Path: news.mathworks.com!not-for-mail
From: <HIDDEN>
Newsgroups: comp.soft-sys.matlab
Subject: Re: Area integral over a triangle in MATLAB -- is numerical integration possible?
Date: Sat, 20 Mar 2010 09:32:04 +0000 (UTC)
Organization: The MathWorks, Inc.
Lines: 8
Message-ID: <ho24mk$mb1$1@fred.mathworks.com>
References: <ho1k5u$hsc$1@fred.mathworks.com> <ho1ocu$ldr$1@fred.mathworks.com> <ho1pvj$cbr$1@fred.mathworks.com> <ho1rq8$8rk$1@fred.mathworks.com> <ho1u8b$dfi$1@fred.mathworks.com>
Reply-To: <HIDDEN>
NNTP-Posting-Host: webapp-05-blr.mathworks.com
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: fred.mathworks.com 1269077524 22881 172.30.248.35 (20 Mar 2010 09:32:04 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Sat, 20 Mar 2010 09:32:04 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 1654381
Xref: news.mathworks.com comp.soft-sys.matlab:618468

"Roger Stafford" <ellieandrogerxyzzy@mindspring.com.invalid> wrote in message <ho1u8b$dfi$1@fred.mathworks.com>...
>   No Vivek, you should integrate over the full square u = 0 to u = 1 and v = 0 to v = 1.  dblquad will not let you do otherwise.  It is the full u,v square that the x,y triangle is mapped into by the given transformation.  It does not matter that it has a singularity at the (x1,y1) vertex.
> 
> Roger Stafford

Hi Roger, I think I see your point. But what if I use quad2d?

So, if I understand you correctly, the triangle is mapped to the square {(u,v): 0<= u <= 1, 0 <= v <= 1} in (u,v) space.