Path: news.mathworks.com!not-for-mail
From: "Bruno Luong" <b.luong@fogale.findmycountry>
Newsgroups: comp.soft-sys.matlab
Subject: Re: integer solutions for x_1+x_2+...+x_n = k
Date: Mon, 3 Nov 2008 08:03:04 +0000 (UTC)
Organization: FOGALE nanotech
Lines: 10
Message-ID: <gemb7o$hib$1@fred.mathworks.com>
References: <geku21$eku$1@fred.mathworks.com> <gel0b6$3li$1@fred.mathworks.com> <gelbfg$72h$1@fred.mathworks.com> <gelf99$84m$1@fred.mathworks.com>
Reply-To: "Bruno Luong" <b.luong@fogale.findmycountry>
NNTP-Posting-Host: webapp-05-blr.mathworks.com
Content-Type: text/plain; charset="ISO-8859-1"
Content-Transfer-Encoding: 8bit
X-Trace: fred.mathworks.com 1225699384 17995 172.30.248.35 (3 Nov 2008 08:03:04 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Mon, 3 Nov 2008 08:03:04 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 390839
Xref: news.mathworks.com comp.soft-sys.matlab:498590

"Roger Stafford" <ellieandrogerxyzzy@mindspring.com.invalid> wrote in message <gelf99$84m$1@fred.mathworks.com>...

>   In general the total number of solutions is (k+n-1)!/k!/(n-1)! .
> 

Hi Roger,

what is your way to derive this formula ?

Bruno