Path: news.mathworks.com!not-for-mail
From: "John D'Errico" <woodchips@rochester.rr.com>
Newsgroups: comp.soft-sys.matlab
Subject: Re: overdetermenied system
Date: Tue, 13 Jan 2009 12:53:02 +0000 (UTC)
Organization: John D'Errico (1-3LEW5R)
Lines: 20
Message-ID: <gki2re$avj$1@fred.mathworks.com>
References: <gkhurv$nv1$1@fred.mathworks.com>
Reply-To: "John D'Errico" <woodchips@rochester.rr.com>
NNTP-Posting-Host: webapp-05-blr.mathworks.com
Content-Type: text/plain; charset="ISO-8859-1"
Content-Transfer-Encoding: 8bit
X-Trace: fred.mathworks.com 1231851182 11251 172.30.248.35 (13 Jan 2009 12:53:02 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Tue, 13 Jan 2009 12:53:02 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 869215
Xref: news.mathworks.com comp.soft-sys.matlab:511164

"Awusi Kavuma" <kavumawusi@yahoo.com> wrote in message <gkhurv$nv1$1@fred.mathworks.com>...
> Hello there
> 
> Can someone help with this overdetermenied system
> 
> M1(x,y) = A(x,y).*M11(x,y) + B(x,y).*M10(x,y)
> M2(x,y) = A(x,y).*M22(x,y) + B(x,y).*M20(x,y)
> M3(x,y) = A(x,y).*M33(x,y) + B(x,y).*M30(x,y)
> M4(x,y) = A(x,y).*M44(x,y) + B(x,y).*M40(x,y)
> 
> All Mi(x,y) are 512x384 matrices, real and known.
> 
> The problem is linear in A and B and for specific points the least square using backslash technique can be used to solve for the coefficients. My problem is to extend the method to find coefficients A(x,y) and B(x,y) for entire system.
> 

This reduces to a linear block diagonal system
with 4x2 blocks. Backslash should be able to
solve it efficiently. 

John