, height information is worse or the mapping projection is not

known. In those cases, there are other possibilities to calculate transformations from GNSS

data to a given local mapping system. Let’s have a look on some of them. In this chapter no

numerical examples will be given, but it only uses functions which are already mentioned

before13.

Some of the listed transformation types below separate position and height transformation.

In that case identical points for position and height may be different (no need for identical

3D points). As a major advantage, bad height information does not affect position.

1. 2-step transformation

Mapping projection and ellipsoids need to be known and a parameter set for a course

3D pre-transformation must be given (e.g. some state-wide parameter set given by the

cadastral office). To use the transformation, perform the following steps:

1. Coarse 3D pre-transformation using d3trafo (WGS84 -> local ellipsoid)

Instead of a pre-transformation, one can also use a simple gravity point translation if

one or more ID points are given.

2. cart2ell

3. ell2tm (gives approximate mapped coordinates)

4. d2trafo, probably using rescorr (position)

13 All similarity transformation functions, d1trafo, d2trafo and d3trafo, are handled the same way. They just
differ in the number of transformation parameters necessary for 1D, 2D and 3D transformation.

5. d1trafo, probably using rescorr (height)

2. 1-step transformation

No mapping projection or ellipsoids need to be known, but the allowed areal extent of

this transformation is lower than for the 2-step method (some km²). To use the

transformation, perform the following steps:

1. cart2ell

2. ell2tm (gives approximate mapped coordinates)

3. d2trafo, probably using rescorr (position)

4. d1trafo, probably using rescorr (height)

3. Standard parameter transformation

When there are no identical points at all, one may use standard transformation

parameter sets which are available for nearly every datum transformation. Obviously,

there are parameter sets from (any) local datum to global datums like WGS84 and vice

versa, but in many cases there are also transformation sets from local to local datums,

e.g. at neighboring countries. Usually the parameters to use can be found in the internet

at the cadastral offices’ sites.

Not all of them are 7-parameter sets, though. In many cases there is only a shift in X,Y,Z

to be applied – when using it with d3trafo, just set the rotations to be 0 and the scaling

to be 1. You may store standard parameter sets in Transformations.mat. Please be

aware, that when using standard transformation parameters, accuracy usually is very

much lower than with the individual use of ID points (may be 1 – 25 meters or even

worse). If you’re lucky, you’ll find approximate accuracy information where you find the

parameter set.

4. Molodensky transformation

The Molodensky transformation also may be applied when there are no identical points.
It makes use of just a translation from one ellipsoid to another, while rotation and scale
factor are not regarded. As additional parameters the difference of the ellipsoids’ semi-
major axes and flattening can be used making it a simple 5 parameter transformation.
In the toolbox you may use the molodenskytrafo.m function. Parameter sets may be

stored in Transformations.mat.

With all these transformation types, of course, quality becomes lower with rising extent of

the area to be transformed in.

5. Transformation to and from UTM coordinates

In recent time, many state offices begin to transform their individual, historically grown

coordinate systems to UTM mapping systems, mainly for the need of cross-border projects

and international harmonization. Reference ellipsoid often is GRS80 / WGS84, which are

nearly identical, and a specified reference frame defines the coordinate system14.

Therefore it often is necessary to transform global coordinates (GNSS measurements) to

UTM mapping. GNSS measurements are linked to the ITRS system, so we do not need to

perform any datum transformation when we want to use UTM/WGS84, we directly can start

with the mapping15. This geodetic transformation toolbox offers two functions which both

may be used for UTM mapping and unmapping.

Let’s consider the following WGS84 coordinates, given as [Long Lat]-matrix with western

longitudes and southern latitudes showing negative sign.

City Longitude Latitude
New York 74° 00’ 00” W 40° 43’ 00” N
Stavanger 5° 44’ 00” E 58° 58’ 00” N

Adelaide 138° 35’ 00” E 34° 55’ 00” S
Buenos Aires 58° 25’ 00” W 34° 37’ 00” S

South Pole of Inaccessibility16 65° 47’ 00” W 85° 50’ 00” S

The first method to map them to UTM is the ell2tm-function we already have used in the

previous example:

UTM=ell2tm(WGS84,'utm')

UTM = 18584461.2900142 4507785.97624875
 31657160.1434484 6539553.42854269
 54279229.0733876 -3866467.69241704
 21370122.1161769 -3831446.44949075
 20477430.1980497 -9533314.66085581

It is a standard TM mapping with 6°-width zones from pole to pole, as many other tools use

it. The first two digits in easting indicate the zone, negative values in northing indicate

14 Just to define a reference ellipsoid and its origin and axes directions is not yet sufficient for coordinate
calculations. Additionally it is necessary to have the coordinate frame which is the real, physical realization of
the defined system, i.e. physical points on earth surface which can be assigned with unique coordinate values.
For example, WGS84 coordinate system is a theoretically defined structure, while its realization is linked to ITRF
which consists of several hundreds of measurement points all over the world which are computed with
reference to the astronomical inertial system ICRS. Due to continental drifts, earthquakes etc. all those points
move up to 10 cm per year (Eurasia for example is slightly rotating), so these coordinates define the frame. As
variable coordinates are not acceptable for most geodetic purposes in cadastre or engineering, their systems
apply to a special epoch of the ITRF and keep those coordinates fixed (e.g. European ETRS89 reference system
and its frame ETRF89 are the fixed ITRS/ITRF system at epoch 1-1-1989. Of course, in the meantime Europe and
ETRF89 have moved about 60 cm with respect to actual ITRF, but inside ETRF point relations remain constant).
15 Of course, if we wanted to map in any other reference system, we theoretically would have to. Again look at
European ETRS89 – since its definition in 1989 the Eurasian plate has moved about 60cm compared to the ITRS,
so GNSS measurements would be always mapped with that displacement. For practical purposes, a single
absolute GNSS measurement only has an accuracy of a few meters, so that effect is irrelevant (at the moment).
For higher accuracy up to cm- and mm-level (as needed for geodesy), we always have to work in Differential-
GNSS-mode. That means, we do not measure absolute positions but 3D vectors related to some reference
station. As this reference station already has coordinates given in ETRS89, the difference of ETRS – ITRS is
cancelled out automatically.
16 The point at the South Pole which has the biggest distance to any shippable ocean. It is hard to find a specific
example point at the poles ;-)

southern hemisphere as it is not unambiguous to add the false northing of 10 000 000 which

normally is used for the south. The results are not a standardized output, but as they just

give a matrix with double numbers, they are easy to use in successive functions when you

are working in a defined area.

Apart from that, this toolbox offers a special mapping function for standard UTM output:

UTM=ell2utm(WGS84,'wgs84')

UTM = '18T 584461.290 4507785.976'

 '32V 312188.767 6540929.870'
 '54H 279229.073 6133532.307'
 '21H 370122.116 6168553.550'
 'A 1577930.603 2189833.100'

The main difference in using the results programmatically is that they come as array of

strings (or array of strings and doubles if we have heights). This is because every standard

UTM coordinate contains of at least one letter which indicates the latitude zone.

Again the coordinates (easting) start with the longitude zone identifier. Note that Stavanger

is located in zone 32 as 32V has irregular width to cover also Norway’s west. ell2utm does

recognize such irregularities while ell2tm does not due to its fixed mapping rules.

Therefore the easting result of Stavanger is different in both functions. The next (the letter) is

the latitude zone. This also indicates the polar regions (A, B and Y, Z), which by definition

are not mapped with transverse mercator projection, but with universal polar stereographic

projection instead. Naturally this change of projection method is not obeyed with ell2tm,

but it is in ell2utm. The coordinates of the South Pole point therefore are completely

different. Additionally, using the letter scheme it is clear whether the point is on northern or

southern hemisphere so a false northing can be applied to prevent the northing from

becoming negative. Apart from the mentioned characteristics the results are identical.

Performing the unmapping, we need to use

WGS=tm2ell(UTM,'utm')

or

WGS =utm2ell(UTM2,'wgs84')

depending on the input type. Both produce the right results if fed with the right data. If you

need to transform UTM coordinates to ellipsoidal, please be aware about standard and non-

standard UTM notation and behavior in irregular zones if present.

6. NTv2 projections

NTv2 (National Transformation Version 2) is an approach to transform large amounts of

coordinate data from one coordinate system to another when both systems do not differ

very much (i.e. both systems may merely be transformed using a small translation and

probably small rotation and scale values). It was initially used to transform non-geocentric

ellipsoidal data to their geocentric equivalents17.

A NTv2 transformation set consists of a regular grid in [Long, Lat] with given shift values

[dLong, dLat] at all of the grid points. For each point to transform, the appropriate shift

values are interpolated bi-linear using the four grid points defining the specific mesh. This

allows replacing the datum transformation we learned in chapter 2 and, depending on the

grid mesh size, also considers inconsistencies in the coordinate frames.

A single NTv2 file may contain several subgrids, e.g. for urban areas. Of course always the

grid with the highest precision (i.e. smallest grid mesh size) is to be used.

Let’s look at an example of a NTv2 transformation in Germany using the BeTA2007

transformation set18. We use the readntv2-function to import the data into Matlab:

[long, lat, gridlat, gridlong, aclat, aclong, header, info] =

readntv2([your path]\BETA2007.gsa');

The main information about each subgrid can be found in the header-variable:

header = SUB_NAME: 'DHDN90'

PARENT: 'NONE'
 CREATED: '06-11-09'
 UPDATED: '06-11-09'
 S_LAT: 169200
 N_LAT: 199080
 E_LONG: 56400
 W_LONG: 19800
 LAT_INC: 360
 LONG_INC: 600
 GS_COUNT: 5208

Please note that, as standard, readntv2 returns western longitudes and shift values with

negative sign while the NTv2 definition and all NTv2 files use positive sign19. This could be

overridden by an input parameter. Latitude and Longitude limits are given in seconds.

Again we will use the five points ID1-ID5 from chapter 2 to be transformed. As NTv2

transformation is defined on ellipsoidal coordinates, we unmap them as shown in chapter 2

to get

17 NTv2 was developed by Canada’s Geodetic Survey Division as a national high precision transformation from
NAD27 to NAD83 datum. Later it was adopted from Australia and other countries.
18 The parameter set BETA2007.gsa (ASCII-version) can be downloaded at
http://crs.bkg.bund.de/crseu/crs/descrtrans/BeTA/de_dhdn2etrs_beta.php.
It is a Germany-wide transformation set with nominal sub-meter accuracy for DHDN (Bessel-ellipsoid) to
ETRS89 (GRS80-ellipsoid). NTv2 files mostly are provided as binary (*.gsb) and ASCII (*.gsa) files. Readntv2 only
is capable using ASCII files.
19 I decided to do so to have all my functions consistent in sign convention: negative is western longitude and
southern latitude. However, as NTv2 was primarily used in Canada, they didn’t want to deal with the negative
sign for the whole country, so the official standard is positive sign for western longitude. Normally this is not
relevant for the user as ntv2trafo also changes sign convention, but when just readntv2 is used to read in the
grid data, one needs to be aware of the actual definition.

http://crs.bkg.bund.de/crseu/crs/descrtrans/BeTA/de_dhdn2etrs_beta.php

ID_ELL = 11.2108503729801 48.2013560143094
 11.5529036293617 48.1708116428913
 11.3277515252722 48.0276937195613
 11.0191756457828 47.8018381331175
 11.0570713190464 47.4772324075114

NTv2 is defined as 2D transformation only so we need to skip height information.

Then we can transform them to ETRS89 using the NTv2 shift transformation:

ID_ntv2 = ntv2trafo(ID_ELL,gridlat,gridlong,header)

ID_ntv2 = 11.2095229728126 48.2004303179663
 11.5515255989068 48.1698932312929
 11.3264095908553 48.0267900150388
 11.0178833771655 47.8009572076629
 11.0557777788745 47.4763912062344

Now we are on GRS80 ellipsoid and can map the coordinates e.g. to UTM. Let’s compare

the NTv2 results with the known coordinates of the ID points in ETRS89 (which are identical

to the WGS84 coordinates). We can transform the Cartesian coordinates to ellipsoidal and

then calculate the differences (in [seconds]):

diff = 0.00192425860845447 -6.50218055398e-005
 0.00167127576418125 -0.000860465081586881
 0.000388304984966226 0.000189302090802812
 0.00135538250702893 -0.001017075626919
 -0.00157860898113427 0.00219183598630934

Expressed in meters this would be

diff = 0.057727758253634 -0.001950654166194
 0.0501382729254374 -0.0258139524476064
 0.0116491495489868 0.00567906272408436
 0.040661475210868 -0.0305122688075699
 -0.047358269434028 0.0657550795892803

giving accuracy of a few cm. This is in the order of the residuals when deducing a

transformation parameter set of the identical points (only using 2D neglecting height which

has the major residual part usually).

7. ITRS / ETRS transformations, IGS and NAD83

The International Terrestrial reference System (ITRS), its realization frames (ITRF) and the

European equivalent ETRS/ETRF are a very special chapter when it comes to

transformations. ITRS is a global, geocentric reference system20 co-rotating with the earth,

20 See http://itrf.ensg.ign.fr/itrs_itrf.php

determined with respect to quasi-fixed stellar objects and therefore allows specifying station

(point) coordinates and their velocity components in an absolute sense. The relation

between the International Celestial Reference Frame (ICRF) and the ITRF are sporadically

determined by calculating the Earth Orientation Parameters (EOP) using different major

geodetic measurement principles.

There are sets of 14 parameters which describe the transformations between different

realizations (7 parameters of a simple Cartesian 3D transformation and 7 change rates of

these parameters per year). This allows comparing and combining observations of different

epochs (e.g. different years), although continental plates have moved in the meantime21.

To avoid subsequent changes of coordinates in reference stations due to crustal

movements, the ETRS89 was defined by just using 23 ITRF points on the Eurasian plate

within the epoch 1989.0. As these points are considered to be stable with reference to each

other, the whole ETRS89 is moving in the ITRS according to the Eurasian plate. For each

ITRF frame there is also a corresponding ETRF frame and sets of parameters (3 translations,

3 rotations change rates) to transform between frames.

ETRS89 is the new reference system of many European cadastral offices (see chapter 4).

For most users, ITRS/ETRS transformations are irrelevant in practical use. So when will one

need it then?

Consider a set of GNSS measurements are given at time tc [year] which is given with respect

to WGS84 coordinate system. WGS84 is linked to the actual ITRF, so it differs from ETRF

coordinates by the plate movements22. Let’s use as a station the EPN central bureau close

to the Royal Observatory of Belgium with observed Cartesian WGS84 coordinates

[4027894.006 307045.600 4919474.910] in actual ITRF2008, measured in epoch 2011.90

(early December 2011).

First step will be to transform it to ITRF2000, which is the corresponding frame to ETRF

destination:

itrstrafo([4027894.006 307045.600 4919474.910],'ITRF2008',2011.90,

'ITRF2000',2011.90)

ans = 4027894.01452193 307045.600193748 4919474.88935544

0.00042 0.00012 -0.00141

Internally, this consists of two transformations, ITRF2008  ITRF2005  ITRF2000. Note

that, as no point velocities were given, [0 0 0] was assumed and by applying change rates

the point now has velocity information with respect to zero velocity in ITRF2008.

Next step is the transformation from ITRF to ETRF at the desired frame level:

21 The change rate parameters are a linear change of course. There are formulas to obtain higher orders, but
that is very much in detail and rarely used.
22 To obtain high precision, one needs one or more reference stations within the measurement area. Normally
these reference stations are already given in ETRS coordinates, so the GNSS baselines also point to ETRS
coordinates. For this example we assume that the reference is given in WGS84, which might e.g. be the case in
a precise surveying campaign in geophysical context. Then the GNSS result also is in WGS84 which is linked to
ITRS.

itrstrafo(ans,'ITRF2000',2011.90,'ETRF2000',2011.90)

ans = 4027894.36314443 307045.252782388 4919474.62499541

0.01329 -0.01727 -0.01085

Last step is to change the reference epoch by using the obtained velocity information:

itrstrafo(ans,'ETRF2000',2011.90,'ETRF2000',2005)

ans = 4027894.27145832 307045.371968243 4919474.69989131

0.01329 -0.01727 -0.01085

Now we could compare these GNSS measurements with others defined in ETRF2000 and

measured in 2005 as they refer to the same frame and the same epoch.

The three steps above could also be combined in the single function call

itrstrafo([4027894.006 307045.600 4919474.910],'ITRF2008',2011.90,

'ETRF2000',2005)

with the same result23.

The itrstrafo – function also allows to work in IGS2005 and IGS2008 reference frames

and to transform IGS2008 to NAD83. See the function helptext for implementation details.24

8. A closer look on the ellipsoid and projection definitions

Ellipsoids and projections are stored in the files Ellipsoids.mat and

Projections.mat. They are meant to be extended, so please feel free to add any

definition which suits your needs.

Ellipsoid definition is very easy; it contains structs with the fields

a semimajor axis

b semiminor axis

f flattening

This is actually redundant as any of them can be calculated out of the other two.

Note that this is just the general ellipsoid definition, there is no information about its center

(compared to earth’s mass center or elsewhere) or any relation towards any coordinates.

In the projections file, different projection definitions can be stored. At the moment with only

two projection types coded in function files one may use ‘tm’ or ‘lambertcc2’ type.

Projections are stored as structs where every parameter set has the fields

23 An online tool to perform ITRS/ETRS80 transformations can be found at the EUREF homepage:
http://www.epncb.oma.be/_dataproducts/coord_trans/index.php
24 An online tool for various transformations is provided by the NGS:
https://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml. The NGS results will differ from the itrstrafo results,
because NGS also obeys crustal and tectonic deformation models which this toolbox can’t.

type type of projection. The functions read out the type to check whether the right

projection type had been chosen.

ellips The ellipsoid which shall be used for projection. Of course this needs to be

the ellipsoid the Lat, Long are given in. If another ellipsoid is to be used, a

datum transformation has to be performed first (see chapter 2).

Then there are additional parameter fields depending on the projection type:

TM projection fields:

m0 The scaling factor of the central meridian, e.g. 0.9996 with UTM

rule_L0 The calculations rule to specify the central meridian L0 of the projection zone

when only the zone identifier ID is given. This is needed when projected

coordinates have to be transformed to ellipsoidal coordinates (tm2ell). The

ID is taken from the easting of the projected coordinate using ID_pro. For

UTM the rule is ‘ID*6-183’ as every zone is 6° wide and central meridian of

the first zone is -177°.

If L0 is fixed because only one zone exists, simply enter the central meridian

value.

The field has to be entered as a string to be evaluated with Matlab and

possibly to be combined with other terms before evaluating. ‘ID’ is used as a

variable.

ID_ell The rule to calculate the zone ID when ellipsoidal coordinates and the central

meridian are given (ell2tm). E.g. for UTM the rule is ‘L0/6+30.5’.

The field has to be entered as a string to be evaluated with Matlab and

possibly to be combined with other terms before evaluating. ‘L0’ is used as a

variable which is either an user input or detected automatically via

standard_L0.

standard_L0 The rule to calculate the standard central meridian for each point to be

transformed. standard_L0 is used to detect the proper L0 automatically when

there is no user input in ell2tm. E.g. for UTM the rule is 'floor(L/6)*6+3'.

 This rule has currently a lack of definition exactly at 180° E as this meridian is

already covered by 180° W.

 The field has to be entered as a string to be evaluated with Matlab and

possibly to be combined with other terms before evaluating. ‘L’ may be used

as a variable.

It should be good practice to detect the central meridian automatically.

Common exceptions only are measurement areas in two zones, when

projected coordinates shall refer to the same zone.

Standard_B0 The latitude origin (usually 0 for the equator)

ID_pro The rule to calculate the zone ID when projected coordinates are given

(tm2ell). Usually this derives from the easting of the coordinates. For UTM it

is e.g. ‘floor(E/1e6)’: the effective coordinate always has an integer part of 6

places, everything added before is part of the ID.

 The field has to be entered as a string to be evaluated with Matlab and

possibly to be combined with other terms before evaluating. ‘E’ may be used

as a variable.

rule_easting The rule to add the false easting in [m]. This is a combination of false easting

and zone ID addendum, so in UTM it is ‘+5e5+ID*1e6’. 500 000 is the “real”

false easting and then the zone ID is added additionally. ‘ID’ may be used as

a variable. This is used both in tm2ell and ell2tm.

 The field has to be entered as a string to be evaluated with Matlab and

possibly to be combined with other terms before evaluating (the initial ‘+’

therefore is mandatory).

rule_northing The rule to calculate the false northing. In UTM there only is a false northing

for points on southern hemisphere. In tm2ell and ell2tm these conditions

cannot be indicated as results may be ambiguous then. So in the UTM

implementation here no false northing is used: [<empty matrix>] or ‘<empty

string>’ See chapter 4 for details.

Let’s have a look on two different examples, UTM and Luxembourgian LUREF:

parameter UTM LUREF
m0 0.9996 1

ellips ‘grs80’ ‘hayford’

rule_L0
‘-183+ID*6’
calculation formula for the standard
meridian L0 using ID as a parameter

‘6+1/6*
there is only one zone with
L0 = 6° 10 ‘ as central meridian

rule_easting
‘+5e5+ID*1e6’
calculation formula for the false
easting using ID as a parameter

‘+8e4’
use fix false easting value

rule_northing

[]
no false northing as the equator is
the reference

‘+1e5’
use fix false northing value; the
reference is within the projection
area

ID_ell

‘L0/6+30.5’
calculation formula for the zone ID
when ellipsoidal coordinates are
given using L0 as a parameter

‘0’
no zone ID as there is only one zone

ID_pro

‘floor(E/1e6)’
calculation formula for the zone ID
when projected coordinates are
given using E as a parameter

‘0’
no zone ID as there is only one zone

standard_L0
‘floor(L/6)*6+3’
calculation formula for the standard
meridian L0 using L as a parameter

‘6+1/6’
fix value as 6° 10’ is the only central
meridian

standard_B0
‘0’
fix value as 0° is the reference
latitude

‘49+5/6’
fix value as 49° 50’ is the reference
latitude

Lambert conical projection with two standard parallels fields:

lat The first and second standard parallels [1x2] in degrees Those parallels

remain without scaling when projected..

 In Austria for example there is an official projection parameter set given by

the BEV which uses [46 49].

ORell The origin (mapping center) of the projection in [Long Lat] [degrees]. The

projection of ORell will be [0 0]. E.g. at the ‘bev’ set it is [13°20’ 47°30’].

ORproj The false easting and northing for the projected origin coordinate to prevent

negative coordinates [false_easting false_northing] [meters].

The ‘bev’ values are [400000 400000].

9. The Transformations.mat definitions

Transformation parameters can be stored in Transformations.mat.
They are just 1 x n vectors with vector name = transformation name.

All transformations have a different number of transformation parameters, so each
transformation function checks the input parameter set for proper size. See the helptext in
Transformations.m for details.

10. Working with file inputs and outputs

For many of the files in this toolbox you may specify an ASCII-filename as string instead of

the input matrix. In this case, the specified file is opened and the ASCII input is treated as if

it was the input data.

This functionality is very basic – there is no “intelligence” to interpret the file data, it is just

treated “as is”. So it may just contain pure coordinate information, no point IDs, comments

etc.

Also, many files have a “FileOut”-parameter in the input list. With this, you may specify a file

to write the first output variable to.

It is planned to expand the file functionality in future, but it’s not a major topic right now.

11. Future developments

This toolbox will be expanded with additional functions and definitions in future. Depending
on our lecture (and sometimes Matlab Central user suggestions) needs we will for sure add
further projection types and tools.

For comments, bug reports and suggestions please contact

Dr. Peter Wasmeier
Chair of Geodesy, Technische Universität München
p.wasmeier@bv.tum.de
http://www.geo.bgu.tum.de/startseite/

November 16th, 2018

mailto:p.wasmeier@bv.tum.de

