Path: news.mathworks.com!not-for-mail
From: "Peter Schreiber" <schreiber.peter15@gmail.com>
Newsgroups: comp.soft-sys.matlab
Subject: analytical solution?
Date: Wed, 18 Mar 2009 05:37:02 +0000 (UTC)
Organization: The MathWorks, Inc.
Lines: 29
Message-ID: <gpq19u$c4d$1@fred.mathworks.com>
Reply-To: "Peter Schreiber" <schreiber.peter15@gmail.com>
NNTP-Posting-Host: webapp-03-blr.mathworks.com
Content-Type: text/plain; charset="ISO-8859-1"
Content-Transfer-Encoding: 8bit
X-Trace: fred.mathworks.com 1237354622 12429 172.30.248.38 (18 Mar 2009 05:37:02 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Wed, 18 Mar 2009 05:37:02 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 1267246
Xref: news.mathworks.com comp.soft-sys.matlab:525767

Hi guys,
Does somebody know if there exists an analytical solution for a line - conic intersection, e.g.
z1=z2, with

z1=c.*r.^2./(1+sqrt(1-(1+k).*c.^2.*r.^2))
z2=a.*r+b?

Any hints would be highly appreciated.

Best Regards,
Peter


%code showing the line and conic
clear all
clc
close all
c=-1/100;
k=-1;
a=1;
b=2;
r=linspace(-10,10,50);

z1=c.*r.^2./(1+sqrt(1-(1+k).*c.^2.*r.^2))
z2=a.*r+b
plot(z1,r)
hold on
plot(z2,r)
axis equal