From: "Robert Phillips" <>
Newsgroups: comp.soft-sys.matlab
Subject: Re: Ellipsoid
Date: Mon, 6 Dec 2010 04:38:04 +0000 (UTC)
Organization: Embry-Riddle Aeronautical University
Lines: 11
Message-ID: <idhpbc$649$>
References: <icso5g$33l$> <icsrgb$3ue$> <icu950$nsb$> <icupv3$8ad$> <icv3mb$rqg$> <icvafr$93i$> <idhhe8$ae8$>
Reply-To: "Robert Phillips" <>
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: 1291610284 6281 (6 Dec 2010 04:38:04 GMT)
NNTP-Posting-Date: Mon, 6 Dec 2010 04:38:04 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 2598083
Xref: comp.soft-sys.matlab:692794

I solved the above problem! (Sorry if you read it already lol)

This is the correction:

    if sum(((XR.^2/a^2 + YR.^2/b^2 + ZR.^2/c^2) >= 1)) < 5

I allow 4 false statements, rather, 4 surface points to satisfy the region. No ellipsoids are capable of obeying that condition, and I think I know why.

Now my problem is this: find a way to shorten the a_E vector and cycle through all possible a_E vectors as well. Aiyaiyai.