```Path: news.mathworks.com!not-for-mail
From: "Robert Phillips" <phillir1@my.erau.edu>
Newsgroups: comp.soft-sys.matlab
Subject: Re: Ellipsoid
Date: Mon, 6 Dec 2010 04:38:04 +0000 (UTC)
Organization: Embry-Riddle Aeronautical University
Lines: 11
Message-ID: <idhpbc\$649\$1@fred.mathworks.com>
References: <icso5g\$33l\$1@fred.mathworks.com> <icsrgb\$3ue\$1@fred.mathworks.com> <icu950\$nsb\$1@fred.mathworks.com> <icupv3\$8ad\$1@fred.mathworks.com> <icv3mb\$rqg\$1@fred.mathworks.com> <icvafr\$93i\$1@fred.mathworks.com> <idhhe8\$ae8\$1@fred.mathworks.com>
NNTP-Posting-Host: webapp-05-blr.mathworks.com
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: fred.mathworks.com 1291610284 6281 172.30.248.35 (6 Dec 2010 04:38:04 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Mon, 6 Dec 2010 04:38:04 +0000 (UTC)
Xref: news.mathworks.com comp.soft-sys.matlab:692794

I solved the above problem! (Sorry if you read it already lol)

This is the correction:

if sum(((XR.^2/a^2 + YR.^2/b^2 + ZR.^2/c^2) >= 1)) < 5

I allow 4 false statements, rather, 4 surface points to satisfy the region. No ellipsoids are capable of obeying that condition, and I think I know why.

Now my problem is this: find a way to shorten the a_E vector and cycle through all possible a_E vectors as well. Aiyaiyai.

Thanks
```