
How to use the „Geodetic Transformations 

Toolbox“? 

 

For a start, this toolbox does nothing which is “new” – all the functionality is well known and 

used in hundreds of commercial and non-commercial products all over the world. There 

even are similar tools on Matlab File Exchange with different key aspects and usability, of 

course. Now, why another geodetic transformation and projection toolbox then? 

Basically, these functions are meant for usage in the exercises of “Geodesy and 

Geoinformatics” studies at Technische Universität München. So it was the goal to combine 

a set of functions which fits exactly our educational needs with full control on source code, 

updates etc. 

Additionally, I was not very satisfied with some code I found on the net; e.g. I did not find 

any Matlab-coded transformation to UTM projection which could handle non-standard zone 

width or includes polar stereographic projection. 

And last reason, programming is fun and instructional: if you can code it, you have 

understood it  

Now have a few examples and explanations on the usage of the implemented functions. 

Whenever a function is mentioned the first time, it is highlighted in yellow. For further 

function details in the examples, please refer to the function help text. 

 

A great acknowledgement goes to Andrea Pinna from the University of Cagliari. He 

improved my coding in the Helmert parameter estimation functions for speed and memory 

efficiency, so that it can work on millions of points now (which I never tried). Thanks a lot! 

 

1. A first look on different transformation types 

Before starting with applications, let’s have a short look on different standard transformation 

types included in the toolbox and what has to be obeyed. The commonly used 

transformation types in geodesy are similarity transformation, affine transformation and 

projective transformation. 

Many tasks in geodesy are done using similarity transformations, i.e. coordinate relations in 

both systems may differ in position, orientation and scale, but segment ratio and angles are 

preserved. One may use similarity transformations in 1D (using 1 translation in z and 1 scale 

factor), in 2D (using 2 translations in x,y, 1 orientation rotation around z-axis and 1 scale 

factor identical for both axes) and in 3D (using 3 translations, 3 rotations and 1 scale factor): 
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This toolbox offers the function-files d1trafo.m, d2trafo.m and d3trafo.m.  



For proper handling, we first need to define how the parameter set needs to look like. In 

geodesy we have coordinates given in a source system A (e.g. WGS84) and want to 

transform them to a destination system B (e.g. state system). 

In the transformation formulas for any dimension used in this toolbox,  

 the systems are right-handed 

 the translation vector describes the origin of the system A in terms of the system B. 

 the rotation is defined to convert the source system axes A in the direction of the 

destination system axes B as a passive rotation (i.e. it describes the orientation of 

system B in system A).  

There are also opposite definitions of the rotation angle which describe the 

orientation of system A in system B. If your parameter set is that way, you need to 

change the rotation element signs. 

For 3D transformations the rotation matrix R is a combination of three elemental rotations 

around the three axes. As there are many possibilities to combine these elemental rotations 

in different order, we need to define which rotation order is to be used in the Geodetic 

Transformations Toolbox1. We use the Tait-Bryan angle order XYZ for passive intrinsic 

rotations2: 

𝑅 = (

cos𝛽 cos𝛾 cos𝛼 sin𝛾 + cos 𝛾 sin𝛼 sin𝛽 sin𝛼 sin𝛾 − cos𝛼 cos𝛾 sin 𝛽
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The necessary parameters can be calculated by use of a least-squares adjustment if 

sufficient identical points are given to solve the corresponding equation system (2 points 

in1D or 2D, 3 points in 3D). Please make sure, that the ID points are sufficiently distributed, 

i.e. they must not lie close to a line in 2D and close to the same plane in 3D as you would 

get a configuration defect then. 

The toolbox offers the functions helmert1d.m, helmert2d.m and helmert3d.m 

Transformation formulas are highly non-linear and therefore need to be linearized when 

parameters are estimated. This is of no harm for 1D or 2D and also in 3D if rotation angles 

are small3, but bears problems if they are not. For big rotation angles in 3D, adjustment may 

fail if initial approximation values are not good enough, so you will need an idea of the most 

probably result in advance. If at least 4 identical points are given, an affine approach is used 

to determine the (possibly big) rotation angles automatically. This works well – with one 

exception: if rotation around y-axis is close to /2 or 3/2, rotations around x- and z-axes 

cannot be solved unambiguously4. In that case a warning is thrown. To overcome that 

                                                           
1 A good overview on rotation definitions is given by Wikipedia: http://en.wikipedia.org/wiki/Euler_angles. See 
especially the “Rotation matrix” section. 
2 If you need to use d3trafo.m with rotation parameters according to another angle order, you may simply do 
so by adopting the function source code (“Create rotation matrix” section). Please be aware, that other 
functions in this toolbox which also handle with transformation parameters also rely on the defined rotation 
order. 
3 In many cases, especially when transforming GNSS data to local systems, this is an acceptable assumption. 
4 This does not mean that the solution will be wrong – it just will bring up one of different possible solutions 
which all are nearly of the same accuracy. 

http://en.wikipedia.org/wiki/Euler_angles


limitation, if at least 4 ID points are given, an affine transformation may be used instead of a 

similarity transformation. 

Mathematically speaking, similarity transformations are just special cases of affine 

transformations. An affine transformation is a linear 12-parameter approach where each 

transformed coordinate is dependent on all 3 coordinates in the initial system 

𝑥′ = 𝑥0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧

𝑦′ = 𝑦0 + 𝑎4𝑥 + 𝑎5𝑦 + 𝑎6𝑧

𝑧′ = 𝑧0 + 𝑎7𝑥 + 𝑎8𝑦 + 𝑎9𝑧
 

with x0, y0, z0 being the translation and a1 to a9 being additional affine parameters. 

The major advantage is the linearity of the equation system which makes it easy to calculate 

the parameters without iteration or the need of approximation values. On the other side, 

nine affine parameters a1 to a9 need to be used to describe only six geometric parameters: 3 

rotations and 3 scale factors (one per axis). Therefore the values of the affine parameters do 

not have a geometric meaning directly. Of course, it is possible to derive the geometric 

parameters from the affine ones (except y-axis-rotation is /2 or 3/2, as mentioned above), 

but if they are not needed e.g. for geometric interpretation of the results, this is usually not 

done. Additionally, it is not possible, e.g., to use only one scale factor or keep one scale 

factor fixed as different geometric parameters are combined with others in the affine 

approach. 

This toolbox offers d2affinetrafo.m and d3affinetrafo.m to do the transformation, 

and helmertaffine2d.m and helmertaffine3d.m to calculate the parameters. 

Another transformation type used in geodesy is projective transformation. As these formulas 

are used for mapping a 2D/3D scene on 2D, it is related to tasks in photogrammetry. The 

basic formulas for image coordinates derived from 3D points are 

𝑥′ =
𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4
𝑎9𝑥 + 𝑎10𝑦 + 𝑎11𝑧 + 1

𝑦′ =
𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑧 + 𝑎8
𝑎9𝑥 + 𝑎10𝑦 + 𝑎11𝑧 + 1

 

which e.g. describe how a 3D object will be seen in camera view. It does not longer 

preserve segment ratio and angles. As the affine transformation is a linear approach to a 

geometric problem, the parameters of the 3D projective formulas can be converted to inner 

and outer camera orientation parameters if necessary5. Really, this is the main task of its 

usage, at it allows camera calibration together with image acquisition as long as at least 6 

reference points are known distributed in 3D space (called DLT – Direct Linear 

Transformation). The reverse transformation is of not much interest as it cannot be 

unambiguous6. In 2D case, projective transformation mainly is used for image (photography) 

rectification with respect to a given plane. 

This toolbox offers d2projectivetrafo.m and d3projectivetrafo.m to do the 

                                                           
5 Outer orientation is the location of the projection center and its corresponding axes’ rotations with respect to 
the source coordinate system (6 parameters). Inner orientation is the principal point and camera constant (3 
parameters). Additionally image shear and scaling parameters can be calculated. 
6 Of course, it will become very interesting if more than one viewpoint are combined, because then 3D 
coordinates can be obtained using 2D images – the principle of stereo image photography. 



transformation and helmertprojective2d.m and helmertprojective3d.m to 

calculate the parameters. 

 

2. Transform GNSS (GPS) coordinates to a projection system 

Let’s assume, we have some coordinate information from a GNSS7 system with respect to 

the WGS84 ellipsoid and want to get projected coordinates in a given national system, e.g. 

for mapping. 

P1: L = 11°20’  B = 48° h = 600 m  

If the coordinates are geographic (ellipsoidal), we need to transform them to Cartesian 

coordinates: 

P2=ell2cart(P1,'wgs84') 

P2 =        4192737.07607126           840328.46328838          4717322.21701069 

Don’t forget to specify the ellipsoid to use (‘wgs84’), as it is not the default one. Now we 

need to know which ellipsoid is the reference of our mapping system, as we have to 

transform the WGS84-coordinates to that ellipsoid. This is done using a 7-parameter 

similarity transformation (3 translations, 3 rotations, 1 scale factor) which is also known as 

“Helmert-Transformation”. Sometimes standard parameter sets can be used (e.g. there are 

parameter sets for a whole state, but with limited accuracy), but if not, they need to be 

calculated first. To do so, we need identical points in both systems, i.e. points from which 

coordinates are known with respect to both ellipsoids. The closer these points lie to P1, the 

better.  We may use official cadastral coordinates or personal measurement data (e.g. 

GNSS measurements acquired when standing on a known point). So let’s assume, we know 

the following point coordinates of cadastral points around P1 (spanning an area of about 40 

x 80 km²) 

ID WGS84 X WGS84 Y WGS84 Z GK east GK north 
GK 

height 
Undula

tion 
ID1 4178260.42 828039.59 4732196.07 4441346.294 5340573.080 539.124 46.150 

ID2 4175739.94 853475.29 4729951.18 4466749.642 5336972.649 565.442 45.668 

ID3 4190726.62 839398.78 4719382.28 4449866.289 5321182.832 644.308 46.131 

ID4 4213686.65 820422.71 4702783.31 4426535.047 5296320.270 957.808 46.643 

ID5 4239168.32 828294.41 4678299.48 4428934.586 5260198.724 731.910 48.857 

 

In this example, as P1 is in Bavaria, we are working with German GK coordinates which is 

type of transverse Mercator (TM) projection based on the Bessel-Ellipsoid (‘besseldhdn’). 

To be able to compute the transformation parameters, we need to know the Cartesian 

coordinates with respect to the Bessel ellipsoid, so we need to “unmap” the GK 

coordinates. 

 

                                                           
7 GNSS (Global Navigation Satellite System) is more general than GPS, which only names the US system. 
Modern receivers can additionally use GLONASS (Russia),GALILEO (Europe), BEIDOU (China), and others. 



a) Unmapping without use of undulation 
 

NOTE: The height in most national systems is not an ellipsoidal height which is purely 

mathematic, but connected to physics by use of gravimetric information.8 Therefore 

it is not really accurate to use the GK height as ellipsoidal height, because both vary 

by the undulation (in Bavaria about +47m); but as we want to calculate a 

transformation with respect to our identical points, a pure shift in height is of no 

interest as long as it is constant in all points. If the calculation area is relatively small, 

we may assume it is (but, of course, we may lose little accuracy).  This is the case for 

working areas which do not extend more than a few km². 

With our point field being broader, let’s see what happens without undulation first: 

ID_ELL=tm2ell(ID_GK,'gk') 

ID_ELL =         11.2108503729801          48.2013560143094                   539.124 
            11.5529036293617          48.1708116428913                   565.442 
            11.3277515252722          48.0276937195613                   644.308 
            11.0191756457828          47.8018381331175                   957.808 

            11.0570713190464          47.4772324075114                   731.910 
 
We could have omitted the ‘gk’ projection definition as it is the default value. 
 
Now, again, transform geographic coordinates to Cartesian ones: 

ID_CART=ell2cart(ID_ELL,'besseldhdn') 

ID_CART = 4177627.88519728         828014.781833995         4731750.31639371 
         4175107.44627091         853450.591600544         4729505.59844331 
              4190094.2012223           839374.173512799         4718936.71090978 
         4213054.13253265         820398.152807951         4702337.82116581 

4238534.84436367         828270.013511677         4677852.7653253 
 
We already can see that the coordinates of the identical points vary by several 100m 

between the two systems on WGS84 and Bessel ellipsoid due to different ellipsoid shape 

and gravity center. 

Now compute the transformation parameters in the direction WGS84 -> Bessel. First we will 

use the 7-parameter similarity transformation, Bursa-Wolf type: 

[tp,rc,ac,tr]=helmert3d(ID_WGS84,ID_CART) 

 
 

                                                           
8 „The same height“ often is defined by the fact that water would not flow from one point to the other. Using 
ellipsoidal heights, this is not fulfilled as mass attraction is not considered. If you do so, you get heights with 
respect not to an ellipsoid, but to a so-called geoid which is a reference surface of the same geopotential. 
Regrettably, the geoid is a bumpy surface which cannot be described mathematically. Because of that, there 
are interpolation models which comprise the difference between ellipsoid and geoid zero-level, the so-called 
undulation. In terms of mathematical notation, we calculate: hell = hproj + undulation. 
Undulation values worldwide are -110m to +80m, of course in closer areas they are widely constant and might 
by omitted. But e.g. in mountains it may be that even neighboring points vary in undulation by several cm due 
to the irregular distributed masses. 



tp = -701.568073251141 
      -102.281892479284 
          -359.905945863748 
      7.37636968498118e-006 
     -1.75862691992326e-005 
     -1.04660412621071e-005 
          0.999998745963201 
 
rc =     0     0     0 
 
ac = 26.0286028109207 
            83.767630473504 
           32.06845055104 
      1.04987177218062e-005 
      4.92078882323577e-006 
      8.98529048792421e-006 
      3.85864936172485e-006 
 
tr = -0.280973413959146         -0.124859500792809         -0.324613041244447 
         0.0626319842413068     0.0597453825175762        -0.0120819211006165 
          0.194919862318784          0.055114968214184          0.146854887716472 
          0.218333503231406        -0.0372454045573249          0.47009860817343 
         -0.194911937229335         0.0472445546183735         -0.280258538201451 
 
The tp are the transformation parameters (3 translations of the ellipsoid origin, 3 rotations 

and 1 scale factor), the values in ac give their standard deviations.9 The rc value is the 

rotation center of the transformation which is the center of the source ellipsoid WGS84. Of 

more interest are the tr values which show the coordinate residuals in the identical points 

after transformation. It gives the best hint on the quality of identical points and the 

parameter set. Here we can see 2D position quality of up to 22 cm and height quality of up 

to 50 cm, which is expectable within our working area, but of course not very good. 

There is another type of calculation for the datum transformation, which is called the 

Molodensky-Badekas type. It also is a 7-parameter similarity transformation in principle, but 

rotation center is the centroid of the identical points in the source datum, so 3 additional 

parameters are needed to specify it. We can calculate its parameters also: 

[tp,rc,ac,tr]=helmert3d(ID_WGS84,ID_CART,'10p') 

tp = -632.688082638383 
-24.613346606959 

          -445.821552417798 
      7.37636970144985e-006 
      -1.7586269220385e-005 
     -1.04660412703721e-005 
          0.999998745963186 
 
rc = 4199516.39                833926.156               4712522.464 

                                                           
9 Don’t mind them being relatively big – this is a result of the geocentric calculation. The distance of the 
rotation and coordinate origin (earth radius) is much bigger than the distance between the identical points, so 
by leverage effect it results in a very big statistical uncertainty. Additionally, using the Bursa-Wolf 
transformation type translation and rotation values are highly constrained. 



ac = 0.128351334226784 
          0.128351334226784 
          0.128351334226784 
      1.04987177251999e-005 
       4.9207888258544e-006 
      8.98529049022552e-006 
      3.85864936250565e-006 
 
tr = -0.280973414424807         -0.124859501142055         -0.324613039381802 
         0.0626319833099842         0.0597453826339915        -0.0120819201692939 
          0.194919862318784         0.0551149684470147          0.146854889579117 
          0.218333504162729        -0.0372454046737403          0.470098609104753 
         -0.194911936298013         0.0472445547347888         -0.280258536338806 
 
As can be seen, the values of rotation and scale are identical to some 10-15 while, of course, 

translation is significantly different. In 10-parameter-type also standard deviations of 

translations have quite interpretable meaning. The results of transformation and identical 

point residuals, though, are identical. So it does not make a difference which type is used10. 

At this point we’ll break the mapping process without undulation and do the same while 

using it. Further results without are shown later. 

 

Unmapping with undulation 

Now let’s see what happens when we add undulation information11. Again we compute the 

geographic ellipsoidal coordinates from the projected ones: 

ID_ELL=tm2ell(ID_GK,'gk',UND) 

 

ID_ELL = 11.2108503729801          48.2013560143094                   585.274 
            11.5529036293617          48.1708116428913                   611.110 
            11.3277515252722          48.0276937195613                   690.439 
            11.0191756457828          47.8018381331175                  1004.451 
            11.0570713190464          47.4772324075114                   780.767 
 
It gives the same Latitude, Longitude results and undulation value is just added to projected 

height. Now transform them to Cartesian coordinates, 

ID_CART=ell2cart(ID_ELL,'besseldhdn') 

 
ID_CART = 4177658.05791163          828020.762130513          4731784.7208391 
            4175137.28577171          853456.691213534          4729539.62733011 
            4190124.45132214          839380.233317501          4718971.0078395 
            4213084.88486561          820404.141137641          4702372.37551972 
            4238567.25299313          828276.346618975          4677888.7733652 
 

                                                           
10 Strictly speaking, the 10-parameter transformation is a one-way transformation only. As the rotation center 
coordinates are defined and applied to the source datum only, they must not be used to transform points back 
from destination to source. For practical purposes though, a datum transformation is always connected with 
very small rotations only and the vector from destination centroid to source centroid is small compared to 
ellipsoid center distance, so the back-transformation may be used without significant divergence. 
11 Undulation values may be gotten by federal cadastral offices, usually they are not for free. 



and compute transformation parameters 
 
[tp,rc,ac,tr]=helmert3d(ID_WGS84,ID_CART) 

 
tp =          -539.273135594615 

         -73.2804996002362 
         -510.593550254333 
         8.69722747224154e-007 
         1.69069540584007e-005 
         -1.08350902896085e-005 
          1.00000618671287 

 
rc =     0     0     0 
 
ac = 8.52208615017402 
           27.4259681804932 
           10.4989159387799 
      3.43737834858921e-006 
      1.61104121645571e-006 
      2.94181397157601e-006 
      1.26334079821778e-006 
 
tr = 0.0416802992112935       -0.0571302799507976         0.0464044557884336 
        0.00277828890830278         0.0438527016667649        -0.0784803116694093 
         0.0644033406861126         0.0298502605874091        0.00179089792072773 
         -0.160344012081623         -0.109273210749961         0.0374712059274316 
         0.0514820823445916         0.0927005278645083       -0.00718624796718359 
 
We can see that the transformation parameters tp have changed significantly. Looking at 

the residuals, we now recognize that they are much smaller than without using undulation 

values. Except point ID4, we are talking about cm-level now which is quite common over 

10s of km as cadastral accuracy is about 2-3 cm and has a key aspect on adjacency 

preserving. 

 

Now we know about the transformation process from WGS84 to Bessel ellipsoid, so we can 

transform our point P2 

P3=d3trafo(P2,tp) 

 
P3 =          4192134.88018414           840309.91249954           4716910.9634969 
 
Before we continue with mapping steps, let’s think about a further possible correction: 

When transforming new points, we could interpolate the residuals of the supporting points 

to preserve adjacency to neighboring points. Otherwise, for example, the transformation of 

a point very close to one of the supporting points used for determining the transformation 

So whenever you use a transformation parameter set which you did not compute 

by yourself, be sure to know about its achievable accuracy. 



parameter set would get an additional discrepancy of the supporting point’s residual.12 

So we can use 

P4=P3+rescorr(P3,ID_CART,tr) 

 
P4 =          4192134.92157003          840309.928570152          4716910.96438803 
 
which calculates the residual corrections and adds it to P3. There are different correction 

modes, which in principle are all based on a weighting of the supporting point residuals by 

their distance to the transformed point, we used the standard mode here. Note that residual 

corrections may be not suitable if there are clusters of supporting points or the correction 

needs to be an extrapolation rather than an interpolation (supporting points do not surround 

transformed points). 

Now we convert to geographic coordinates again 

P5=cart2ell(P4,'besseldhdn') 

 
P5 =         11.3346755657941           48.000900584251          600.057858406566 
 
It can be seen that differences in longitude and latitude are several seconds between the 

two reference ellipsoids. 

Last step is the projection to GK again; here we also need to know about the undulation 

value at our measurement position (+46.146m): 

P6=ell2tm(P5,'gk',[],[],46.146) 

 
P6 =        4450356.94262121          5318199.56186201          553.911858406566 
 
Note that the input of the central meridian and the latitude origin for the TM projection are 

left empty so that the function detects it automatically. We’re done! 

Now, what if we had no undulation information at all? Then we would need to work with the 

transformation parameters we computed in case a), and the following results would be: 

P3 =        4192104.41389327           840303.80636562           4716876.4614353 
P4 =     4192104.54214521           840303.839144725         4716876.55856218 
P5 =          11.334675567171           48.0009006213383         553.757195455022 
P6 =        4450356.94275954           5318199.56598437         553.757195455022 
 
As the identical points lie around our measurement, we see only a minor difference in 2D 

(few mm), but of course a bigger one in height (16 cm) which is due to undulation variances 

in the measurement area. If we hadn’t used residual corrections, the height difference would 

have been even worse (~ 28 cm). 

                                                           
12 Whether to apply residual corrections or not depends on what we are intended to do: If we have a highly 
consistent source system and want to preserve relations between the points after transformation to a 
somewhat distorted target system, we will not correct for residuals (e.g. construction points of a building 
project are transformed into cadastral system). If we want to transform our source points in a way that the 
resulting points match the neighboring points, we have to obey the residuals (e.g. property line points are 
mapped to the cadastral system – it is important that they match surrounding land parcels). 



Apart from TM projection, there are also functions for the Lambert conical projection using 

two standard parallels (e.g. used in France, Belgium, New Zealand): lambertcc2ell.m 

and ell2lambertcc.m. Its use is basically identical to the TM mapping functions. 

 

3. Using PROJ.4 EPSG transformation parameters 
 
When you want to use EPSG transformation parameters as defined in the PROJ.4 project, 

beware of the different unit definitions and rotation signs. 

PROJ.4 uses arc seconds [“] and difference values regarding a scale = 1 [ppm, e.g. 

45 ppm], while the d3trafo function uses radians [rad] and full scale value [e.g. 1.0000045]. 

For the rotation, d2trafo uses EPSG:9607 definition (coordinate frame rotation). Usually, 

PROJ.4 uses EPSG:9606 definition (position vector rotation). That means you need to 

change the signs of the three rotation values. 

And finally, be aware that +towgs parameters are also used in PROJ.4 for transformations 

FROM WGS84 ellipsoid to others. In d3trafo, you can use the 4th parameter “dir” to define 

the direction of the parameters entered. 

 

4. Other possibilities to do the transformation 
 
In some cases the (individual) 3D datum transformation cannot be used, because e.g. there 

are not enough identical points, height information is worse or the mapping projection is not 

known. In those cases, there are other possibilities to calculate transformations from GNSS 

data to a given local mapping system. Let’s have a look on some of them. In this chapter no 

numerical examples will be given, but it only uses functions which are already mentioned 

before13. 

Some of the listed transformation types below separate position and height transformation. 

In that case identical points for position and height may be different (no need for identical 

3D points). As a major advantage, bad height information does not affect position. 

1. 2-step transformation 
 
Mapping projection and ellipsoids need to be known and a parameter set for a course 

3D pre-transformation must be given (e.g. some state-wide parameter set given by the 

cadastral office). To use the transformation, perform the following steps: 

1. Coarse 3D pre-transformation using d3trafo (WGS84 -> local ellipsoid) 

Instead of a pre-transformation, one can also use a simple gravity point translation if 

one or more ID points are given. 

2. cart2ell   

3. ell2tm (gives approximate mapped coordinates) 

4. d2trafo, probably using rescorr (position) 

                                                           
13 All similarity transformation functions, d1trafo, d2trafo and d3trafo, are handled the same way. They just 
differ in the number of transformation parameters necessary for 1D, 2D and 3D transformation. 



5. d1trafo, probably using rescorr (height) 

 
2. 1-step transformation 
 
No mapping projection or ellipsoids need to be known, but the allowed areal extent of 

this transformation is lower than for the 2-step method (some km²). To use the 

transformation, perform the following steps: 

1. cart2ell 

2. ell2tm (gives approximate mapped coordinates) 

3. d2trafo, probably using rescorr (position) 

4. d1trafo, probably using rescorr (height) 

 

3. Standard parameter transformation 
 
When there are no identical points at all, one may use standard transformation 

parameter sets which are available for nearly every datum transformation. Obviously, 

there are parameter sets from (any) local datum to global datums like WGS84 and vice 

versa, but in many cases there are also transformation sets from local to local datums, 

e.g. at neighboring countries. Usually the parameters to use can be found in the internet 

at the cadastral offices’ sites. 

Not all of them are 7-parameter sets, though. In many cases there is only a shift in X,Y,Z 

to be applied – when using it with d3trafo, just set the rotations to be 0 and the scaling 

to be 1. You may store standard parameter sets in Transformations.mat. Please be 

aware, that when using standard transformation parameters, accuracy usually is very 

much lower than with the individual use of ID points (may be 1 – 25 meters or even 

worse). If you’re lucky, you’ll find approximate accuracy information where you find the 

parameter set. 

4. Molodensky transformation 
 
The Molodensky transformation also may be applied when there are no identical points. 
It makes use of just a translation from one ellipsoid to another, while rotation and scale 
factor are not regarded. As additional parameters the difference of the ellipsoids’ semi-
major axes and flattening can be used making it a simple 5 parameter transformation. 
In the toolbox you may use the molodenskytrafo.m function. Parameter sets may be 

stored in Transformations.mat. 
 
 
With all these transformation types, of course, quality becomes lower with rising extent of 

the area to be transformed in. 

 

5. Transformation to and from UTM coordinates 
 
In recent time, many state offices begin to transform their individual, historically grown 

coordinate systems to UTM mapping systems, mainly for the need of cross-border projects 



and international harmonization. Reference ellipsoid often is GRS80 / WGS84, which are 

nearly identical, and a specified reference frame defines the coordinate system14. 

Therefore it often is necessary to transform global coordinates (GNSS measurements) to 

UTM mapping. GNSS measurements are linked to the ITRS system, so we do not need to 

perform any datum transformation when we want to use UTM/WGS84, we directly can start 

with the mapping15. This geodetic transformation toolbox offers two functions which both 

may be used for UTM mapping and unmapping. 

Let’s consider the following WGS84 coordinates, given as [Long Lat]-matrix with western 

longitudes and southern latitudes showing negative sign. 

City Longitude Latitude 
New York 74° 00’ 00” W 40° 43’ 00” N 
Stavanger 5° 44’ 00” E 58° 58’ 00” N 

Adelaide 138° 35’ 00” E 34° 55’ 00” S 
Buenos Aires 58° 25’ 00” W 34° 37’ 00” S 

South Pole of Inaccessibility16 65° 47’ 00” W 85° 50’ 00” S 
 
The first method to map them to UTM is the ell2tm-function we already have used in the 

previous example: 

UTM=ell2tm(WGS84,'utm') 

 
UTM =           18584461.2900142          4507785.97624875 
            31657160.1434484          6539553.42854269 
            54279229.0733876         -3866467.69241704 
            21370122.1161769         -3831446.44949075 
            20477430.1980497         -9533314.66085581 
 
It is a standard TM mapping with 6°-width zones from pole to pole, as many other tools use 

it. The first two digits in easting indicate the zone, negative values in northing indicate 

                                                           
14 Just to define a reference ellipsoid and its origin and axes directions is not yet sufficient for coordinate 
calculations. Additionally it is necessary to have the coordinate frame which is the real, physical realization of 
the defined system, i.e. physical points on earth surface which can be assigned with unique coordinate values. 
For example, WGS84 coordinate system is a theoretically defined structure, while its realization is linked to ITRF 
which consists of several hundreds of measurement points all over the world which are computed with 
reference to the astronomical inertial system ICRS. Due to continental drifts, earthquakes etc. all those points 
move up to 10 cm per year (Eurasia for example is slightly rotating), so these coordinates define the frame. As 
variable coordinates are not acceptable for most geodetic purposes in cadastre or engineering, their systems 
apply to a special epoch of the ITRF and keep those coordinates fixed (e.g. European ETRS89 reference system 
and its frame ETRF89 are the fixed ITRS/ITRF system at epoch 1-1-1989. Of course, in the meantime Europe and 
ETRF89 have moved about 60 cm with respect to actual ITRF, but inside ETRF point relations remain constant). 
15 Of course, if we wanted to map in any other reference system, we theoretically would have to. Again look at 
European ETRS89 – since its definition in 1989 the Eurasian plate has moved about 60cm compared to the ITRS, 
so GNSS measurements would be always mapped with that displacement. For practical purposes, a single 
absolute GNSS measurement only has an accuracy of a few meters, so that effect is irrelevant (at the moment). 
For higher accuracy up to cm- and mm-level (as needed for geodesy), we always have to work in Differential-
GNSS-mode. That means, we do not measure absolute positions but 3D vectors related to some reference 
station. As this reference station already has coordinates given in ETRS89, the difference of ETRS – ITRS is 
cancelled out automatically. 
16 The point at the South Pole which has the biggest distance to any shippable ocean. It is hard to find a specific 
example point at the poles ;-) 



southern hemisphere as it is not unambiguous to add the false northing of 10 000 000 which 

normally is used for the south. The results are not a standardized output, but as they just 

give a matrix with double numbers, they are easy to use in successive functions when you 

are working in a defined area. 

Apart from that, this toolbox offers a special mapping function for standard UTM output: 
 
UTM=ell2utm(WGS84,'wgs84') 

 
UTM =     '18T 584461.290 4507785.976' 

    '32V 312188.767 6540929.870' 
    '54H 279229.073 6133532.307' 
    '21H 370122.116 6168553.550' 
    'A 1577930.603 2189833.100'  

 
The main difference in using the results programmatically is that they come as array of 

strings (or array of strings and doubles if we have heights). This is because every standard 

UTM coordinate contains of at least one letter which indicates the latitude zone. 

Again the coordinates (easting) start with the longitude zone identifier. Note that Stavanger 

is located in zone 32 as 32V has irregular width to cover also Norway’s west. ell2utm does 

recognize such irregularities while ell2tm does not due to its fixed mapping rules. 

Therefore the easting result of Stavanger is different in both functions. The next (the letter) is 

the latitude zone. This also indicates the polar regions (A, B and Y, Z), which by definition 

are not mapped with transverse mercator projection, but with universal polar stereographic 

projection instead. Naturally this change of projection method is not obeyed with ell2tm, 

but it is in ell2utm. The coordinates of the South Pole point therefore are completely 

different. Additionally, using the letter scheme it is clear whether the point is on northern or 

southern hemisphere so a false northing can be applied to prevent the northing from 

becoming negative. Apart from the mentioned characteristics the results are identical. 

Performing the unmapping, we need to use 

WGS=tm2ell(UTM,'utm') 

 
or 
 
WGS =utm2ell(UTM2,'wgs84') 

 
depending on the input type. Both produce the right results if fed with the right data. If you 

need to transform UTM coordinates to ellipsoidal, please be aware about standard and non-

standard UTM notation and behavior in irregular zones if present. 

 

6. NTv2 projections 
 

NTv2 (National Transformation Version 2) is an approach to transform large amounts of 

coordinate data from one coordinate system to another when both systems do not differ 

very much (i.e. both systems may merely be transformed using a small translation and 



probably small rotation and scale values). It was initially used to transform non-geocentric 

ellipsoidal data to their geocentric equivalents17. 

A NTv2 transformation set consists of a regular grid in [Long, Lat] with given shift values 

[dLong, dLat] at all of the grid points. For each point to transform, the appropriate shift 

values are interpolated bi-linear using the four grid points defining the specific mesh. This 

allows replacing the datum transformation we learned in chapter 2 and, depending on the 

grid mesh size, also considers inconsistencies in the coordinate frames. 

A single NTv2 file may contain several subgrids, e.g. for urban areas. Of course always the 

grid with the highest precision (i.e. smallest grid mesh size) is to be used. 

Let’s look at an example of a NTv2 transformation in Germany using the BeTA2007 

transformation set18. We use the readntv2-function to import the data into Matlab: 

[long, lat, gridlat, gridlong, aclat, aclong, header, info] = 

readntv2([your path]\BETA2007.gsa'); 

 
The main information about each subgrid can be found in the header-variable: 
 
header =      SUB_NAME: 'DHDN90' 

PARENT: 'NONE' 
       CREATED: '06-11-09' 
       UPDATED: '06-11-09' 
         S_LAT: 169200 
         N_LAT: 199080 
        E_LONG: 56400 
        W_LONG: 19800 
       LAT_INC: 360 
      LONG_INC: 600 
      GS_COUNT: 5208 
 
Please note that, as standard, readntv2 returns western longitudes and shift values with 

negative sign while the NTv2 definition and all NTv2 files use positive sign19. This could be 

overridden by an input parameter. Latitude and Longitude limits are given in seconds. 

Again we will use the five points ID1-ID5 from chapter 2 to be transformed. As NTv2 

transformation is defined on ellipsoidal coordinates, we unmap them as shown in chapter 2 

to get 

                                                           
17 NTv2 was developed by Canada’s Geodetic Survey Division as a national high precision transformation from 
NAD27 to NAD83 datum. Later it was adopted from Australia and other countries. 
18 The parameter set BETA2007.gsa (ASCII-version) can be downloaded at 
http://crs.bkg.bund.de/crseu/crs/descrtrans/BeTA/de_dhdn2etrs_beta.php. 
It is a Germany-wide transformation set with nominal sub-meter accuracy for DHDN (Bessel-ellipsoid) to 
ETRS89 (GRS80-ellipsoid). NTv2 files mostly are provided as binary (*.gsb) and ASCII (*.gsa) files. Readntv2 only 
is capable using ASCII files. 
19 I decided to do so to have all my functions consistent in sign convention: negative is western longitude and 
southern latitude. However, as NTv2 was primarily used in Canada, they didn’t want to deal with the negative 
sign for the whole country, so the official standard is positive sign for western longitude. Normally this is not 
relevant for the user as ntv2trafo also changes sign convention, but when just readntv2 is used to read in the 
grid data, one needs to be aware of the actual definition. 

http://crs.bkg.bund.de/crseu/crs/descrtrans/BeTA/de_dhdn2etrs_beta.php


 
ID_ELL = 11.2108503729801          48.2013560143094               
            11.5529036293617          48.1708116428913                 
            11.3277515252722          48.0276937195613                  
            11.0191756457828          47.8018381331175                  
            11.0570713190464          47.4772324075114                 
 
NTv2 is defined as 2D transformation only so we need to skip height information. 

Then we can transform them to ETRS89 using the NTv2 shift transformation: 

 
ID_ntv2 = ntv2trafo(ID_ELL,gridlat,gridlong,header) 

 
 
 
ID_ntv2 = 11.2095229728126          48.2004303179663 
            11.5515255989068          48.1698932312929 
            11.3264095908553          48.0267900150388 
            11.0178833771655          47.8009572076629 
            11.0557777788745          47.4763912062344 
 
Now we are on GRS80 ellipsoid and can map the coordinates e.g. to UTM. Let’s compare 

the NTv2 results with the known coordinates of the ID points in ETRS89 (which are identical 

to the WGS84 coordinates). We can transform the Cartesian coordinates to ellipsoidal and 

then calculate the differences (in [seconds]): 

diff =        0.00192425860845447        -6.50218055398e-005 
         0.00167127576418125      -0.000860465081586881 
        0.000388304984966226       0.000189302090802812 
         0.00135538250702893         -0.001017075626919 
        -0.00157860898113427       0.00219183598630934 
 
Expressed in meters this would be 
 
diff =         0.057727758253634         -0.001950654166194 
          0.0501382729254374        -0.0258139524476064 
          0.0116491495489868        0.00567906272408436 
           0.040661475210868        -0.0305122688075699 
          -0.047358269434028         0.0657550795892803 
 
giving accuracy of a few cm. This is in the order of the residuals when deducing a 

transformation parameter set of the identical points (only using 2D neglecting height which 

has the major residual part usually). 

 

7. ITRS / ETRS transformations, IGS and NAD83 
 
The International Terrestrial reference System (ITRS), its realization frames (ITRF) and the 

European equivalent ETRS/ETRF are a very special chapter when it comes to 

transformations. ITRS is a global, geocentric reference system20 co-rotating with the earth, 

                                                           
20 See http://itrf.ensg.ign.fr/itrs_itrf.php 



determined with respect to quasi-fixed stellar objects and therefore allows specifying station 

(point) coordinates and their velocity components in an absolute sense. The relation 

between the International Celestial Reference Frame (ICRF) and the ITRF are sporadically 

determined by calculating the Earth Orientation Parameters (EOP) using different major 

geodetic measurement principles. 

There are sets of 14 parameters which describe the transformations between different 

realizations (7 parameters of a simple Cartesian 3D transformation and 7 change rates of 

these parameters per year). This allows comparing and combining observations of different 

epochs (e.g. different years), although continental plates have moved in the meantime21. 

To avoid subsequent changes of coordinates in reference stations due to crustal 

movements, the ETRS89 was defined by just using 23 ITRF points on the Eurasian plate 

within the epoch 1989.0. As these points are considered to be stable with reference to each 

other, the whole ETRS89 is moving in the ITRS according to the Eurasian plate. For each 

ITRF frame there is also a corresponding ETRF frame and sets of parameters (3 translations, 

3 rotations change rates) to transform between frames. 

ETRS89 is the new reference system of many European cadastral offices (see chapter 4). 

For most users, ITRS/ETRS transformations are irrelevant in practical use. So when will one 

need it then? 

Consider a set of GNSS measurements are given at time tc [year] which is given with respect 

to WGS84 coordinate system. WGS84 is linked to the actual ITRF, so it differs from ETRF 

coordinates by the plate movements22. Let’s use as a station the EPN central bureau close 

to the Royal Observatory of Belgium with observed Cartesian WGS84 coordinates 

[4027894.006 307045.600 4919474.910] in actual ITRF2008, measured in epoch 2011.90 

(early December 2011). 

First step will be to transform it to ITRF2000, which is the corresponding frame to ETRF 

destination: 

itrstrafo([4027894.006 307045.600 4919474.910],'ITRF2008',2011.90, 

'ITRF2000',2011.90) 

 
ans =           4027894.01452193   307045.600193748   4919474.88935544                        

0.00042                     0.00012                    -0.00141 
 
Internally, this consists of two transformations, ITRF2008  ITRF2005  ITRF2000. Note 

that, as no point velocities were given, [0 0 0] was assumed and by applying change rates 

the point now has velocity information with respect to zero velocity in ITRF2008. 

Next step is the transformation from ITRF to ETRF at the desired frame level: 

                                                           
21 The change rate parameters are a linear change of course. There are formulas to obtain higher orders, but 
that is very much in detail and rarely used. 
22 To obtain high precision, one needs one or more reference stations within the measurement area. Normally 
these reference stations are already given in ETRS coordinates, so the GNSS baselines also point to ETRS 
coordinates. For this example we assume that the reference is given in WGS84, which might e.g. be the case in 
a precise surveying campaign in geophysical context. Then the GNSS result also is in WGS84 which is linked to 
ITRS. 



itrstrafo(ans,'ITRF2000',2011.90,'ETRF2000',2011.90) 

 
ans =  4027894.36314443 307045.252782388 4919474.62499541     

0.01329  -0.01727         -0.01085 
 
Last step is to change the reference epoch by using the obtained velocity information: 
 
itrstrafo(ans,'ETRF2000',2011.90,'ETRF2000',2005) 

 
ans = 4027894.27145832   307045.371968243 4919474.69989131 

0.01329  -0.01727         -0.01085 
 
Now we could compare these GNSS measurements with others defined in ETRF2000 and 

measured in 2005 as they refer to the same frame and the same epoch. 

The three steps above could also be combined in the single function call 

itrstrafo([4027894.006 307045.600 4919474.910],'ITRF2008',2011.90, 

'ETRF2000',2005) 

 
with the same result23. 

The itrstrafo – function also allows to work in IGS2005 and IGS2008 reference frames 

and to transform IGS2008 to NAD83. See the function helptext for implementation details.24 

 

8. A closer look on the ellipsoid and projection definitions 
 
Ellipsoids and projections are stored in the files Ellipsoids.mat and 

Projections.mat. They are meant to be extended, so please feel free to add any 

definition which suits your needs. 
 
Ellipsoid definition is very easy; it contains structs with the fields 
 
a semimajor axis 

b semiminor axis 

f flattening 

 
This is actually redundant as any of them can be calculated out of the other two. 

Note that this is just the general ellipsoid definition, there is no information about its center 

(compared to earth’s mass center or elsewhere) or any relation towards any coordinates. 

In the projections file, different projection definitions can be stored. At the moment with only 

two projection types coded in function files one may use ‘tm’ or ‘lambertcc2’ type. 

Projections are stored as structs where every parameter set has the fields 

                                                           
23 An online tool to perform ITRS/ETRS80 transformations can be found at the EUREF homepage: 
http://www.epncb.oma.be/_dataproducts/coord_trans/index.php 
24 An online tool for various transformations is provided by the NGS: 
https://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml.  The NGS results will differ from the itrstrafo results, 
because NGS also obeys crustal and tectonic deformation models which this toolbox can’t. 



type  type of projection. The functions read out the type to check whether the right 

projection type had been chosen. 

ellips  The ellipsoid which shall be used for projection. Of course this needs to be 

the ellipsoid the Lat, Long are given in. If another ellipsoid is to be used, a 

datum transformation has to be performed first (see chapter 2). 

 
Then there are additional parameter fields depending on the projection type: 

TM projection fields: 

m0  The scaling factor of the central meridian, e.g. 0.9996 with UTM 

rule_L0 The calculations rule to specify the central meridian L0 of the projection zone 

when only the zone identifier ID is given. This is needed when projected 

coordinates have to be transformed to ellipsoidal coordinates (tm2ell). The 

ID is taken from the easting of the projected coordinate using ID_pro. For 

UTM the rule is ‘ID*6-183’ as every zone is 6° wide and central meridian of 

the first zone is -177°. 

If L0 is fixed because only one zone exists, simply enter the central meridian 

value. 

The field has to be entered as a string to be evaluated with Matlab and 

possibly to be combined with other terms before evaluating. ‘ID’ is used as a 

variable. 

ID_ell The rule to calculate the zone ID when ellipsoidal coordinates and the central 

meridian are given (ell2tm). E.g. for UTM the rule is ‘L0/6+30.5’. 

The field has to be entered as a string to be evaluated with Matlab and 

possibly to be combined with other terms before evaluating. ‘L0’ is used as a 

variable which is either an user input or detected automatically via 

standard_L0. 

standard_L0 The rule to calculate the standard central meridian for each point to be 

transformed. standard_L0 is used to detect the proper L0 automatically when 

there is no user input in ell2tm. E.g. for UTM the rule is 'floor(L/6)*6+3'. 

 This rule has currently a lack of definition exactly at 180° E as this meridian is 

already covered by 180° W. 

 The field has to be entered as a string to be evaluated with Matlab and 

possibly to be combined with other terms before evaluating. ‘L’ may be used 

as a variable. 

It should be good practice to detect the central meridian automatically. 

Common exceptions only are measurement areas in two zones, when 

projected coordinates shall refer to the same zone. 

Standard_B0 The latitude origin (usually 0 for the equator) 

ID_pro  The rule to calculate the zone ID when projected coordinates are given 

(tm2ell). Usually this derives from the easting of the coordinates. For UTM it 

is e.g. ‘floor(E/1e6)’: the effective coordinate always has an integer part of 6 

places, everything added before is part of the ID. 

 The field has to be entered as a string to be evaluated with Matlab and 

possibly to be combined with other terms before evaluating. ‘E’ may be used 

as a variable. 



rule_easting The rule to add the false easting in [m]. This is a combination of false easting 

and zone ID addendum, so in UTM it is ‘+5e5+ID*1e6’. 500 000 is the “real” 

false easting and then the zone ID is added additionally. ‘ID’ may be used as 

a variable. This is used both in tm2ell and ell2tm. 

 The field has to be entered as a string to be evaluated with Matlab and 

possibly to be combined with other terms before evaluating (the initial ‘+’ 

therefore is mandatory). 

rule_northing The rule to calculate the false northing. In UTM there only is a false northing 

for points on southern hemisphere. In tm2ell and ell2tm these conditions 

cannot be indicated as results may be ambiguous then. So in the UTM 

implementation here no false northing is used: [<empty matrix>] or ‘<empty 

string>’ See chapter 4 for details. 

 

 

 

Let’s have a look on two different examples, UTM and Luxembourgian LUREF: 

 

parameter UTM LUREF 
m0 0.9996 1 

ellips ‘grs80’ ‘hayford’ 

rule_L0 
‘-183+ID*6’ 
calculation formula for the standard 
meridian L0 using ID as a parameter 

‘6+1/6* 
there is only one zone with  
L0 = 6° 10 ‘ as central meridian 

rule_easting 
‘+5e5+ID*1e6’ 
calculation formula for the false 
easting  using ID as a parameter 

‘+8e4’ 
use fix false easting value 

rule_northing 

[ ] 
no false northing as the equator is 
the reference 

‘+1e5’ 
use fix false northing value; the 
reference is within the projection 
area 

ID_ell 

‘L0/6+30.5’ 
calculation formula for the zone ID 
when ellipsoidal coordinates are 
given using L0 as a parameter 

‘0’ 
no zone ID as there is only one zone 

ID_pro 

‘floor(E/1e6)’ 
calculation formula for the zone ID 
when projected coordinates are 
given using E as a parameter 

‘0’ 
no zone ID as there is only one zone 

standard_L0 
‘floor(L/6)*6+3’ 
calculation formula for the standard 
meridian L0 using L as a parameter 

‘6+1/6’ 
fix value as 6° 10’ is the only central 
meridian 

standard_B0 
‘0’ 
fix value as 0° is the reference 
latitude 

‘49+5/6’ 
fix value as 49° 50’ is the reference 
latitude 

 

 

Lambert conical projection with two standard parallels fields: 

 

lat  The first and second standard parallels [1x2] in degrees Those parallels 

remain without scaling when projected.. 



 In Austria for example there is an official projection parameter set given by 

the BEV which uses [46 49]. 

ORell The origin (mapping center) of the projection in [Long Lat] [degrees]. The 

projection of ORell will be [0 0]. E.g. at the ‘bev’ set it is [13°20’ 47°30’]. 

ORproj The false easting and northing for the projected origin coordinate to prevent 

negative coordinates [false_easting false_northing] [meters]. 

The ‘bev’ values are [400000 400000]. 

 

 

9. The Transformations.mat definitions 
 

Transformation parameters can be stored in Transformations.mat.  
They are just 1 x n vectors with vector name = transformation name. 
 
All transformations have a different number of transformation parameters, so each 
transformation function checks the input parameter set for proper size. See the helptext in 
Transformations.m for details. 
 

 
 

10. Working with file inputs and outputs 
 
For many of the files in this toolbox you may specify an ASCII-filename as string instead of 

the input matrix. In this case, the specified file is opened and the ASCII input is treated as if 

it was the input data. 

This functionality is very basic – there is no “intelligence” to interpret the file data, it is just 

treated “as is”. So it may just contain pure coordinate information, no point IDs, comments 

etc. 

Also, many files have a “FileOut”-parameter in the input list. With this, you may specify a file 

to write the first output variable to. 

It is planned to expand the file functionality in future, but it’s not a major topic right now. 

 
 

11. Future developments 
 
This toolbox will be expanded with additional functions and definitions in future. Depending 
on our lecture (and sometimes Matlab Central user suggestions) needs we will for sure add 
further projection types and tools. 
 
For comments, bug reports and suggestions please contact 
 
Dr. Peter Wasmeier 
Chair of Geodesy, Technische Universität München 
p.wasmeier@bv.tum.de 
http://www.geo.bgu.tum.de/startseite/ 
 
November 16th, 2018 
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