Path: news.mathworks.com!not-for-mail
From: <HIDDEN>
Newsgroups: comp.soft-sys.matlab
Subject: Re: Estimation Problem in Newton Method
Date: Thu, 17 Jun 2010 18:10:21 +0000 (UTC)
Organization: London School of Economics
Lines: 12
Message-ID: <hvdoec$65s$1@fred.mathworks.com>
References: <hv4vse$9h1$1@fred.mathworks.com> <hv6foa$3ho$1@fred.mathworks.com> <hvct0c$n90$1@fred.mathworks.com> <hvdm3j$70q$1@fred.mathworks.com>
Reply-To: <HIDDEN>
NNTP-Posting-Host: webapp-02-blr.mathworks.com
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: fred.mathworks.com 1276798221 6332 172.30.248.37 (17 Jun 2010 18:10:21 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Thu, 17 Jun 2010 18:10:21 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 1191643
Xref: news.mathworks.com comp.soft-sys.matlab:645868


>   Newton's method (properly done,) fsolve, and fmincon should all find that solution easily if given an appropriate initial estimate, but why do it that way when the solution is so easily found by hand?
> 
>   I am assuming here, based on your earlier statement, that your function is:
> 
>  f(x1,x2) =  -3/2*log(abs(x2)) - sum((d-x1)^2)/(2*x2)
> 
> where d = [-1 5 2 -2 4 3 -3 6 3 1 -2].
> 
> Roger Stafford

Thanks Roger for the reply, I am just new to matlab and want to build my understanding from simple models to the inbuilt functions of matlab. I would appreciate any help. Thanks alot!