From: "Sadik " <>
Newsgroups: comp.soft-sys.matlab
Subject: Re: Double Numerical Integration
Date: Wed, 14 Jan 2009 17:31:01 +0000 (UTC)
Organization: The MathWorks, Inc.
Lines: 12
Message-ID: <gkl7gl$lu0$>
References: <gkl6sh$97r$>
Reply-To: "Sadik " <>
Content-Type: text/plain; charset="ISO-8859-1"
Content-Transfer-Encoding: 8bit
X-Trace: 1231954261 22464 (14 Jan 2009 17:31:01 GMT)
NNTP-Posting-Date: Wed, 14 Jan 2009 17:31:01 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 1666517
Xref: comp.soft-sys.matlab:511519

"V" <> wrote in message <gkl6sh$97r$>...
> Hi All,
> I am trying to numerically evaluate a double integral function, z = f(x,y) over the limits (0,75000). The typical values of z are in the range 0 to 10^5. So the volume calculated under the surface plot is very large. This integration step takes several minutes (typically 15-20 mins) but when the step is repeated 75 times (for varying limits - still in 10^3 units), the whole process can take several hours to complete. 
> I am wondering if anyone knows of a simpler way of solving the problem which takes large limits that takes reasonable to solve as opposed to the current time of a few hours. 
> Cheers...

Hello V, :)

I believe the answer to your question depends on your function f(x,y). Could you give a few more details about it?