From: <HIDDEN>
Newsgroups: comp.soft-sys.matlab
Subject: Re: Coordinate on sphere(vector calculus)
Date: Thu, 25 Mar 2010 19:02:05 +0000 (UTC)
Organization: Xoran Technologies
Lines: 14
Message-ID: <hogbvd$skt$>
References: <hofr3c$jlb$> <hofucs$ob5$> <hofvjo$lpr$> <hog3fg$308$> <hog428$cek$> <hog4r7$otg$> <hog91m$7ge$> <hogb70$f9s$> <hogbk2$mkc$>
Reply-To: <HIDDEN>
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: 1269543725 29341 (25 Mar 2010 19:02:05 GMT)
NNTP-Posting-Date: Thu, 25 Mar 2010 19:02:05 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 1440443
Xref: comp.soft-sys.matlab:620351

"Matt J " <mattjacREMOVE@THISieee.spam> wrote in message <hogbk2$mkc$>...

> Well, here are the equations that P2 must satisfy
> dot(P1,P2)=r^2
> dot(P2,P2)=r^2
> As you can see, you have 2 equations in 3 unknowns, so as we've been saying, there will be no unique solution.

Here I assumed that x0=y0=z0=0, but you can solve under this assumption and then make a coordinate shift later...