Path: news.mathworks.com!newsfeed-00.mathworks.com!newsfeed2.dallas1.level3.net!news.level3.com!postnews.google.com!news1.google.com!npeer03.iad.highwinds-media.com!news.highwinds-media.com!feed-me.highwinds-media.com!post01.iad.highwinds-media.com!newsfe13.iad.POSTED!7564ea0f!not-for-mail
From: Walter Roberson <roberson@hushmail.com>
Organization: Canada Eat The Cookie Foundation
User-Agent: Thunderbird 2.0.0.21 (Windows/20090302)
MIME-Version: 1.0
Newsgroups: comp.soft-sys.matlab
Subject: Re: Symbolic Mathematics quesetion
References: <gq783t$kem$1@fred.mathworks.com> <gq7b7a$8c2$1@fred.mathworks.com> <gq7c6m$3fj$1@fred.mathworks.com>
In-Reply-To: <gq7c6m$3fj$1@fred.mathworks.com>
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 7bit
Lines: 31
Message-ID: <OSQxl.73590$Tp5.4187@newsfe13.iad>
NNTP-Posting-Host: 24.79.146.116
X-Complaints-To: internet.abuse@sjrb.ca
X-Trace: newsfe13.iad 1237834286 24.79.146.116 (Mon, 23 Mar 2009 18:51:26 UTC)
NNTP-Posting-Date: Mon, 23 Mar 2009 18:51:26 UTC
Date: Mon, 23 Mar 2009 13:51:20 -0500
Xref: news.mathworks.com comp.soft-sys.matlab:527044

xiao wrote:
> yes
> what i get is 'Unable to find closed form solution'.
> is that show i can get the ans ? what should i do ?

RootOf(27*_Z^18*k^6*m-513*_Z^16*h^2*k^6*m-4096*h^18*k^6*m+3780*_Z^15*r*a*k^5*u
*q-756*_Z^13*r*a*h^2*k^5*u*q+147456*h^15*k^5*u*c*m-2211840*h^12*k^4*u^2*c^2*m+
17694720*h^9*k^3*u^3*c^3*m-79626240*h^6*k^2*u^4*c^4*m+191102976*h^3*k*u^5*c^5*
m+(4113*h^4*k^6*m+18252*h*k^5*u*c*m)*_Z^14-191102976*u^6*c^6*m+(-18235*h^6*k^6
*m-128508*h^3*k^5*u*c*m-65484*k^4*u^2*c^2*m)*_Z^12+(-124416*r*a*h^4*k^5*u*q+
995328*r*a*h*k^4*u^2*c*q)*_Z^11+(49344*h^8*k^6*m+403200*h^5*k^5*u*c*m+2102976*
h^2*k^4*u^2*c^2*m)*_Z^10+(634176*r*a*h^6*k^5*u*q+3151872*r*a*h^3*k^4*u^2*c*q-
3110400*r*a*k^3*u^3*c^2*q)*_Z^9+(-84912*h^10*k^6*m-703296*h^7*k^5*u*c*m-
4784832*h^4*k^4*u^2*c^2*m-8252928*h*k^3*u^3*c^3*m)*_Z^8+(-1589760*r*a*h^8*k^5*
u*q-13768704*r*a*h^5*k^4*u^2*c*q+32348160*r*a*h^2*k^3*u^3*c^2*q)*_Z^7+(93440*h
^12*k^6*m+605184*h^9*k^5*u*c*m+3013632*h^6*k^4*u^2*c^2*m+59609088*h^3*k^3*u^3*
c^3*m+7630848*k^2*u^4*c^4*m)*_Z^6+(2184192*r*a*h^10*k^5*u*q+13934592*r*a*h^7*k
^4*u^2*c*q+268738560*r*a*h^4*k^3*u^3*c^2*q-167215104*r*a*h*k^2*u^4*c^3*q)*_Z^5
+(-63744*h^14*k^6*m-46080*h^11*k^5*u*c*m+414720*h^8*k^4*u^2*c^2*m+55074816*h^5
*k^3*u^3*c^3*m-252813312*h^2*k^2*u^4*c^4*m)*_Z^4+(-1548288*r*a*h^12*k^5*u*q-
2654208*r*a*h^9*k^4*u^2*c*q+203046912*r*a*h^6*k^3*u^3*c^2*q-812187648*r*a*h^3*
k^2*u^4*c^3*q+143327232*r*a*k*u^5*c^4*q)*_Z^3+(24576*h^16*k^6*m-294912*h^13*k^
5*u*c*m-1769472*h^10*k^4*u^2*c^2*m+42467328*h^7*k^3*u^3*c^3*m-222953472*h^4*k^
2*u^4*c^4*m+382205952*h*k*u^5*c^5*m)*_Z^2+(442368*r*a*h^14*k^5*u*q-10616832*r*
a*h^11*k^4*u^2*c*q+95551488*r*a*h^8*k^3*u^3*c^2*q-382205952*r*a*h^5*k^2*u^4*c^
3*q+573308928*r*a*h^2*k*u^5*c^4*q)*_Z,label = _L1)/h


In this notation, _Z is a dummy variable representing a zero of the equation
(that is, if you put in the right _Z then the equation would become 0).
But as you can see, it is an 18th order polynomial.